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Abstract
Explicit model predictive control (MPC) enhances applica-

tion of MPC to areas where the fast online computation of the
control signal is crucial, such as in aircraft or vehicle con-
trol. Explicit MPC controllers consist of several affine feed-
back gains, each of them valid over a polyhedral region of the
state space. In this paper the optimal control of the quarter
car semi-active suspension is studied. After a detailed theoret-
ical introduction to the modeling, clipped LQ control and ex-
plicit MPC, the article demonstrates that there may exist regions
where constrained MPC/explicit MPC has no feasible solution.
To overcome this problem the use of soft constraints and com-
bined clipped LQ/MPC methods are suggested. The paper also
shows that the clipped optimal LQ solution equals to the MPC
with horizon N = 1 for the whole union of explicit MPC re-
gions. We study the explicit MPC of the semi-active suspen-
sion with actual discrete time observer connected to the explicit
MPC in order to increase its practical applicability. The con-
troller requires only measurement of the suspension deflection.
Performance of the derived controller is evaluated through sim-
ulations where shock tests and white noise velocity disturbances
are applied to a real quarter car vertical model. Comparing
MPC and the clipped LQ approach, no essential improvement
was detected in the control behavior.
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Department of Control Engineering and Information Technology, BME, H-1117
Budapest Magyar Tudósok krt. 2., Hungary

Michal Kvasnica

Inst. of Information Engineering, Automation and Mathematics, Slovak Univer-
sity of Technology, Slovakia

Béla Lantos

Department of Control Engineering and Information Technology, BME, H-1117
Budapest Magyar Tudósok krt. 2., Hungary
e-mail: lantos@iit.bme.hu

1 Introduction
The automotive suspension supports the vehicle body on the

axles and provides good ride quality against the road distur-
bances while keeps good road holding. In the future cars the
intelligent suspension is part of a vehicle dynamic control sys-
tem [19]. In the newest, luxury cars one may change the vehicle
characteristic by pushing a button. The drive feeling can be set
to a comfort mode as in a limousine, to a sporty mode, or to auto-
matic. The system influences the characteristic of gear-change,
steering, motor and suspension.

The quarter car suspension model is adequate to analyze the
car response to irregular road surface and design an approxi-
mately optimal suspension controller to increase the good drive
feeling. The performance of the suspension in the time domain
can be expressed by L2 norm. The suspension can be classi-
fied into three groups according to operation: passive, semi-
active, active suspension. Passive suspension consists of only
spring and dampers, the semi-active utilizes variable damper
and in the active suspension hydraulic, air or electric actuator
force is applied. The semi-active suspension has simpler me-
chanical structure than the active one, requires power only to
change the dissipative force characteristic and it cannot become
unstable because the semi-active suspension is a passive system.
Due to its many advantageous properties the automotive indus-
try builds the semi-active suspension often into the top vehicles.
Besides the automotive industry, the semi-active dampers can
also be used in buildings to compensate the oscillation during
earthquakes and anywhere where the vibration is undesirable.

Recently, based on the analogy between the electrical and
mechanical circuits, a new mechanical circuit element the in-
erter has been developed and applied to vehicle suspension with
success. The first deployment of the inerter under the name J-
damper happened in the McLaren Formula One Racing team,
leading to significant performance gains in handling and grip
[7]. Examples mentioned previously show that the research area
of the controlled dampers is very active allowing new damper
technology and new control methods.

Although lots of modern control methods exist, only little can
treat constraints in efficient way. The main objective of the opti-
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mal control is to determine the solution of the infinite-horizon
linear quadratic regulator problem with constraints (CLQR)
which was studied by many researchers in the past few years
[3, 6, 8, 9, 15, 35, 37]. The solution can be approximated by re-
peatedly solving constrained finite horizon optimal control prob-
lems in a receding horizon fashion which is also called model
predictive control (MPC) and accepted mainly in the process in-
dustry. Unfortunately the online solution of the time consuming
quadratic (QP) and linear (LP) programs limits the application
of MPC mainly to processes with slow dynamics.

To overcome this limitation, the method of multi-parametric
programming can be applied to “pre-calculate” the solution of
the finite horizon CLQR problem in the explicit piecewise affine
form. This technique enlarges the scope of applicability of
MPC, allows insight into the controller structure and ensures
to detect the reachable states and fault operations in advance.
A serious drawback of the explicit solution of the MPC lies
in the exponential growing of the number of control regions
when the prediction horizon is increasing. New research direc-
tions study efficient searching algorithms to choose the feed-
back gains [10, 20, 38] and/or develop techniques to reduce the
number of regions [22, 25]. A new approach to overcome of
the above difficulty applies some approximation of the explicit
MPC controller using polynomial approximation [24].

Disadvantage of the MPC comes from the fact that MPC is
an optimization based control design method under constraints
and there are situations where no solution exists, i.e. the con-
troller cannot give any control action, which is forbidden in a
real system. To treat this problem one can use non-MPC type of
controllers in such control regions. Alternatively, the constraints
can be softened. In the paper we will derive such controllers for
the semi-active suspension. Furthermore the MPC, which has
“larger complexity”, will be compared to the clipped LQ con-
troller which has “simpler complexity”. Explicit MPC desires
full state measurement which is usually not possible in practical
applications. In order to overcome this problem the paper sug-
gests a discrete time deterministic (actual) observer connected
to the explicit MPC controller which requires only measurement
of the suspension deflection. The results are presented through
simulation of a real quarter car model.

The remainder of this paper is organized as follows. Section 2
introduces the model of the semi-active suspension and the pas-
sivity constraints. Section 3 summarizes the theoretical back-
ground of the mixed logical dynamical (MLD) systems. Explicit
MPC and multi-parametric programming are discussed in Sec-
tion 4. Section 5 presents the explicit MPC of the semi-active
suspension and analyses some properties of the controller. In
Section 6 the discrete time actual observer is derived and con-
nected to the explicit MPC. In the last two sections simulation
results show efficient working of the controller. Section 7 con-
cludes the paper.

2 Quarter car model of the semi-active suspension and
the optimal control problem
Motion equations of a two degree of freedom quarter car in

Fig. 1 can be described as
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Although lots of modern control methods exist, only
little can treat constraints in efficient way. The main
objective of the optimal control is to determine the
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Section II introduces the model of the semi-active sus-
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II Quarter Car Model of the
Semi-Active Suspension and
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Figure 1: Semi-active quarter car model
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[ksx3 + βs(x4 − x2)− kusx1 + F ]

ẋ3 = x4 − x2

ẋ4 =
1

Ms

[−ksx3 − βs(x4 − x2)− F ] (1)

where Ms, Mus are the sprung and unsprung mass, re-
spectively, ks, kus [N/m] are the spring stiffness coef-
ficients, βs [N/m/s] is the damping coefficient, x1 [m]
is the tire deflection, x2 [m/s] is the unsprung mass
velocity, x3 [m] is the suspension deflection, x4 [m/s]
is sprung mass velocity, F [N ] is the adjustable force
and w [m/s] is the road velocity disturbance. Fig. 2
shows the nonlinear functions of the front suspension of
a Renault Mégane Coupé [16] which are approximated
in the model so that the spring force (Fks

= ksx3)
and the damping (dissipative) force (Fβs

= βsẋ3) lin-
early depend on the deflection and the deflection speed,
respectively. In the literature nonlinear approxima-
tions of the functions are also available for instance
Fks

= ksx3 + knls x3
3 and Fβs

= βsẋ3 − βsym
s |ẋ3| +

βnl
s

√

|ẋ3|sgn(ẋ3) respectively [17]. Shaping the damp-
ing force in a passive suspension determines the dy-
namic and drive feeling of the car which is carried
out through complex steps by the manufacturer. The
following normalized parameters will be introduced:
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ẋ3 = x4 − x2

ẋ4 =
1

Ms
[−ks x3 − βs(x4 − x2) − F] (1)

where Ms , Mus are the sprung and unsprung mass, respectively,
ks , kus [N/m] are the spring stiffness coefficients, βs [N/m/s]
is the damping coefficient, x1 [m] is the tire deflection, x2 [m/s]
is the unsprung mass velocity, x3 [m] is the suspension deflec-
tion, x4 [m/s] is sprung mass velocity, F [N ] is the adjustable
force and w [m/s] is the road velocity disturbance. Fig. 2
shows the nonlinear functions of the front suspension of a Re-
nault Mégane Coupé [29] which are approximated in the model
so that the spring force (Fks = ks x3) and the damping (dissipa-
tive) force (Fβs = βs ẋ3) linearly depend on the deflection and
the deflection speed, respectively. In the literature nonlinear ap-
proximations of the functions are also available for instance
Fks = ks x3 + knl

s x3
3 and

Fβs = βs ẋ3 − β
sym
s |ẋ3| + βnl

s
√

|ẋ3|sgn(ẋ3) respectively [12].
Shaping the damping force in a passive suspension determines
the dynamic and drive feeling of the car which is carried out
through complex steps by the manufacturer.

The following normalized parameters will be introduced:
sprung-to-unsprung mass ratio ρ, sprung mass-, wheel-hop nat-
ural frequencies ωs , ωus [rad/s] and the normalized adjustable
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Figure 2: Nonlinear spring- (left) and damping force
(right) and their derivatives of a Renault Mégane
Coupé [16]

sprung-to-unsprung mass ratio ρ, sprung mass-, wheel-
hop natural frequencies ωs, ωus [rad/s] and the normal-
ized adjustable force u [N/kg] which imply the normal-
ized damping coefficient ζ = βs/(2

√
Msks) to obtain

numerically better conditioned state equations:
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According the Fig. 3, suspensions systems can be cat-
egorized into three groups. Passive suspension always
dissipates energy through a fixed damping force charac-
teristic. Also semi-active suspension can only dissipate
energy but with varying damping force characteristic
(left). Active suspension can both dissipate or gener-
ate energy using the almost total damping force plane
depending on the actuator (right).
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Figure 3: Speed/Effort Rule (SER) of a passive, semi-
active (left) and active (right) suspension system.

Due to their simple mechanical structure, low energy
consumption, fast time response and low cost, the semi-
active suspensions are more preferred in the industry

than active ones when increasing the vehicle perfor-
mance is required. The Magneto-Rheological (MR)
(Fig. 4) damper is one of the most applied semi-active
dampers which uses MR fluid (e.g. oil and ferro parti-
cles) whose viscosity, i.e. damping value βsemi, can be
varied by applying magnetic field controlled by current.
The magnetic field orders the particles in such direction

Figure 4: Magneto-Rheological (MR) damper [16]

to increase the damping value. The damping charac-
teristic can be controlled very accurately by changing
the magnetic field. The semi-active suspension systems
are passive systems, since the power consumption is re-
quired only for purposes of changing dissipative force
characteristic in real-time, consequently they cannot
become unstable. From another viewpoint, the semi-
active suspension does not actively generate energy to
the vibratory suspension system but only dissipates en-
ergy from it.
Some researchers study the semi-active suspension sys-
tem as bilinear system and the control input βsemi is
used [18]. In this formulation the product of the states
(x4 − x2) and the control input βsemi appears in the
model: F = βsemi(x4−x2) (see equations in (1)). The
variable damper βsemi is constrained to

βmin
semi ≤ βsemi ≤ βmax

semi. (3)

According to a recently applied more practical ap-
proach, the semi-active damper is simply modeled as
a static map of the deflection speed-force, while the
control input F has to satisfy the dissipativity and the
saturation constraints (Fig. 3 (left)) [19, 16]. This in-
terpretation provides linear state space model (1). In
practice the inverse model of the real actuator is still
needed to determine the current to the calculated force
that finally modifies the damping coefficient.
Since the semi-active damper ensures stability, our aim
is to achieve performance requirements. The model
predictive control (MPC) results good performance
while trying to satisfy the constraints. The name MPC
includes the controller design technique, namely, one
needs a model to predict the future behavior of the
plant and the optimization is based on the predicted
future of the plant. The semi-active suspension system
can be modeled as

ẋ = Ax+Bu+Bww

yperf = ẋ4 = Cperfx+Dperfu

yobs = x3 = Cobsx (4)
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Fig. 2. Nonlinear spring- (left) and damping force (right) and their derivatives of a Renault Mégane Coupé [29]
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Figure 2: Nonlinear spring- (left) and damping force
(right) and their derivatives of a Renault Mégane
Coupé [16]
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ẋ2 = − kus
Mus
︸ ︷︷ ︸

ω2
us

x1 −
βs

Mus
︸ ︷︷ ︸

2ρζωs

x2 +
ks
Mus
︸ ︷︷ ︸

ρω2
s

x3 +
βs

Mus
︸ ︷︷ ︸

2ρζωs

x4+

+
Ms

Mus
︸ ︷︷ ︸

ρ

F

Ms
︸︷︷︸

u
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control input F has to satisfy the dissipativity and the
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terpretation provides linear state space model (1). In
practice the inverse model of the real actuator is still
needed to determine the current to the calculated force
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Since the semi-active damper ensures stability, our aim
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predictive control (MPC) results good performance
while trying to satisfy the constraints. The name MPC
includes the controller design technique, namely, one
needs a model to predict the future behavior of the
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(right) and their derivatives of a Renault Mégane
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√
Msks) to obtain

numerically better conditioned state equations:

ẋ2 = − kus
Mus
︸ ︷︷ ︸

ω2
us

x1 −
βs

Mus
︸ ︷︷ ︸

2ρζωs

x2 +
ks
Mus
︸ ︷︷ ︸

ρω2
s

x3 +
βs

Mus
︸ ︷︷ ︸

2ρζωs

x4+

+
Ms

Mus
︸ ︷︷ ︸

ρ

F

Ms
︸︷︷︸

u

ẋ4 =
βs

Ms
︸︷︷︸

2ζωs

x2 −
ks
Ms
︸︷︷︸

ω2
s

x3 −
βs

Ms
︸︷︷︸

2ζωs

x4 −
F

Ms
︸︷︷︸

u

. (2)

According the Fig. 3, suspensions systems can be cat-
egorized into three groups. Passive suspension always
dissipates energy through a fixed damping force charac-
teristic. Also semi-active suspension can only dissipate
energy but with varying damping force characteristic
(left). Active suspension can both dissipate or gener-
ate energy using the almost total damping force plane
depending on the actuator (right).

Passive damper
(1 characteristic)

Semi-active damper
(characteristic set)

Ampere

0.0 A

(Deflection speed)

(Force)

(Force)

Active damper actuator set

)tan( maxmax

semisemi ab =

)tan( minmin

semisemi ab =

(Deflection speed)

F

F

max
F

3x& 3x&

Figure 3: Speed/Effort Rule (SER) of a passive, semi-
active (left) and active (right) suspension system.

Due to their simple mechanical structure, low energy
consumption, fast time response and low cost, the semi-
active suspensions are more preferred in the industry

than active ones when increasing the vehicle perfor-
mance is required. The Magneto-Rheological (MR)
(Fig. 4) damper is one of the most applied semi-active
dampers which uses MR fluid (e.g. oil and ferro parti-
cles) whose viscosity, i.e. damping value βsemi, can be
varied by applying magnetic field controlled by current.
The magnetic field orders the particles in such direction

Figure 4: Magneto-Rheological (MR) damper [16]

to increase the damping value. The damping charac-
teristic can be controlled very accurately by changing
the magnetic field. The semi-active suspension systems
are passive systems, since the power consumption is re-
quired only for purposes of changing dissipative force
characteristic in real-time, consequently they cannot
become unstable. From another viewpoint, the semi-
active suspension does not actively generate energy to
the vibratory suspension system but only dissipates en-
ergy from it.
Some researchers study the semi-active suspension sys-
tem as bilinear system and the control input βsemi is
used [18]. In this formulation the product of the states
(x4 − x2) and the control input βsemi appears in the
model: F = βsemi(x4−x2) (see equations in (1)). The
variable damper βsemi is constrained to

βmin
semi ≤ βsemi ≤ βmax

semi. (3)

According to a recently applied more practical ap-
proach, the semi-active damper is simply modeled as
a static map of the deflection speed-force, while the
control input F has to satisfy the dissipativity and the
saturation constraints (Fig. 3 (left)) [19, 16]. This in-
terpretation provides linear state space model (1). In
practice the inverse model of the real actuator is still
needed to determine the current to the calculated force
that finally modifies the damping coefficient.
Since the semi-active damper ensures stability, our aim
is to achieve performance requirements. The model
predictive control (MPC) results good performance
while trying to satisfy the constraints. The name MPC
includes the controller design technique, namely, one
needs a model to predict the future behavior of the
plant and the optimization is based on the predicted
future of the plant. The semi-active suspension system
can be modeled as

ẋ = Ax+Bu+Bww

yperf = ẋ4 = Cperfx+Dperfu

yobs = x3 = Cobsx (4)

3

Fig. 4. Magneto-Rheological (MR) damper [29]

magnetic field orders the particles in such direction to increase
the damping value. The damping characteristic can be con-
trolled very accurately by changing the magnetic field. The
semi-active suspension systems are passive systems, since the
power consumption is required only for purposes of changing
dissipative force characteristic in real-time, consequently they
cannot become unstable. From another viewpoint, the semi-
active suspension does not actively generate energy to the vi-
bratory suspension system but only dissipates energy from it.
Some researchers study the semi-active suspension system as
bilinear system and the control input βsemi is used [30]. In this
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formulation the product of the states (x4 − x2) and the control
input βsemi appears in the model: F = βsemi (x4 − x2) (see
equations in (1)). The variable damper βsemi is constrained to

βmin
semi ≤ βsemi ≤ βmax

semi . (3)

According to a recently applied more practical approach, the
semi-active damper is simply modeled as a static map of the
deflection speed-force, while the control input F has to satisfy
the dissipativity and the saturation constraints (Fig. 3 (left))
[14, 29]. This interpretation provides linear state space model
(1). In practice the inverse model of the real actuator is still
needed to determine the current to the calculated force that fi-
nally modifies the damping coefficient.
Since the semi-active damper ensures stability, our aim is to
achieve performance requirements. The model predictive con-
trol (MPC) results good performance while trying to satisfy the
constraints. The name MPC includes the controller design tech-
nique, namely, one needs a model to predict the future behavior
of the plant and the optimization is based on the predicted future
of the plant. The semi-active suspension system can be modeled
as

ẋ = Ax + Bu + Bww

yper f = ẋ4 = C per f x + Dper f u

yobs = x3 = Cobs x (4)

where the state space matrices are

A =


0 1 0 0

−ω2
us −2ρζωs ρω2

s 2ρζωs

0 −1 0 1
0 2ζωs −ω2

s −2ζωs

 ,

B =


0
ρ

0
−1

 , Bw =


−1
0
0
0

 , Dper f =

[
−1

]
,

C per f =

[
0 2ζωs −ω2

s −2ζωs

]
,

Cobs =

[
0 0 1 0

]
. (5)

The output yper f (sprung mass acceleration) is used for design-
ing the MPC controller and the suspension deflection yobs is the
only measured (observed) output. The semi-active damper is
modeled as a static map (Fig. 3) which determines the achiev-
able forces (constraints). Dissipating power constraints are con-
sidered:

if (ẋ3 = x4 − x2) ≥ 0

βmin
semi (x4 − x2) ≤ u ≤ βmax

semi (x4 − x2)

if (ẋ3 = x4 − x2) ≤ 0

βmax
semi (x4 − x2) ≤ u ≤ βmin

semi (x4 − x2) (6)

The saturation constraints are:

umin ≤ u ≤ umax (7)

Note that the constraints in Eq. (6) are state dependent. Con-
sequently, the current control affects not only the future states
of the system but it affects the future constraints of the force u
through (x4 − x2) as well. The range of the achievable con-
trol depends on the previous history of the control values. The
performance index J contains a combination of the yper f = ẋ4

to reduce the vehicle body acceleration, x1 to keep good road
holding, and x3 to hold the vehicle static weight [14]:

J =

∞∫
0

(q1x2
1 + q3x2

3 + ẋ2
4)dt =

∞∫
0

(xT Q0x + y2
per f )dt, (8)

where

Q0 =


q1 0 0 0
0 0 0 0
0 0 q3 0
0 0 0 0

 . (9)

Substituting ẋ2
4 from the state equations into integrand of the

performance index (8), after some algebra we obtain the perfor-
mance function in the usual form:

J =

∞∫
0

(xT Qx + 2xT N T u + uT Ru)dt (10)

where

Q =


q1 0 0 0
? (2ζωs)

2
−2ζω3

s −(2ζωs)
2

? ? ω4
s + q3 2ζω3

s
? ? ? (2ζωs)

2

 ,

(11)

N T
=


0

−2ζωs

ω2
s

2ζωs

 = B4 AT
(4,:) , ST

0 , [R = 1]. (12)

The linearized real quarter-car semi-active suspension parame-
ters are listed in Table 1.

Next theorem gives the solution of the LQ optimal control
problem with constraints [40]:

Theorem 1 Assume the full state measurement is available.
Then the optimal control u for the system (4-5) with the passivity
and saturation constraints (6-7) and the performance function
defined in (10) can be obtained as

Ṗ = −P A(x, P) − AT (x, P)P + P R(x, P)P − Q(x, P)

(13)

uopt = sat[−Ksemi (P(t))x] = sat[−(BT P(t) + S0)x] (14)

J = xT
0 P(0)x0. (15)
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Tab. 1. The linearized semi-active suspension parameters [14, 29]

Parameter Value Description

Ts 10 ms Sampling time

Ms 315 kg Sprung mass

Mus 37.5 kg Unsprung mass

ks 29500 N/m Suspension stiffness

kus 208000 N/m Tire stiffness

βs 0 N/(m/s) Suspension damping

βmin
semi 700 N/(m/s) Susp. damping lower slope

βmax
semi 4000 N/(m/s) Susp. damping upper slope

Fmax 4000 N Sat. constraint

x1 [−0.05, 0.05] m Tire deflection

x2 [−5, 5] m/s Unsprung mass velocity

x3 [−0.2, 0.2] m Suspension deflection,

x4 [−2, 2] m/s Sprung mass velocity

q1 1100 Weight on tire deflection

q2 100 Weight on susp. deflection

Aroad 4.9 · 10−6 Road constant

v 88 km/h Car velocity

2.1 Clipped optimal
It is important to note, that the matrix Riccati differential

equation in Theorem 1 cannot be simplified to an algebraic Ric-
cati equation (P(t) = P) in spite of tending of the final time
to infinity because the saturation causes switchings of matrices
A(x, P), R(x, P) and Q(x, P) along the trajectory. Therefore
by taking constant matrix P(t) = P and consequently Ṗ = 0
and solving an algebraic Riccati equation, only a sub-optimal
solution is obtained which is called clipped optimal LQ solution
in the literature. The name refers to the situation when the de-
sired semi-active force u is clipped according to (14) whenever
it exceeds its passivity or actuator limitation constraints (6-7).
Note that semi-active force in Eq. (14) consists of two parts:
one part is the desirable total suspension force −BT P(t)x and
the other part u p = −S0x = −(ω2

s x3 + 2ζωs(x4 − x2)) cancels
the passive spring and damper forces.
Without the passivity constraints (6) for u, the active suspen-
sion is obtained. In this case, P(t) = P and the matrix Riccati
equation leads to the same algebraic Riccati equation as in the
clipped optimal control.
The analysis of the semi-active performance index relating to
optimal active or passive control leads to two suboptimal con-
trol laws. The following theorem considers the relation between
the performance of the optimal semi-active suspension and that
of the optimal active suspension [40]:

Theorem 2 The cost of the semi-active suspension is always
greater than that of the optimal active suspension and the re-
lation can be quantified such as

Jsemi = xT
0 Pa x0︸     ︷︷     ︸

Jactive,L Q R

+

∞∫
0

(ua − u)2dt, (16)

subject to constraints (6-7).

Since the first term in the integral is independent of the con-
trol signal, therefore only the second term (whole integral) min-
imization is needed, which is not trivial. An approximating so-
lution can be derived by the minimization of only the integrand.
This approach leads to the clipped LQ suboptimal semi-active
control law:

d
du

{(ua − u)2
} = −2(ua − u) = 0 (17)

d2

(du)2 {(ua − u)2
} = 2 > 0 −→ minimum

⇓

u = sat[ua].

2.2 Steepest Gradient Method
Another possibility is to consider the relation of the semi-

active performance index to the optimal passive one [40].

Theorem 3 The cost of the semi-active suspension can be
smaller than that of the optimal passive suspension. Consider
the system matrix Aopt with the optimal damping βs = βs,opt

then the relation is

Jsemi = xT
0 Pp,opt x0︸          ︷︷          ︸

Jpassive,L Q R,opt

−

∞∫
0

(2u(BT Pp,opt x − u p,opt ) − u2)dt (18)

subject to constraints (6-7), where Pp,opt is the solution of the
Lyapunov equation

AT
opt Pp,opt + PT

p,opt Aopt = Q + AT
opt,(4,:) Aopt,(4,:). (19)

Aopt,(4,:) denotes fourth row of the matrix Aopt . The optimal
damping βs = βs,opt can be determined by optimization. Ac-
cording to the theorem, the semi-active performance index is
smaller only if the integral is positive. The maximization of
the integral is not trivial therefore an approach can be the max-
imization of the integrand. This leads to another semi-active
suboptimal control law:

d
du

{. . .} = −(2(BT Pp,opt x − u p,opt ) − 2u) = 0

d2

(du)2 {. . .} = −2 < 0 −→ maximum

⇓ (20)

u = sat[(BT Pp,opt + S0,opt )x].

Since the control law reduces the performance index in every
time instant with maximum rate the control law is called
steepest gradient method (SGM).
Both the clipped optimal control and the steepest gradient
method try to minimize the integrand of the additional term at
every time instant, while the optimal semi-active control law
minimizes the whole integral.
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2.3 Model Predictive Control (MPC)
The optimal control problem can also be formulated in dis-

crete time where the controller requires only measurement of
the suspension deflection. The semi-active damper is modeled
as

x(k + 1) = Ax(k) + Bu(k) + Bww(k),

yper f (k) = x4(k + 1) = C per f x(k) + Dper f u(k),

yobs(k) = x3(k) = Cobs x(k) (21)

with the constraints (6-7) and x(k) ∈ [xmin; xmax ]. If the matrix
pair (A, Cobs A) is observable then a deterministic actual discrete
time state observer can be designed to the system

x̂(0) = [0 . . . 0]T
nx

(22)

x̂(k) = Fx̂(k − 1) + Gyobs(k) + Hu(k − 1),

F = A − GCobs A, H = B − GCobs B,

xe(k) = x(k) − x̂(k),

xe(k) = Fxe(k) −→ stable, fast. (23)

In the above formulas we used the same letters for the system
matrices as earlier in the continuous case but from now they
mean discrete time matrices. Discrete time implementation of
the performance function can be obtained simply using the rect-
angular rule:

J = xT (k)QN x(k) +

N−1∑
k=0

(xT (k)Qx(k) + y2(k))Ts, (24)

where Q is defined as in (9) and Ts is the sample time. In Eq.
(24) we approximate the discrete time infinite-horizon LQ reg-
ulator problem under constraints (CLQR) as a finite time opti-
mal control problem (with "short" horizon), which is solved re-
peatedly in a receding horizon fashion. At each time instant an
open-loop finite time optimal control problem is solved and only
the first optimal control command is applied to the process. At
the next time step the finite time optimal control is again solved
over a shifted horizon based on the measured or estimated state.
This type of the controller is called Receding Horizon Controller
(RHC).
If the finite time optimal control law is calculated by solving
online optimization at each time step, then the control method is
also referred as online MPC. The CLQR with quadratic or linear
(1-norm, ∞-norm) performance index implies quadratic (QP) or
linear program (LP) that can be solved online by efficient tools
based on active-set or interior point method.

For the solution of the infinite-horizon constrained LQR there
exists no general method yet.
Several researchers recognized, that the constrained finite time
optimal control (CFTOC) with the choice QN = P∞ where P∞

is the solution of the unconstrained infinite-horizon LQ problem,
sometimes also yields the solution of CLQR [3,6,8,9,15,35,37].
The set of initial conditions x(0) for which the equivalence

holds, depends on the length of the horizon N . There exist algo-
rithms to compute the sufficiently long horizon N for any com-
pact set of the initial states, that solves the infinite time CLQR,
assuming the constraints are inactive for k ≥ N since the cost
from N to ∞ can be calculated by x(N )QN x(N ), where QN

equals the solution of the unconstrained infinite horizon Ric-
cati equation (QN = P∞). These algorithms usually yield
large horizon N therefore large optimization problem should be
solved. The horizon N is initial state dependent therefore they
cannot be applied for offline computation of explicit controllers.

The state space model (21) and the constraints (6-7) can be
transformed to a hybrid dynamical system. We will derive an ex-
plicit MPC, where we assume the measurement states are avail-
able, and we compute separately the observer for the controller
implementation.

3 Theoretical Background of the Mixed Logical Dynam-
ical Systems (MLD)
Dynamical systems that are described by an interaction be-

tween continuous and discrete dynamics are called hybrid dy-
namical systems or hybrid systems shortly. The interest in hybrid
systems is motivated by practical situations, for example, when
nonlinear complex process is modeled as linear hybrid/switched
system or the real system has hybrid properties.
Every hybrid system can be described as Discrete Hybrid Au-
tomata (DHA) [39] where the continuous dynamics is given
by switched affine system (SAS, consisting of linear difference
equations) and whose discrete dynamics is represented by event
generator (EG), finite state machine (FSM), mode selector (MS,
consisting of logic expressions), both synchronized by the same
clock. DHA models are mathematical abstractions of domain
specific hybrid modeling like mixed logical dynamical mod-
els (MLD) [4], piecewise affine systems (PWA) [36], linear
complementary systems (LC) [18, 31], extended linear comple-
mentary systems (ELC) [33] and max-min-plus-scaling systems
(MMPS) [11, 34]. DHA is formulated in discrete time even if
the effects of the sampling time could be neglected to avoid the
so called Zeno behavior.
In continuous time hybrid modeling the Zeno behavior means
that switching times have finite accumulation point, that is, the
system can make infinitely many switching if it approaches to
this time, which can not be allowed in a physical system. Un-
fortunately in a complex hybrid system it is not an easy task to
detect accumulation points that may have more than one loca-
tion. Zeno behavior is not possible in discrete time.
The key idea of the MLD approach is that the constraints and
the logical statements can be embedded into the state equations
by a transformation and the hybrid system can be expressed
by mixed integer linear inequalities [32]. Boolean variable can
represent simple statements, e.g. [X i = true] ↔

[
aT x ≤ b

]
,

where x, a ∈ Rn , b ∈ R. One can associate with a Boolean
variable X i a binary (logical) variable: [X i = true] ⇔ [δ = 1]
and [X i = f alse] ⇔ [δ = 0]. Boolean algebra defines logical
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operators ( e.g. "and" (∧), "implies" (⇒), "if and only if" (⇔),
and "exclusive or" (⊕) etc.) to describe compound statements.
The basic relations can be expressed simply by linear inequali-
ties involving binary variables such as X1 ⇒ X2 is equivalent
to δ1 − δ2 ≤ 0 or X1 ⇔ X2 is equivalent to δ1 − δ2 = 0.
Hybrid modeling combines the continuous dynamics with logic
rules. Consider f : Rn

→ R and x ∈ X , where X is bounded.
Define M = max

x∈X
f (x) and m = min

x∈X
f (x). It is easy to derive,

for example, such equivalences:

[ f (x) ≤ 0] ⇔ [δ = 1] true iff

 f (x) ≤ M(1 − δ)

f (x) ≥ ε + (m − ε)δ,

(25)

where ε > 0 denotes the machine precision. The product δ1δ2

may be replaced by an auxiliary variable δ3 = δ1δ2 and then the
product can be equivalently expressed by

δ3 = δ1δ2 is equivalent to


−δ1 + δ3 ≤ 0

−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1.

(26)

Finally, introduce the auxiliary real variable y = δ f (x) that sat-
isfies [δ = 0] ⇒ [y = 0], [δ = 1] ⇒ [y = f (x)] or equiva-
lently

y = δ f (x) is equivalent to


y ≤ Mδ

y ≥ mδ

y ≤ f (x) − m(1 − δ)

y ≥ f (x) − M(1 − δ).

(27)
Any logic statement of the finite state machine and the mode
selector Xn ↔ f (X1, X2, . . . , Xn−1) has an equivalent con-
junctive normal form (CNF):

m∧
j=1

 ∨
i∈Pj

X i

 ∨  ∨
i∈N j

∼ X i

 ,

N j , Pj ∈ {1, . . . , n}, (28)

which can be translated into the following set of integer inequal-
ities:

1 ≤

∑
i∈P1

δi +

∑
i∈N1

(1 − δi )

...

1 ≤

∑
i∈Pm

δi +

∑
i∈Nm

(1 − δi ). (29)

The event generator:
[
δi

e(k) = 1
]

↔
[
H i xc(k) ≤ W i ] can be

expressed as:

H i xc(k) − W i
≤ M i (1 − δi

e)

H i xc(k) − W i
≥ miδi

e. (30)

Similarly, the switched affine system

If [δ = 1] then z = aT
1 x + bT

1 u + f1

else z = aT
2 x + bT

2 u + f2 (31)

can be translated into mixed linear inequalities:

(m2 − M1)δ + z ≤ aT
2 x + bT

2 u + f2

(m1 − M2)δ − z ≤ −aT
2 x − bT

2 u − f2

(m1 − M2)(1 − δ) + z ≤ aT
1 x + bT

1 u + f1

(m2 − M1)(1 − δ) − z ≤ −aT
1 x − bT

1 u − f1. (32)

By collecting the equalities and inequalities the DHA i.e. ev-
ery hybrid system can be described generally as Mixed Logical
Dynamical (MLD) system:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) + B5

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) + D5

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5,

x =

[
xc(t)
xb(t)

]
, u =

[
uc(t)
ub(t)

]
, (33)

where x ∈ Rnc × {0, 1}
nb is the vector of continuous and binary

states, u ∈ Rmc ×{0, 1}
mb are the inputs, y ∈ Rpc ×{0, 1}

pb are
the outputs and δ ∈ {0, 1}

rb , z ∈ Rrc are introduced as auxiliary
binary and continuous variables, respectively, for transforming
logic relations into mixed-integer linear inequalities. The matri-
ces have the suitable dimensions.
The translation procedure is supported by the toolbox YALMIP
and the tool HYSDEL (Hybrid Systems DEscription Language)
included in Multi-Parametric Toolbox (MPT). By using the
Multi-Parametric Toolbox (MPT) we can design, analyze and
deploy optimal controllers for constrained linear, nonlinear and
hybrid systems [23]. HYSDEL allows modeling a class of hy-
brid systems described by interconnections of linear dynamic
systems, automata, if-then-else and propositional logic rules
with high-level textual description [39]. YALMIP is a model-
ing language for advanced description and solution of convex
and nonconvex optimization problems, allowing the user to con-
centrate on the high-level model. YALMIP takes care of the
low-level modeling to obtain as efficient and numerically sound
models as possible [27,28]. The next theorem gives equivalence
of the different type hybrid models [5, 17].

Theorem 4 Consider X , U and Y are sets of states, inputs, and
outputs respectively, and assume X and U are bounded. Then
DHA, PWA, MLD, LC, ELC, and MMPS well-posed hybrid mod-
els are equivalent to each other on X , U , Y , where two hybrid
systems are called equivalent if for all initial conditions and all
input provide the same state and output trajectory.

The following example is taken from [32] and illustrates the
statement of the theorem.
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Example Consider a piecewise affine system (PWA) with
constraints

x(k + 1) =

0.8x(k) + u(k) if x(k) ≥ 0

−0.8x(k) + u(k) if x(k) < 0

−10 ≤ x(k) ≤ 10, −1 ≤ u(k) ≤ 1. (34)

which can be rewritten in MLD form:

x(k + 1) = 1.6 δ(k)x(k)︸      ︷︷      ︸
z(k)

−0.8x(k) + u(k)

x(k) ≥ m(1 − δ(k))

x(k) ≤ −ε + (M + ε)δ(k)

z(k) ≤ Mδ(k)

z(k) ≥ mδ(k)

z(k) ≤ x(k) − m(1 − δ(k))

z(k) ≥ x(k) − M(1 − δ(k)), (35)

where ε > 0 is the machine precision and m = −10, and M =

10. The first two inequalities ensure [δ(k) = 1] ⇔ [x(k) ≥ 0]
(25) and the other come from the identity (27). The MLD system
can be rewritten in general form:

x(k + 1) = 1.6z(k) − 0.8x(k) + u(k)



10
−10
10

−10 − ε

−10
10


δ +



0
1
1
0

−1
−1


z ≤



1
0
1

−1
0

−1


x +



10
0

10
−ε

0
10


δ (36)

Max-Min-Plus-Scaling (MMPS) systems model such hybrid
systems where operations maximization, minimization, addition
and scalar multiplication are used. The MMPS equivalent form
is:

x(k + 1) = −0.8x(k) + 1.6 max(0, x(k)) + u(k)). (37)

Several applications, for example in the area of electrical net-
works and mechanical systems, lead to linear complementarity
(LC) hybrid model. Two vectors of variables are called comple-
mentarity if for all pair of variables vi , wi the complementarity
condition 0 ≤ v⊥w ≥ 0 is satisfied that is equivalent to the con-
dition {vi = 0} ∨ {wi = 0} for all i . A simple example of the
complementarity variables is the ideal diode where the voltage
drop across the diode and the current through it are complemen-
tarity variables.
The PWA system can also be transformed to LC system:

x(k + 1) = −0.8x(k) + u(k) + 1.6z(k)

0 ≤ w(k) = −x(k) + z(k)⊥z(k) ≥ 0 (38)

Generalization of the LC hybrid models is the extended LC sys-
tems. The PWA system can also be translated to ELC model:

x(k + 1) = −0.8x(k) + u(k) + 1.6d(k)

− d(k) ≤ 0, x(k) − d(k) ≤ 0,

(x(k) − d(k))(−d(k)) = 0, (39)

where d(k) ∈ Rr is real-valued auxiliary variable.
Remark For modeling of semi-active problems YALMIP is cho-
sen because it allows to define arbitrary constraints to MPC
setup and to define custom objective function. HYSDEL, which
cannot treat for example soft constraints, does not ensure such
flexible modeling as YALMIP.

Now we are in the position to describe the semi-active MPC
problem:

J (ξ, x̂(t)) = x̂T (N )QN x̂(N )+

N−1∑
k=1

(x̂T (k)Qx̂(k) + y2
per f (k))Ts

subject to:

x̂(k + 1) = Ax̂(k) + B1u(k) + B2δ(k) + B3z(k) + B5

y(k) = Cx̂(k) + D1u(k) + D2δ(k) + D3z(k) + D5

E2δ(k) + E3z(k) ≤ E4 x̂(k) + E1u(k) + E5,

x̂(k) = Fx̂(k − 1) + Gyobs(k) + Hu(k − 1), (40)

where ξ ,
[
uT

0 , . . . , uT
N−1, δ

T
0 , . . . , δT

N−1, zT
0 , . . . , zT

N−1

]T
.

The Riccati solution matrix of the infinite time unconstrained
LQ problem is chosen for the terminal weight QN = P∞. Using
the Multi Parametric Toolbox (MPT) in MATLAB the mixed
optimization problem with constraints (40) can be translated to
mixed integer quadratic program (MIQP) and solved online or
offline if all states can be measured (x̂(k) = x(k)). To calculate
the explicit controller the MPT toolbox has interfaces to efficient
commercial solvers such as for example CPLEX, NAG. We used
CPLEX 10.0 version to calculate the explicit solution. Since the
solution of the optimization problem (40) including the discrete
time actual observer is very complicated, and is not known yet,
therefore we design the controller separately from the observer.

4 Explicit MPC and multi-parametric programming
This part of the article overviews shortly the derivation of the

multi-parametric program in the LQ optimal control. First con-
sider a discrete LTI system without constraints:

xk+1 = Axk + Buk

yk = Cxk, x(0) = x0 (41)
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and the performance function to be minimized:

J (UN , x0) =
1
2

xT
N QN xN +

1
2

N−1∑
k=0

xT
k Qxk + uT

k Ruk

QN = QT
N , Q = QT

≥ 0, R = RT > 0, (42)

where the notation UN = [uT
0 , . . . , uT

N−1]T is used. Note that
predicted and real states are distinguished by xk and x(k), re-
spectively. It is well known that the solution of this standard un-
constrained finite time optimal control problem is a time varying
state feedback control law

u∗(k) = Kk x(k), k = 0, . . . , N − 1

Kk = −(BT Pk+1 B + R)−1 BT Pk+1 A, (43)

where the matrix Pk = PT
k ≥ 0 are obtained recursively by the

algorithm

PN = QN

Pk = AT (Pk+1 − Pk+1 B(BT Pk+1 B + R)−1 B Pk+1)A

+ Q (44)

and the optimal cost is given by J (x(0)) = xT (0)P0x(0). An-
other approach of the problem is obtained by substituting recur-
sive expression of the state equation:

xk = Ak x0 +

k−1∑
j=0

A j Buk−1− j (45)

in the cost function that derives to Least Squares (LS) problem

J (x(0)) =
1
2

xT (0)Y x(0) + min
UN

1
2

U T
N HUN + xT (0)FUN ,

(46)
where H = H T > 0. The matrices H, F, Y can be obtained
from Q, R and (45). Note that Y does not depend on UN . The
LS solution is

UN = −H−1 FT x(0). (47)

From the control command and x(0) one can constitute state
feedback control law at time t = 0: u(0) = K (0)x(0). Con-
sequently one can solve the unconstrained finite time horizon
problem in two different ways:

• solve the Riccati difference equation (44) that yields closed
loop solution u(k) = Kk x(k)

• solve number of N open loop control problems with LS
method (t = 0, . . . , N − 1) and form a state feedback control
for each of state x(k) and the calculated control command.

Next consider the constrained finite time optimal control prob-
lem (CFTOC)

J ∗(x(0)) = min
UN

J (UN , x(0))

(48)

subject to: Exk + Luk ≤ M

xk+1 = Axk + Buk

x0 = x(0), k = 1, . . . , N − 1

xN ∈ X f , (49)

where X f ⊆ Rn is a terminal polyhedral region. Applying the
train of thought mentioned previously we obtain:

J (x(0)) =
1
2

xT (0)Y x(0) + min
UN

1
2

U T
N HUN + xT (0)FUN

s. t.: GUN ≤ W + Ex(0), (50)

where H = H T > 0 and the matrices H, F, Y, G, W, E can be
obtained from P, Q, R. Note that Y does not depend on UN .
Introduce the vector z = UN + H−1 FT x(0) and transform the
problem by completing squares to the equivalent problem

Jz(x(0)) = min
z

1
2

zT H z

s. t.: Gz ≤ W + Sx(0), (51)

where S = E + G H−1 FT and Jz(x(0)) = J (x(0)) −

1
2 x(0)T (Y − F H−1 FT )x(0). The optimization problem is a
quadratic program (QP) if x(0) is fixed and can be solved by
QP solver online. To obtain a feedback control law number of
N open loop QP must be solved and constitute the feedback
form u(k) = Kk x(k). Riccati solution does not exist for the
CFTOC problem. MPC problem is different from CFTOC only
that at each step an N long horizon problem must be solved i.e.
the length of the horizon does not decrease because of the RHC
technique. Online solution of the MPC is very time and resource
consuming which is suitable only for slow processes, while for
fast embedded systems only limited resources are available. Ex-
plicit solution to the MPC can overcome this problem [2, 6, 26].
Consider the quadratic program (51) as a multi-parametric pro-
gram where the initial condition x0 yields the parameter and ap-
ply the Karush-Kuhn-Tucker (KKT) condition:

H z∗
+ GT λ∗

= 0

λ∗

i (Gi z∗
− Wi − Si x0) = 0

λ∗

i ≥ 0. (52)

The λ∗

i ≥ 0 gives the active constraints (Gi z∗
− Wi − Si x0) = 0

and the λ∗

i = 0 determines the inactive constraints (Gi z∗
−Wi −

Si x0) < 0. One can pick some feasible x0 and solve the QP to
calculate the optimal z∗, λ∗. Substitute these solutions to the
KKT conditions for the active constraints

H z∗
+ ĜT λ̂∗

= 0

Ĝz∗
− Ŵ − Ŝx0 = 0 (53)
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and express z∗, λ∗ from the equations:

z∗
= −H−1ĜT λ̂∗

λ̂∗
= −(Ĝ H−1ĜT )−1(Ŵ + Ŝx0). (54)

The optimal control is affine function of the initial condition x0:

z∗(x0) = H−1ĜT (Ĝ H−1ĜT )−1(Ŵ + Ŝx0)

= K x0 + L

λ̂∗(x0) = −(Ĝ H−1ĜT )−1(Ŵ + Ŝx0)

= Mx0 + N (55)

Generally speaking the optimal control is affine function of the
initial condition x0 in some neighborhood of the initial condi-
tion. The region can be calculated by substitution of z∗, λ∗ into
the inequalities:

G (K x0 + L)︸         ︷︷         ︸
z∗(x0)

≤ W + Sx(0)

Mx0 + N︸        ︷︷        ︸
λ̂∗(x0)

≥ 0, (56)

which yield a polyhedral critical region (CR) R = {x0 | Ax0 ≤

b} (see Fig. 5 (left)). A polyhedron is a convex set expressed as
the intersection of a finite number of closed half-spaces. Next
step a new x0 is picked in a neighborhood direction and calcu-
lated the new polyhedron (Fig. 5 (right)).

The optimal control is affine function of the initial con-
dition x0:

z∗(x0) = H−1ĜT (ĜH−1ĜT )−1(Ŵ + Ŝx0)

= Kx0 + L

λ̂∗(x0) = −(ĜH−1ĜT )−1(Ŵ + Ŝx0)

= Mx0 +N (55)

Generally speaking the optimal control is affine func-
tion of the initial condition x0 in some neighborhood
of the initial condition. The region can be calculated
by substitution of z∗, λ∗ into the inequalities:

G (Kx0 + L)
︸ ︷︷ ︸

z∗(x0)

≤ W + Sx(0)

Mx0 +N
︸ ︷︷ ︸

λ̂∗(x0)

≥ 0, (56)

which yield a polyhedral critical region (CR) R = {x0 |
Ax0 ≤ b} (see Fig. 5 (left)). A polyhedron is a convex
set expressed as the intersection of a finite number of
closed half-spaces. Next step a new x0 is picked in a
neighborhood direction and calculated the new polyhe-
dron (Fig. 5 (right)). Apply the algorithm until the
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Figure 5: Critical regions (CR) in multi-parametric
programming

whole constrained state space is partitioned to polyhe-
dra.

It can be shown that the hybrid MLD optimal con-
trol problems, such as for example the problem (40)
without observer, can be translated into mixed inte-
ger quadratic program (MIQP) [22]. An explicit solu-
tion to such an MIQP can also be derived using multi-
parametric programming, as shown in [3]. The notable
difference being that several critical regions may over-
lap. In such a case the optimal control action is se-
lected by taking the region in which the value of the
performance objective is smallest.

The Multi-Parametric Toolbox (MPT) and HYS-
DEL allow to formulate and solve MPC problems for
hybrid systems using a “high-level” approach. The
MPT toolbox translates the problem into an MIQP
form. Then, CPLEX can be used to calculate the opti-
mal control action on-line. Alternatively, MPT allows
to solve the MIQP using multi-parametric program-
ming and to obtain the explicit representation of the
feedback law, which can be implemented on-line easily
as a look-up table. Evaluation of such a table boils

down to identifying the controller region which con-
tains the actual state measurements x0.

The simplest searching algorithms are the sequen-
tial and binary tree approaches, respectively. The first
method traverses the regions in a pre-determined order
until the correct region is found. The second method
constructs and evaluates a binary tree, which allows
for faster region identification (Fig. 6 (left)).
Unfortunately, the computation of explicit MPC con-
trollers scales badly with increasing problem size. From
a practical perspective, the procedure is applicable for
systems with up to 4 state variables. Furthermore,
we will see in the simulation that the another large
drawback of the explicit (offline) control law is that
the number of polyhedral regions grows dramatically
with the prediction horizon and the number of con-
straints which decreases the practical applicability in
embedded systems.
For this reason a lot of efficient searching and storage
algorithms have been developed [10, 11, 12, 37, 38, 39,
40, 41]. In [15] the key idea is that the optimal explicit
piecewise affine controller is approximated by a single
polynomial (Fig. 6 (right)), where number of the coef-
ficients to be stored does not depend on the number of
the regions. This type of controller does not require re-
gion storage and region identification. They prove the
stability can be guaranteed and the constraints can also
be satisfied.
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Figure 6: Searching for the polyhedra containing of x0

(left), polynomial approximation of the explicit control
law (right)

V Analysis of the MPC/Explicit
MPC and the Clipped Op-
timal Control for the Semi-
Active Suspension

This section illustrates the use of explicit MPC for-
mulation for the semi-active suspension problem. It
will also be shown that the clipped optimal LQ con-
trol is sub-optimal since it corresponds to the MPC for
prediction horizon N = 1 [19, 20]. Furthermore, we
analyze the explicit MPC, study some disadvantages
of the MPC and the explicit MPC optimal control and
give solutions how can they be treated. Fig. 7 shows
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Apply the algorithm until the whole constrained state space is
partitioned to polyhedra.

It can be shown that the hybrid MLD optimal control prob-
lems, such as for example the problem (40) without ob-
server, can be translated into mixed integer quadratic program
(MIQP) [4]. An explicit solution to such an MIQP can also be
derived using multi-parametric programming, as shown in [6].
The notable difference being that several critical regions may
overlap. In such a case the optimal control action is selected by
taking the region in which the value of the performance objec-
tive is smallest.

The Multi-Parametric Toolbox (MPT) and HYSDEL allow to
formulate and solve MPC problems for hybrid systems using a
“high-level” approach. The MPT toolbox translates the prob-
lem into an MIQP form. Then, CPLEX can be used to calculate

the optimal control action online. Alternatively, MPT allows to
solve the MIQP using multi-parametric programming and to ob-
tain the explicit representation of the feedback law, which can
be implemented online easily as a look-up table. Evaluation
of such a table boils down to identifying the controller region
which contains the actual state measurements x0.

The simplest searching algorithms are the sequential and bi-
nary tree approaches, respectively. The first method traverses
the regions in a pre-determined order until the correct region is
found. The second method constructs and evaluates a binary
tree, which allows for faster region identification (Fig. 6 (left)).
Unfortunately, the computation of explicit MPC controllers
scales badly with increasing problem size. From a practical per-
spective, the procedure is applicable for systems with up to 4
state variables. Furthermore, we will see in the simulation that
the another large drawback of the explicit (offline) control law is
that the number of polyhedral regions grows dramatically with
the prediction horizon and the number of constraints which de-
creases the practical applicability in embedded systems.
For this reason a lot of efficient searching and storage algorithms
have been developed [1, 10, 13, 16, 20, 21, 38, 41]. In [24] the
key idea is that the optimal explicit piecewise affine controller
is approximated by a single polynomial (Fig. 6 (right)), where
number of the coefficients to be stored does not depend on the
number of the regions. This type of controller does not require
region storage and region identification. They prove the stability
can be guaranteed and the constraints can also be satisfied.

The optimal control is affine function of the initial con-
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z∗(x0) = H−1ĜT (ĜH−1ĜT )−1(Ŵ + Ŝx0)

= Kx0 + L

λ̂∗(x0) = −(ĜH−1ĜT )−1(Ŵ + Ŝx0)

= Mx0 +N (55)

Generally speaking the optimal control is affine func-
tion of the initial condition x0 in some neighborhood
of the initial condition. The region can be calculated
by substitution of z∗, λ∗ into the inequalities:
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z∗(x0)

≤ W + Sx(0)
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which yield a polyhedral critical region (CR) R = {x0 |
Ax0 ≤ b} (see Fig. 5 (left)). A polyhedron is a convex
set expressed as the intersection of a finite number of
closed half-spaces. Next step a new x0 is picked in a
neighborhood direction and calculated the new polyhe-
dron (Fig. 5 (right)). Apply the algorithm until the
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It can be shown that the hybrid MLD optimal con-
trol problems, such as for example the problem (40)
without observer, can be translated into mixed inte-
ger quadratic program (MIQP) [22]. An explicit solu-
tion to such an MIQP can also be derived using multi-
parametric programming, as shown in [3]. The notable
difference being that several critical regions may over-
lap. In such a case the optimal control action is se-
lected by taking the region in which the value of the
performance objective is smallest.

The Multi-Parametric Toolbox (MPT) and HYS-
DEL allow to formulate and solve MPC problems for
hybrid systems using a “high-level” approach. The
MPT toolbox translates the problem into an MIQP
form. Then, CPLEX can be used to calculate the opti-
mal control action on-line. Alternatively, MPT allows
to solve the MIQP using multi-parametric program-
ming and to obtain the explicit representation of the
feedback law, which can be implemented on-line easily
as a look-up table. Evaluation of such a table boils

down to identifying the controller region which con-
tains the actual state measurements x0.

The simplest searching algorithms are the sequen-
tial and binary tree approaches, respectively. The first
method traverses the regions in a pre-determined order
until the correct region is found. The second method
constructs and evaluates a binary tree, which allows
for faster region identification (Fig. 6 (left)).
Unfortunately, the computation of explicit MPC con-
trollers scales badly with increasing problem size. From
a practical perspective, the procedure is applicable for
systems with up to 4 state variables. Furthermore,
we will see in the simulation that the another large
drawback of the explicit (offline) control law is that
the number of polyhedral regions grows dramatically
with the prediction horizon and the number of con-
straints which decreases the practical applicability in
embedded systems.
For this reason a lot of efficient searching and storage
algorithms have been developed [10, 11, 12, 37, 38, 39,
40, 41]. In [15] the key idea is that the optimal explicit
piecewise affine controller is approximated by a single
polynomial (Fig. 6 (right)), where number of the coef-
ficients to be stored does not depend on the number of
the regions. This type of controller does not require re-
gion storage and region identification. They prove the
stability can be guaranteed and the constraints can also
be satisfied.

)(*
xU

11 bxA £

22 bxA £

33 bxA £

44 bxA £

),( 11 LK

),( 22 LK

),( 33 LK

),( 44 LK
0x

x

)(*
xU

11 bxA £

22 bxA £

33 bxA £

44 bxA £

0x

x

n

n xaxaaxu +++= K10)(

Figure 6: Searching for the polyhedra containing of x0

(left), polynomial approximation of the explicit control
law (right)

V Analysis of the MPC/Explicit
MPC and the Clipped Op-
timal Control for the Semi-
Active Suspension

This section illustrates the use of explicit MPC for-
mulation for the semi-active suspension problem. It
will also be shown that the clipped optimal LQ con-
trol is sub-optimal since it corresponds to the MPC for
prediction horizon N = 1 [19, 20]. Furthermore, we
analyze the explicit MPC, study some disadvantages
of the MPC and the explicit MPC optimal control and
give solutions how can they be treated. Fig. 7 shows
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Fig. 6. Searching for the polyhedra containing of x0 (left), polynomial ap-
proximation of the explicit control law (right)

5 Analysis of the MPC/Explicit MPC and the clipped op-
timal control for the semi-active suspension
This section illustrates the use of explicit MPC formulation

for the semi-active suspension problem. It will also be shown
that the clipped optimal LQ control is sub-optimal since it cor-
responds to the MPC for prediction horizon N = 1 [14, 40].
Furthermore, we analyze the explicit MPC, study some disad-
vantages of the MPC and the explicit MPC optimal control and
give solutions how they can be treated. Fig. 7 shows the nor-
malised dissipative and saturation constraints for the semi-active
suspension which is nonconvex constraint but it can be described
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by the union of two polyhedral constraints:

Polyhedron P1:

0 2ζmaxωs 0 −2ζmaxωs 1
0 −2ζminωs 0 2ζminωs −1
0 0 0 0 1


︸                                                  ︷︷                                                  ︸

H1


x1

x2

x3

x4

u

 ≤

 0
0

umax


︸      ︷︷      ︸

K1

Polyhedron P2:

0 −2ζmaxωs 0 2ζmaxωs −1
0 2ζminωs 0 −2ζminωs 1
0 0 0 0 −1


︸                                                  ︷︷                                                  ︸

H2


x1

x2

x3

x4

u

 ≤

 0
0

−umin


︸        ︷︷        ︸

K2

(57)

From physical setting up of the suspension the four states are
also limited to [xmin , xmax ] i.e. to a state constraint hypercube.
The explicit MPC requires also these bounds, otherwise the
regions can be unbounded or the number of regions may be in-
finite. Consider the following state feedback MPC formulation
to the semi-active suspension:

Objective/performance function:

J (x(0), UN ) = xT
N QN xN +

N−1∑
k=0

xT
k Qxk + yT

k yk (58)

subject to the constraints:

xk+1 = Axk + Buk → linear prediction model

yk = Cxk + Duk

(xk; uk) ∈ (P1 ∪ P2) → passivity and saturation

xmin ≤ xk ≤ xmax → state hypercube (59)

x1 = x(0),

where N is the (normalized) time horizon, we distinguish the
current state x(k) from the predicted state xk and we denote UN

the open loop input sequence in the horizon. The MPC problem
can be solved in online or offline (explicit) way, but naturally
they yield the same result. The explicit MPC solution of the
problem for N = 1 and the clipped LQ control from the ini-

tial condition x0 =

[
0 0 0.15 −1.5

]T
are depicted in Fig.

8. The corresponding polyhedral partition of the state space is
also shown. The continuous line trajectory corresponds to the
MPC control while the trajectory marked with plus (+) gives the
clipped LQ control. It can be seen well that the two trajectories
are the same and the equivalence remains true also for initial
conditions in such a region which is not in the neighborhood
of the origin. Algebraic proof of the equivalence would be an
interesting task. The statement was formulated in [14] without
proof.
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From physical setting up of the suspension the four
states are also limited to [xmin, xmax] i.e. to a state
constraint hypercube. The explicit MPC requires also
these bounds, otherwise the regions can be unbounded
or the number of regions may be infinite. Consider
the following state feedback MPC formulation to the
semi-active suspension:

Objective/performance function:

J(x(0), UN ) = xT
NQNxN +

N−1∑

k=0

xT
kQxk + yTk yk (58)

subject to the constraints:

xk+1 = Axk +Buk → linear prediction model

yk = Cxk +Duk

(xk;uk) ∈ (P1 ∪ P2) → passivity and saturation

xmin ≤ xk ≤ xmax → state hypercube (59)

x1 = x(0),

where N is the (normalized) time horizon, we distin-
guish the current state x(k) from the predicted state xk

and we denote UN the open loop input sequence in the
horizon. The MPC problem can be solved in online or
offline (explicit) way, but naturally they yield the same
result. The explicit MPC solution of the problem for
N = 1 and the clipped LQ control from the initial con-

dition x0 =
[
0 0 0.15 −1.5

]T
are depicted in Fig.

8. The corresponding polyhedral partition of the state
space is also shown. The continuous line trajectory
corresponds to the MPC control while the trajectory
marked with plus (+) gives the clipped LQ control. It
can be seen well that the two trajectories are the same
and the equivalence remains true also for initial condi-
tions in such a region which is not in the neighborhood
of the origin. Algebraic proof of the equivalence would
be an interesting task. The statement was formulated
in [19] without proof.

1P

2P

Figure 7: Normalised dissipative and saturation con-
straints of the control signal

Theorem 5. The clipped LQ controller is equivalent
to the MPC with N = 1 and QN = P∞.

The explicit MPC regions show in a descriptive way
where the clipping will occur for the LQ control. By
Fig. 8 eight regions were obtained which correspond
to the 8 clipped LQ control states in Fig. 9:

u(x) =







11.4220x1 − 0.1753x2 − 83.9268x3 + 3.9330x4

= −KLQx −→ regions #1, #5

0x1 − 2.2222x2 + 0x3 + 2.2222x4

= 2ζminωs (x4 − x2) −→ regions #2, #6

0x1 − 12.6984x2 + 0x3 + 12.6984x4

= 2ζmaxωs (x4 − x2) −→ regions #3, #7

−12.6984 = −Fmax/Ms −→ region #4

12.6984 = Fmax/Ms −→ region #8

(60)

It is important to note that the control laws have linear
state feedback affine form.
Considering the explicit MPC calculated for N = 3,
then the region marked with plus (+) in Fig. 10 shows
one of the disadvantages of the MPC, namely, there are
such regions in the space of the possible state vectors
(state hypercube) where MPC can not give any control
action, because no feasible solution of the MPC opti-
mization problem exists. Such situation is not allowed
in a real control system. For example a disturbance
may push the states outside the feasible region or the
separately designed observer/filter may result such es-
timated states in the transient phase which may be
outside the feasible region where no allowed control in-
put exist. Uncertainty in modeling of the semi-active
suspension may also cause similar situations. Large di-
mensional complex shape of the state feasibility region
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Theorem 5 The clipped LQ controller is equivalent to the MPC
with N = 1 and QN = P∞.
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clipping will occur for the LQ control. By Fig. 8 eight regions
were obtained which correspond to the 8 clipped LQ control
states in Fig. 9:

u(x) =



11.4220x1 − 0.1753x2 − 83.9268x3 + 3.9330x4

= −KL Q x −→ regions #1, #5

0x1 − 2.2222x2 + 0x3 + 2.2222x4

= 2ζminωs (x4 − x2) −→ regions #2, #6

0x1 − 12.6984x2 + 0x3 + 12.6984x4

= 2ζmaxωs (x4 − x2) −→ regions #3, #7

−12.6984 = −Fmax/Ms −→ region #4

12.6984 = Fmax/Ms −→ region #8

(60)

It is important to note that the control laws have linear state feed-
back affine form.
Considering the explicit MPC calculated for N = 3, then the
region marked with plus (+) in Fig. 10 shows one of the disad-
vantages of the MPC, namely, there are such regions in the space
of the possible state vectors (state hypercube) where MPC can
not give any control action, because no feasible solution of the
MPC optimization problem exists. Such situation is not allowed
in a real control system.

For example a disturbance may push the states outside the fea-
sible region or the separately designed observer/filter may result
such estimated states in the transient phase which may be out-
side the feasible region where no allowed control input exists.
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Figure 10: MPC optimal control region is smaller than
space (hypercube) of the possible states

inside of the state hypercube can not be treated eas-
ily with geometrical methods, but one can solve the
problem in three other ways:

• One option is to use of so called soft constraints
instead of hard constraints. Soft constraints mean
that the respective constraint can be violated, but
such a violation is penalized.

• Another possibility is to use another control strat-
egy in these regions, for example, LQ control. This
approach passes to our control scheme because the
clipped LQ control corresponds to MPC for N = 1
in case of semi-active suspension system.

• Third possibility is to use enlarged state hyper-
cube, e.g. 1.2xmin ≤ xk ≤ 1.2xmax which does
not really solve the problem but moves the prob-
lem in a larger hypercube and essentially other
MPC problem will be solved.

In fact, one more method could be applied, namely,
if we prescribe for the last predicted state xend = 0
among the constraints. It can be proven that it
yields stability guarantee for the linear MPC problems
where the objective function becomes Lyapunov
function which implies that the state will not leave the
feasibility region. But it is a very strong constraint
and usually there is no solution of the MPC problem.
The semi-active suspension problem is of this type.
Furthermore it does not solve the feasibility problem
if the separately designed observer/filter is applied for
the controller.
First, the state hypercube constraints are softened in
the Equation (59) which implies modification in the
objective function too:

Modified constraints:

xmin − sxk
≤ xk ≤ xmax + sxk

0 ≤ sxk
≤

[
10 10 10 10

]T

xmin ≤ x1 ≤ xmax (61)

Last constraint requires that at least the first predicted
state must satisfy the hard constraint. To penalize
the constraint violation, the objective function is com-
pleted by the term sTxk

Qssxk
where Qs is a suitably

large matrix.

Modified objective/performance function:

J(x(0), UN ) = xT
NQNxN +

N−1∑

k=0

xT
kQxk + yTk yk

+ sTxk
Qssxk

(62)

Qs = 105 ·
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ily with geometrical methods, but one can solve the
problem in three other ways:

• One option is to use of so called soft constraints
instead of hard constraints. Soft constraints mean
that the respective constraint can be violated, but
such a violation is penalized.

• Another possibility is to use another control strat-
egy in these regions, for example, LQ control. This
approach passes to our control scheme because the
clipped LQ control corresponds to MPC for N = 1
in case of semi-active suspension system.

• Third possibility is to use enlarged state hyper-
cube, e.g. 1.2xmin ≤ xk ≤ 1.2xmax which does
not really solve the problem but moves the prob-
lem in a larger hypercube and essentially other
MPC problem will be solved.

In fact, one more method could be applied, namely,
if we prescribe for the last predicted state xend = 0
among the constraints. It can be proven that it
yields stability guarantee for the linear MPC problems
where the objective function becomes Lyapunov
function which implies that the state will not leave the
feasibility region. But it is a very strong constraint
and usually there is no solution of the MPC problem.
The semi-active suspension problem is of this type.
Furthermore it does not solve the feasibility problem
if the separately designed observer/filter is applied for
the controller.
First, the state hypercube constraints are softened in
the Equation (59) which implies modification in the
objective function too:

Modified constraints:

xmin − sxk
≤ xk ≤ xmax + sxk

0 ≤ sxk
≤

[
10 10 10 10

]T

xmin ≤ x1 ≤ xmax (61)

Last constraint requires that at least the first predicted
state must satisfy the hard constraint. To penalize
the constraint violation, the objective function is com-
pleted by the term sTxk

Qssxk
where Qs is a suitably

large matrix.

Modified objective/performance function:
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Fig. 9. Explicit MPC for N=1 and clipped LQ control state trajectory in the
control polyhedra

Uncertainty in modeling of the semi-active suspension may also
cause similar situations. Large dimensional complex shape of
the state feasibility region inside of the state hypercube can not
be treated easily with geometrical methods, but one can solve
the problem in three other ways:

• One option is to use of so called soft constraints instead of
hard constraints. Soft constraints mean that the respective
constraint can be violated, but such a violation is penalized.

• Another possibility is to use another control strategy in these
regions, for example, LQ control. This approach passes to our
control scheme because the clipped LQ control corresponds
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inside of the state hypercube can not be treated eas-
ily with geometrical methods, but one can solve the
problem in three other ways:

• One option is to use of so called soft constraints
instead of hard constraints. Soft constraints mean
that the respective constraint can be violated, but
such a violation is penalized.

• Another possibility is to use another control strat-
egy in these regions, for example, LQ control. This
approach passes to our control scheme because the
clipped LQ control corresponds to MPC for N = 1
in case of semi-active suspension system.

• Third possibility is to use enlarged state hyper-
cube, e.g. 1.2xmin ≤ xk ≤ 1.2xmax which does
not really solve the problem but moves the prob-
lem in a larger hypercube and essentially other
MPC problem will be solved.

In fact, one more method could be applied, namely,
if we prescribe for the last predicted state xend = 0
among the constraints. It can be proven that it
yields stability guarantee for the linear MPC problems
where the objective function becomes Lyapunov
function which implies that the state will not leave the
feasibility region. But it is a very strong constraint
and usually there is no solution of the MPC problem.
The semi-active suspension problem is of this type.
Furthermore it does not solve the feasibility problem
if the separately designed observer/filter is applied for
the controller.
First, the state hypercube constraints are softened in
the Equation (59) which implies modification in the
objective function too:

Modified constraints:

xmin − sxk
≤ xk ≤ xmax + sxk

0 ≤ sxk
≤

[
10 10 10 10

]T

xmin ≤ x1 ≤ xmax (61)

Last constraint requires that at least the first predicted
state must satisfy the hard constraint. To penalize
the constraint violation, the objective function is com-
pleted by the term sTxk

Qssxk
where Qs is a suitably

large matrix.

Modified objective/performance function:

J(x(0), UN ) = xT
NQNxN +

N−1∑

k=0
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kQxk + yTk yk

+ sTxk
Qssxk
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Fig. 10. MPC optimal control region is smaller than space (hypercube) of
the possible states

to MPC for N = 1 in case of semi-active suspension system.

• Third possibility is to use enlarged state hypercube, e.g.
1.2xmin ≤ xk ≤ 1.2xmax which does not really solve the
problem but moves the problem in a larger hypercube and es-
sentially other MPC problem will be solved.

In fact, one more method could be applied, namely, if we
prescribe for the last predicted state xend = 0 among the
constraints. It can be proven that it yields stability guarantee
for the linear MPC problems where the objective function
becomes Lyapunov function which implies that the state will
not leave the feasibility region. But it is a very strong constraint
and usually there is no solution of the MPC problem. The
semi-active suspension problem is of this type. Furthermore it
does not solve the feasibility problem if the separately designed
observer/filter is applied for the controller.
First, the state hypercube constraints are softened in Eq. (59)
which implies modification in the objective function too:

Modified constraints:

xmin − sxk ≤ xk ≤ xmax + sxk

0 ≤ sxk ≤

[
10 10 10 10

]T

xmin ≤ x1 ≤ xmax (61)

Last constraint requires that at least the first predicted state must
satisfy the hard constraint. To penalize the constraint violation,
the objective function is completed by the term sT

xk
Qssxk where

Qs is a suitably large matrix.
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Modified objective/performance function:

J (x(0), UN ) = xT
N QN xN +

N−1∑
k=0

xT
k Qxk + yT

k yk

+ sT
xk

Qssxk (62)

Qs = 105
·
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Using soft constraints the state space hypercube will be filled
out totally (see Fig. 11). This solution shows that the origi-
nal regions remain the same, only they are completed with new
regions at the corners. Fig. 12 demonstrates the working and

Using soft constraints the state space hypercube will
be filled out totally (see Fig. 11) This solution shows
that the original regions remain the same, only they
are completed with new regions at the corners. Fig. 12
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Figure 11: State space regions using soft constraints

demonstrates the working and the price of the soft con-
straints, namely, that the state trajectory started from
the earlier infeasible regions will violate the hard con-
straints (state space hypercube). The continuous line
shows the first open loop state trajectory of the MPC
optimization problem (see Equations (59, 61, 62)). The
closed loop MPC trajectory using soft constraints is de-
picted in Fig. 13 where the circle denotes the moment
when the state violates the hypercube constraints. As
point of special interest, approaching the trajectory to
the origin is zoomed out to see the interesting loops in
the trajectory.
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Figure 12: Open loop trajectory using soft constraints

Another idea is to solve problem of the infeasibility
regions if such controller is applied which yields con-
trol actions in these regions. The clipped LQ con-
troller can be a good choice for us since it corresponds
to the N = 1 MPC and always gives control action.
The continuous trajectory in Fig. 14 depicts the com-
bined clipped LQ and Model Predictive Control for the
semi-active suspension. For comparison the dashed line

Figure 13: Closed loop trajectory using soft constraints

gives the clipped LQ control.
Figure 15 shows 6 slices of the explicit MPC (N = 3)
using soft constraints. Despite of the soft constraints
the fourth slice (right middle) does not fill out the state
hypercube totally. This phenomenon is caused by the
dissipative and saturation hard constraints (see Fig.
7). The difference compared to the above discussed
case up to now is that, although the cutting shape is
known but unfortunately it does not help in MPC be-
cause the optimization problem must be solved first
to find where the cutting should be inserted. As in
Fig. 15 is shown, there exists no control action for the
state region marked with plus (+). Causes for reach-
ing this region may be the same as mentioned earlier.
For treatment of the problem one can also use another
controller type for instance clipped LQ in this region
such as earlier.
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The main disadvantage of the explicit MPC is the ex-
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the price of the soft constraints, namely, that the state trajec-
tory started from the earlier infeasible regions will violate the
hard constraints (state space hypercube). The continuous line
shows the first open loop state trajectory of the MPC optimiza-
tion problem (see Eqs. (59, 61, 62)). The closed loop MPC
trajectory using soft constraints is depicted in Fig. 13 where the
circle denotes the moment when the state violates the hypercube
constraints. As point of special interest, approaching the trajec-
tory to the origin is zoomed out to see the interesting loops in
the trajectory.
Another idea is to solve problem of the infeasibility regions if
such controller is applied which yields control actions in these
regions. The clipped LQ controller can be a good choice for
us since it corresponds to the N = 1 MPC and always gives
control action. The continuous trajectory in Fig. 14 depicts
the combined clipped LQ and Model Predictive Control for the
semi-active suspension. For comparison the dashed line gives
the clipped LQ control.
Fig. 15 shows 6 slices of the explicit MPC (N = 3) using soft
constraints. Despite of the soft constraints the fourth slice (right
middle) does not fill out the state hypercube totally. This phe-

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−6

−4

−2

0

2

4

6

x
1

x 2

State space regions (N=3, Nreg=3239), Soft constraints, x
0
=[0.04;4;0.1;0], Open loop

Fig. 12. Open loop trajectory using soft constraints

Using soft constraints the state space hypercube will
be filled out totally (see Fig. 11) This solution shows
that the original regions remain the same, only they
are completed with new regions at the corners. Fig. 12
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demonstrates the working and the price of the soft con-
straints, namely, that the state trajectory started from
the earlier infeasible regions will violate the hard con-
straints (state space hypercube). The continuous line
shows the first open loop state trajectory of the MPC
optimization problem (see Equations (59, 61, 62)). The
closed loop MPC trajectory using soft constraints is de-
picted in Fig. 13 where the circle denotes the moment
when the state violates the hypercube constraints. As
point of special interest, approaching the trajectory to
the origin is zoomed out to see the interesting loops in
the trajectory.
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Another idea is to solve problem of the infeasibility
regions if such controller is applied which yields con-
trol actions in these regions. The clipped LQ con-
troller can be a good choice for us since it corresponds
to the N = 1 MPC and always gives control action.
The continuous trajectory in Fig. 14 depicts the com-
bined clipped LQ and Model Predictive Control for the
semi-active suspension. For comparison the dashed line
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gives the clipped LQ control.
Figure 15 shows 6 slices of the explicit MPC (N = 3)
using soft constraints. Despite of the soft constraints
the fourth slice (right middle) does not fill out the state
hypercube totally. This phenomenon is caused by the
dissipative and saturation hard constraints (see Fig.
7). The difference compared to the above discussed
case up to now is that, although the cutting shape is
known but unfortunately it does not help in MPC be-
cause the optimization problem must be solved first
to find where the cutting should be inserted. As in
Fig. 15 is shown, there exists no control action for the
state region marked with plus (+). Causes for reach-
ing this region may be the same as mentioned earlier.
For treatment of the problem one can also use another
controller type for instance clipped LQ in this region
such as earlier.
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Figure 14: Using clipped LQ control for the infeasible
MPC regions

The main disadvantage of the explicit MPC is the ex-

13

Fig. 13. Closed loop trajectory using soft constraints

nomenon is caused by the dissipative and saturation hard con-
straints (see Fig. 7). The difference compared to the above
discussed case up to now is that, although the cutting shape is
known, unfortunately it does not help in MPC because the opti-
mization problem must be solved first to find where the cutting
should be inserted. As in Fig. 15 is shown, there exists no con-
trol action for the state region marked with plus (+). Causes
for reaching this region may be the same as mentioned earlier.
For treatment of the problem one can also use another controller
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type for instance clipped LQ in this region such as earlier.

Using soft constraints the state space hypercube will
be filled out totally (see Fig. 11) This solution shows
that the original regions remain the same, only they
are completed with new regions at the corners. Fig. 12
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demonstrates the working and the price of the soft con-
straints, namely, that the state trajectory started from
the earlier infeasible regions will violate the hard con-
straints (state space hypercube). The continuous line
shows the first open loop state trajectory of the MPC
optimization problem (see Equations (59, 61, 62)). The
closed loop MPC trajectory using soft constraints is de-
picted in Fig. 13 where the circle denotes the moment
when the state violates the hypercube constraints. As
point of special interest, approaching the trajectory to
the origin is zoomed out to see the interesting loops in
the trajectory.
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Another idea is to solve problem of the infeasibility
regions if such controller is applied which yields con-
trol actions in these regions. The clipped LQ con-
troller can be a good choice for us since it corresponds
to the N = 1 MPC and always gives control action.
The continuous trajectory in Fig. 14 depicts the com-
bined clipped LQ and Model Predictive Control for the
semi-active suspension. For comparison the dashed line
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gives the clipped LQ control.
Figure 15 shows 6 slices of the explicit MPC (N = 3)
using soft constraints. Despite of the soft constraints
the fourth slice (right middle) does not fill out the state
hypercube totally. This phenomenon is caused by the
dissipative and saturation hard constraints (see Fig.
7). The difference compared to the above discussed
case up to now is that, although the cutting shape is
known but unfortunately it does not help in MPC be-
cause the optimization problem must be solved first
to find where the cutting should be inserted. As in
Fig. 15 is shown, there exists no control action for the
state region marked with plus (+). Causes for reach-
ing this region may be the same as mentioned earlier.
For treatment of the problem one can also use another
controller type for instance clipped LQ in this region
such as earlier.
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The main disadvantage of the explicit MPC is the ex-
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The main disadvantage of the explicit MPC is the exponential
blow up of the number of regions when the prediction hori-
zon is increasing. This property is inherent to the whole ap-
proach of parametric programming where the very central idea
of explicit MPC is to enumerate all possible combination of
active constraints. Since there can be exponentially many of
them in prediction horizon (upper bound) therefore an expo-
nential growth in the number of regions can be obtained. In

ponential blow up of the number of regions when the
prediction horizon is increasing. This property is inher-
ent to the whole approach of parametric programming
where the very central idea of explicit MPC is to enu-
merate all possible combination of active constraints.
Since there can be exponentially many of them in pre-
diction horizon (upper bound) therefore an exponen-
tial growth in the number of regions can be obtained.
In the worst case, the number of partitions (regions)

6 slices of the explicit MPC (N=3, Nreg=3239), soft constraints

Figure 15: Slices of the explicit MPC, N = 3

equals to: 2(number of binary variables in the MPC problem),
where the (number of binary variables in the MPC
problem) = (prediction horizon) ∗ (number of binary
variables in the MLD model).
It can be proven that, using quadratic performance in-
dex, overlapping regions may arise. Without the over-
lapping the decomposition would contain not polyhe-
dral regions too. In the overlapping areas that control
action is chosen which has smaller performance value
and so it will give the same result to online MPC.
Table 2 and Fig. 16 show the exponential blow up
in our case. It can be seen that the numbers of the
hard constraints are one order of magnitude smaller
than soft constraints. The ”CPLEX error” means that
the CPLEX solver crashed due to numerical prob-
lems. Calculation of the explicit MPC regions using
soft constraints and prediction horizon N = 5 con-
sumed about 1 hour (on Acer Notebook with param-
eters: AMD Athlon(tm) 64 Processor 3000+ 1.8 Ghz,
2.00 GB RAM ). The enormous number of the regions
in the explicit MPC decreases the applicability for real
systems since the online searching among the regions
can take long time. Techniques for reducing the num-

ber of regions are currently under research [13, 14].

Table 2: Number of explicit MPC regions with respect
to the prediction horizon

N Hard constraints Soft constraints

1 8 8
2 92 370
3 666 3239
4 3008 13320
5 11024 43266
6 35006 CPLEX error
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Figure 16: Exponential blow up number of regions w.r.t
prediction horizon in case of hard- and soft constraints

End of this section, MPC for the semi-active suspen-
sion with control horizons N = 15 and N = 30 are
compared to the clipped LQ control (which is equiv-
alent to MPC with N = 1). We present results for
shock tests (i.e. nonzero initial conditions) with no
road disturbances and ”white noise” road velocity dis-
turbance for zero initial condition. The road velocity
disturbance w is modeled as discrete-time normal dis-
tribution with mean zero and the following standard
deviation [19]:

wRMS =

√

2 · π · v ·Aroad

Ts

,

where Aroad = 4.9·10−6, v = 88 km/h and Ts = 10ms.
This simulations were performed with on-line MPC
computation using hard constraints. From the Fig-
ures 17, 18 one can recognize that there is no essential
difference between the trajectories in the shock test
case. Saturation of the control signal can be observed
at the beginning of the transient. Fig. 19 and Fig.
20 also show simulation results with MPC and clipped
LQ semi-active suspension for road disturbance. Both
control methods yield very similar results, nevertheless
the MPC ”foresees” N = 30 steps and lot of states are
located on the boundary of the allowed control region
as shown in Fig. 20.
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Fig. 15. Slices of the explicit MPC, N = 3

the worst case, the number of partitions (regions) equals to:

2(number of binary variables in the MPC problem), where the (number of
binary variables in the MPC problem) = (prediction horizon) ∗

(number of binary variables in the MLD model).
It can be proven that, using quadratic performance index, over-
lapping regions may arise. Without the overlapping the decom-
position would contain not polyhedral regions too. In the over-
lapping areas that control action is chosen which has smaller
performance value and so it will give the same result to online
MPC.
Table 2 and Fig. 16 show the exponential blow up in our case.
It can be seen that the numbers of the hard constraints are one
order of magnitude smaller than soft constraints. The "CPLEX
error" means that the CPLEX solver crashed due to numerical
problems. Calculation of the explicit MPC regions using soft
constraints and prediction horizon N = 5 consumed about 1
hour (on Acer Notebook with parameters: AMD Athlon(tm) 64
Processor 3000+ 1.8 Ghz, 2.00 GB RAM ). The enormous num-
ber of the regions in the explicit MPC decreases the applicability
for real systems since the online searching among the regions
can take long time. Techniques for reducing the number of re-
gions are currently under research [22, 25].

Tab. 2. Number of explicit MPC regions with respect to the prediction hori-

zon

N Hard constraints Soft constraints

1 8 8

2 92 370

3 666 3239

4 3008 13320

5 11024 43266

6 35006 CPLEX error

ponential blow up of the number of regions when the
prediction horizon is increasing. This property is inher-
ent to the whole approach of parametric programming
where the very central idea of explicit MPC is to enu-
merate all possible combination of active constraints.
Since there can be exponentially many of them in pre-
diction horizon (upper bound) therefore an exponen-
tial growth in the number of regions can be obtained.
In the worst case, the number of partitions (regions)
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equals to: 2(number of binary variables in the MPC problem),
where the (number of binary variables in the MPC
problem) = (prediction horizon) ∗ (number of binary
variables in the MLD model).
It can be proven that, using quadratic performance in-
dex, overlapping regions may arise. Without the over-
lapping the decomposition would contain not polyhe-
dral regions too. In the overlapping areas that control
action is chosen which has smaller performance value
and so it will give the same result to online MPC.
Table 2 and Fig. 16 show the exponential blow up
in our case. It can be seen that the numbers of the
hard constraints are one order of magnitude smaller
than soft constraints. The ”CPLEX error” means that
the CPLEX solver crashed due to numerical prob-
lems. Calculation of the explicit MPC regions using
soft constraints and prediction horizon N = 5 con-
sumed about 1 hour (on Acer Notebook with param-
eters: AMD Athlon(tm) 64 Processor 3000+ 1.8 Ghz,
2.00 GB RAM ). The enormous number of the regions
in the explicit MPC decreases the applicability for real
systems since the online searching among the regions
can take long time. Techniques for reducing the num-

ber of regions are currently under research [13, 14].

Table 2: Number of explicit MPC regions with respect
to the prediction horizon

N Hard constraints Soft constraints

1 8 8
2 92 370
3 666 3239
4 3008 13320
5 11024 43266
6 35006 CPLEX error
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Figure 16: Exponential blow up number of regions w.r.t
prediction horizon in case of hard- and soft constraints

End of this section, MPC for the semi-active suspen-
sion with control horizons N = 15 and N = 30 are
compared to the clipped LQ control (which is equiv-
alent to MPC with N = 1). We present results for
shock tests (i.e. nonzero initial conditions) with no
road disturbances and ”white noise” road velocity dis-
turbance for zero initial condition. The road velocity
disturbance w is modeled as discrete-time normal dis-
tribution with mean zero and the following standard
deviation [19]:

wRMS =

√

2 · π · v ·Aroad

Ts

,

where Aroad = 4.9·10−6, v = 88 km/h and Ts = 10ms.
This simulations were performed with on-line MPC
computation using hard constraints. From the Fig-
ures 17, 18 one can recognize that there is no essential
difference between the trajectories in the shock test
case. Saturation of the control signal can be observed
at the beginning of the transient. Fig. 19 and Fig.
20 also show simulation results with MPC and clipped
LQ semi-active suspension for road disturbance. Both
control methods yield very similar results, nevertheless
the MPC ”foresees” N = 30 steps and lot of states are
located on the boundary of the allowed control region
as shown in Fig. 20.
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End of this section, MPC for the semi-active suspension with
control horizons N = 15 and N = 30 are compared to the
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clipped LQ control (which is equivalent to MPC with N = 1).
We present results for shock tests (i.e. nonzero initial condi-
tions) with no road disturbances and "white noise" road velocity
disturbance for zero initial condition. The road velocity distur-
bance w is modeled as discrete-time normal distribution with
mean zero and the following standard deviation [14]:

wRM S =

√
2 · π · v · Aroad

Ts
,

where Aroad = 4.9 · 10−6, v = 88 km/h and Ts = 10 ms.
This simulations were performed with online MPC computation
using hard constraints. From the Figs. 17, 18 one can recognize

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 17: State transients using MPC with N = 15
and clipped LQ control of the semi-active suspension

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 18: Output and control signal transients using
MPC with N = 15 and clipped LQ control of the semi-
active suspension

State feedback MPC (N=30) and LQ with road velocity disturbance

Figure 19: State transients using MPC with N = 30
and clipped LQ control of the semi-active suspension
using road velocity disturbance
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Figure 20: Location of the states in the control region
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VI Output Feedback Explicit
MPC with Deterministic Ac-
tual Observer

The control scheme for the output feedback MPC
control of the semi-active suspension is given in Fig. 21.
The measured output of the semi-active suspension is
the suspension deflection (y = x3 = Cobsx). Note that
y in Fig. 21 denotes the observed output now and not
the performance output used in (58). Estimated states
are bounded by the state hypercube and, after calcula-
tion of the control signal, the dissipative and saturation
constraints are applied, and finally the actuator based
on the input control force give the corresponding cur-
rent to the MR damper in the suspension system. It
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Figure 21: Output feedback control scheme

can easily be checked that the matrix pair (A,CobsA)
is observable where A,Cobs denote discrete time state
matrices. Hence actual, deterministic discrete time ob-
server was designed to the suspension system according

to (23). The fast poles pz =
[
0.06 0.07 0.08 0.09

]T

were chosen for the observer.
Fig. 22 shows the output feedback MPC control with

N = 1 to a shock test x0 =
[
0.03 2 −0.1 −1

]T
.

The observed states converge to the real states after
an initial transient. Since the observer is separately de-
signed for the controller, the estimated states can reach
such regions in map of the explicit MPC regions where

15

Fig. 17. State transients using MPC with N = 15 and clipped LQ control of
the semi-active suspension

that there is no essential difference between the trajectories in
the shock test case. Saturation of the control signal can be ob-
served at the beginning of the transient. Fig. 19 and Fig. 20 also
show simulation results with MPC and clipped LQ semi-active
suspension for road disturbance. Both control methods yield
very similar results, nevertheless the MPC "foresees" N = 30
steps and lot of states are located on the boundary of the allowed
control region as shown in Fig. 20.

6 Output feedback explicit mpc with deterministic ac-
tual observer
The control scheme for the output feedback MPC control of

the semi-active suspension is given in Fig. 21. The measured
output of the semi-active suspension is the suspension deflec-
tion (y = x3 = Cobs x). Note that y in Fig. 21 denotes the
observed output now and not the performance output used in
(58). Estimated states are bounded by the state hypercube and,
after calculation of the control signal, the dissipative and satu-
ration constraints are applied, and finally the actuator based on
the input control force give the corresponding current to the MR

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 17: State transients using MPC with N = 15
and clipped LQ control of the semi-active suspension

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 18: Output and control signal transients using
MPC with N = 15 and clipped LQ control of the semi-
active suspension

State feedback MPC (N=30) and LQ with road velocity disturbance

Figure 19: State transients using MPC with N = 30
and clipped LQ control of the semi-active suspension
using road velocity disturbance
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control of the semi-active suspension is given in Fig. 21.
The measured output of the semi-active suspension is
the suspension deflection (y = x3 = Cobsx). Note that
y in Fig. 21 denotes the observed output now and not
the performance output used in (58). Estimated states
are bounded by the state hypercube and, after calcula-
tion of the control signal, the dissipative and saturation
constraints are applied, and finally the actuator based
on the input control force give the corresponding cur-
rent to the MR damper in the suspension system. It
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can easily be checked that the matrix pair (A,CobsA)
is observable where A,Cobs denote discrete time state
matrices. Hence actual, deterministic discrete time ob-
server was designed to the suspension system according

to (23). The fast poles pz =
[
0.06 0.07 0.08 0.09

]T

were chosen for the observer.
Fig. 22 shows the output feedback MPC control with

N = 1 to a shock test x0 =
[
0.03 2 −0.1 −1

]T
.

The observed states converge to the real states after
an initial transient. Since the observer is separately de-
signed for the controller, the estimated states can reach
such regions in map of the explicit MPC regions where

15

Fig. 18. Output and control signal transients using MPC with N = 15 and
clipped LQ control of the semi-active suspension

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 17: State transients using MPC with N = 15
and clipped LQ control of the semi-active suspension

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 18: Output and control signal transients using
MPC with N = 15 and clipped LQ control of the semi-
active suspension

State feedback MPC (N=30) and LQ with road velocity disturbance

Figure 19: State transients using MPC with N = 30
and clipped LQ control of the semi-active suspension
using road velocity disturbance
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The control scheme for the output feedback MPC
control of the semi-active suspension is given in Fig. 21.
The measured output of the semi-active suspension is
the suspension deflection (y = x3 = Cobsx). Note that
y in Fig. 21 denotes the observed output now and not
the performance output used in (58). Estimated states
are bounded by the state hypercube and, after calcula-
tion of the control signal, the dissipative and saturation
constraints are applied, and finally the actuator based
on the input control force give the corresponding cur-
rent to the MR damper in the suspension system. It
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can easily be checked that the matrix pair (A,CobsA)
is observable where A,Cobs denote discrete time state
matrices. Hence actual, deterministic discrete time ob-
server was designed to the suspension system according

to (23). The fast poles pz =
[
0.06 0.07 0.08 0.09

]T

were chosen for the observer.
Fig. 22 shows the output feedback MPC control with

N = 1 to a shock test x0 =
[
0.03 2 −0.1 −1

]T
.

The observed states converge to the real states after
an initial transient. Since the observer is separately de-
signed for the controller, the estimated states can reach
such regions in map of the explicit MPC regions where

15

Fig. 19. State transients using MPC with N = 30 and clipped LQ control of
the semi-active suspension using road velocity disturbance

damper in the suspension system. It can easily be checked that
the matrix pair (A, Cobs A) is observable where A, Cobs denote
discrete time state matrices. Hence actual, deterministic discrete
time observer was designed to the suspension system according

to (23). The fast poles pz =

[
0.06 0.07 0.08 0.09

]T
were

chosen for the observer.
Fig. 22 shows the output feedback MPC control with N = 1 to a

shock test x0 =

[
0.03 2 −0.1 −1

]T
. The observed states

converge to the real states after an initial transient. Since the
observer is separately designed for the controller, the estimated
states can reach such regions in map of the explicit MPC regions
where no control action exists. In order to treat this problem
some techniques were presented in the previous section. Fig. 23
shows the closed loop output feedback MPC simulation results
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State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 17: State transients using MPC with N = 15
and clipped LQ control of the semi-active suspension
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Figure 18: Output and control signal transients using
MPC with N = 15 and clipped LQ control of the semi-
active suspension

State feedback MPC (N=30) and LQ with road velocity disturbance

Figure 19: State transients using MPC with N = 30
and clipped LQ control of the semi-active suspension
using road velocity disturbance
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The control scheme for the output feedback MPC
control of the semi-active suspension is given in Fig. 21.
The measured output of the semi-active suspension is
the suspension deflection (y = x3 = Cobsx). Note that
y in Fig. 21 denotes the observed output now and not
the performance output used in (58). Estimated states
are bounded by the state hypercube and, after calcula-
tion of the control signal, the dissipative and saturation
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can easily be checked that the matrix pair (A,CobsA)
is observable where A,Cobs denote discrete time state
matrices. Hence actual, deterministic discrete time ob-
server was designed to the suspension system according

to (23). The fast poles pz =
[
0.06 0.07 0.08 0.09

]T

were chosen for the observer.
Fig. 22 shows the output feedback MPC control with

N = 1 to a shock test x0 =
[
0.03 2 −0.1 −1

]T
.

The observed states converge to the real states after
an initial transient. Since the observer is separately de-
signed for the controller, the estimated states can reach
such regions in map of the explicit MPC regions where

15

Fig. 20. Location of the states in the control region defined by dissipative
and saturation constraints using MPC with N = 30 and exciting with road ve-
locity disturbance
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Figure 17: State transients using MPC with N = 15
and clipped LQ control of the semi-active suspension

State feedback MPC (N=15) and LQ control, x0=[0;0;0.15;-1.5]

Figure 18: Output and control signal transients using
MPC with N = 15 and clipped LQ control of the semi-
active suspension

State feedback MPC (N=30) and LQ with road velocity disturbance

Figure 19: State transients using MPC with N = 30
and clipped LQ control of the semi-active suspension
using road velocity disturbance
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VI Output Feedback Explicit
MPC with Deterministic Ac-
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The control scheme for the output feedback MPC
control of the semi-active suspension is given in Fig. 21.
The measured output of the semi-active suspension is
the suspension deflection (y = x3 = Cobsx). Note that
y in Fig. 21 denotes the observed output now and not
the performance output used in (58). Estimated states
are bounded by the state hypercube and, after calcula-
tion of the control signal, the dissipative and saturation
constraints are applied, and finally the actuator based
on the input control force give the corresponding cur-
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can easily be checked that the matrix pair (A,CobsA)
is observable where A,Cobs denote discrete time state
matrices. Hence actual, deterministic discrete time ob-
server was designed to the suspension system according

to (23). The fast poles pz =
[
0.06 0.07 0.08 0.09

]T

were chosen for the observer.
Fig. 22 shows the output feedback MPC control with

N = 1 to a shock test x0 =
[
0.03 2 −0.1 −1

]T
.

The observed states converge to the real states after
an initial transient. Since the observer is separately de-
signed for the controller, the estimated states can reach
such regions in map of the explicit MPC regions where
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Fig. 21. Output feedback control scheme

no control action exists. In order to treat this problem
some techniques were presented in the previous section.
Fig. 23 shows the closed loop output feedback MPC

Output feedback MPC, N=1, x0=[0.03;2;-0.1;-1]

Figure 22: Output and state feedback MPC

simulation results with random noise disturbance in-
put and zero initial condition. It can be seen that the
estimated state x3 is the measured state, therefore its
estimation is perfect. In the estimation of the states
x1 and x2 one can still discover the original states but
estimation of the velocity x4 is wrong. The goal with
the deterministic observer was to examine only what
problems we face when an observer is applied in the ex-
plicit MPC framework (see previous section). Finally

Output feedback MPC (N=1) with road velocity disturbance

Figure 23: Closed loop output feedback MPC result
with random noise disturbance input and zero initial
condition

the road disturbance rejection is presented in Figures
24, 25 for the state feedback and for the output feed-
back using deterministic observer MPC case. The state
feedback MPC proves the efficient working of the con-
troller in the semi-active suspension system while the
output feedback MPC does not work well because of
the not appropriate observer.
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Figure 24: Disturbance rejection using state feedback
MPC for the semi-active suspension
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Figure 25: Disturbance rejection using output feedback
MPC with deterministic observer for the semi-active
suspension

VII Conclusions

To analyze the optimal explicit MPC approach, the
quarter car semi-active suspension model was chosen.
We have shown that the explicit MPC is a promis-
ing method to increase the practical applicability of
the MPC to such real systems where the time con-
suming online optimization is not allowed because fast
control action is required. After a detailed theoreti-
cal summary of the explicit/hybrid MPC the practical
questions of the control method have been analyzed.
Through the explicit MPC we have shown that the op-
timal MPC control does have a linear state feedback
form. Two main disadvantages of the explicit MPC
are the exponential blow-up of the number of regions
with increasing the prediction horizon and the require-
ments of the full state measurement. In explicit MPC
we pointed out that regions may exist where no opti-
mal solution exists which is not allowed in a real sys-
tem. We can reach such regions in many cases such as:
independently designed observer from the controller,
disturbance input or modeling uncertainty. In order
to treat this problem soft constraints and combined
clipped LQ/MPC have been suggested.
It was shown that the clipped LQ corresponds to the

16

Fig. 22. Output and state feedback MPC

with random noise disturbance input and zero initial condition.
It can be seen that the estimated state x3 is the measured state,
therefore its estimation is perfect. In the estimation of the states

x1 and x2 one can still discover the original states but estima-
tion of the velocity x4 is wrong. The goal with the deterministic
observer was to examine only what problems we face when an
observer is applied in the explicit MPC framework (see previ-
ous section). Finally the road disturbance rejection is presented
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some techniques were presented in the previous section.
Fig. 23 shows the closed loop output feedback MPC
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the road disturbance rejection is presented in Figures
24, 25 for the state feedback and for the output feed-
back using deterministic observer MPC case. The state
feedback MPC proves the efficient working of the con-
troller in the semi-active suspension system while the
output feedback MPC does not work well because of
the not appropriate observer.
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VII Conclusions

To analyze the optimal explicit MPC approach, the
quarter car semi-active suspension model was chosen.
We have shown that the explicit MPC is a promis-
ing method to increase the practical applicability of
the MPC to such real systems where the time con-
suming online optimization is not allowed because fast
control action is required. After a detailed theoreti-
cal summary of the explicit/hybrid MPC the practical
questions of the control method have been analyzed.
Through the explicit MPC we have shown that the op-
timal MPC control does have a linear state feedback
form. Two main disadvantages of the explicit MPC
are the exponential blow-up of the number of regions
with increasing the prediction horizon and the require-
ments of the full state measurement. In explicit MPC
we pointed out that regions may exist where no opti-
mal solution exists which is not allowed in a real sys-
tem. We can reach such regions in many cases such as:
independently designed observer from the controller,
disturbance input or modeling uncertainty. In order
to treat this problem soft constraints and combined
clipped LQ/MPC have been suggested.
It was shown that the clipped LQ corresponds to the
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bance input and zero initial condition

in Figs. 24, 25 for the state feedback and for the output feed-
back using deterministic observer MPC case. The state feed-
back MPC proves the efficient working of the controller in the
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questions of the control method have been analyzed.
Through the explicit MPC we have shown that the op-
timal MPC control does have a linear state feedback
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are the exponential blow-up of the number of regions
with increasing the prediction horizon and the require-
ments of the full state measurement. In explicit MPC
we pointed out that regions may exist where no opti-
mal solution exists which is not allowed in a real sys-
tem. We can reach such regions in many cases such as:
independently designed observer from the controller,
disturbance input or modeling uncertainty. In order
to treat this problem soft constraints and combined
clipped LQ/MPC have been suggested.
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the explicit MPC is a promising method to increase the practical
applicability of the MPC to such real systems where the time
consuming online optimization is not allowed because fast con-
trol action is required. After a detailed theoretical summary of
the explicit/hybrid MPC the practical questions of the control
method have been analyzed. Through the explicit MPC we have
shown that the optimal MPC control does have a linear state
feedback form. Two main disadvantages of the explicit MPC
are the exponential blow-up of the number of regions with in-
creasing the prediction horizon and the requirements of the full
state measurement. In explicit MPC we pointed out that regions
may exist where no optimal solution exists which is not allowed
in a real system. We can reach such regions in many cases such
as: independently designed observer from the controller, distur-
bance input or modeling uncertainty. In order to treat this prob-
lem soft constraints and combined clipped LQ/MPC have been
suggested.
It was shown that the clipped LQ corresponds to the MPC with
N = 1 not only around the origin but in the whole space. MPC
with greater control horizon N = 15 and 30 do not yield es-
sential improvement for the system. Our examination has been
included shock tests and road disturbance excitation. Finally,
deterministic actual observer was designed to the semi active
suspension system which requires only the measurement of the
suspension deflection where we have not expected extremely
good estimation for velocity. The goal with the deterministic ob-
server was to examine what problems we face when an observer
is applied in the explicit MPC framework. For modeling and
analyzing the semi active MPC problem the MPT and YALMIP
toolboxes were applied.
Technique for reducing the number of regions for real time ap-
plications are currently under research.
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