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Abstract
The assurance of a good software product quality necessi-

tates a managed software process. Periodic product evaluation
(inspection and testing) should be executed during the develop-
ment process in order to simultaneously guarantee the timeli-
ness and quality aspects of the development workflow. A faith-
ful prediction of the efforts needed forms the basis of a project
management (PM) in order to perform a proper human resource
allocation to the different development and QA activities. How-
ever, even robust resource demand and quality estimation tools,
like COCOMO II and COQUALMO do not cover the timeli-
ness point of view sufficiently due to their static nature. Cor-
respondingly, continuous quality monitoring and quality driven
supervisory control of the development process became vital as-
pects in PM. A well-established complementary approach uses
the Weibull model to describe the dynamics of the development
and QA process by a mathematical model based on the observa-
tions gained during the development process.

Supervisory PM control has to concentrate development and
QA resources to eliminate quality bottlenecks, as different parts
(modules) of the product under development may reveal different
defect density levels. Nevertheless, traditional heuristic quality
management is unable to perform optimal resource allocation
in the case of complex target programs.

This paper presents a model-based quality-driven optimized
resource allocation method. It combines the COQUALMO
model as early quality predictor and empirical knowledge for-
mulated by a Weibull model gained by the continuous monitor-
ing of the QA process flow. An exact mathematical optimization
technique is used for human resource, like tester allocation.
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1 Introduction
The basic definition of quality demands that the target soft-

ware conforms to the requirements and it is fit to be used from
the customer’s point of view. Solution providers face the de-
mand of the efficiency of the design and implementation work-
flow from all the aspects of timeliness, costs and quality ad-
ditionally to the conformance to requirements. As quality re-
lated problems necessitate additional iterations in the develop-
ment cycle, continuous monitoring and supervisory control of
quality assurance (QA) activities are critical tasks in software
project management.

As a matter of fact, quality is a very subjective attribute of a
SW system. However, “defects are not the only measure of qual-
ity, of course; but they are the most visible indicator of quality
throughout a project” [6], so it is reasonable to measure quality
by the occurrence of defects.

Management of QA related costs starts with the allocation of
a quality budget [7] at the beginning of the project based on a
forecast of the extent of QA related efforts. However, the actual
efforts occurring during the progress of the development process
frequently differ from the initial predictions. Accordingly con-
trolled, adaptive quality management is needed to avoid cost or
temporal penalties originating in additional iterations in the de-
velopment workflow induced by quality problems. This paper
presents a supervisory control policy providing an optimized re-
source allocation in adaptive way based on the monitoring of the
QA process.

2 Background and definitions
SW quality has six views according to ISO/IEC 9126: func-

tionality, reliability, usability, maintainability, efficiency, and
portability. Many of quality factors used in formal quality mod-
els are considerably subjective [3]. Although, subjective ratings
are better than not measuring at all, we focus on a much restric-
tive, but objective interpretation of quality, namely that of the
lack of defects in the sense of conformance to the requirements.
The IEEE standard [12] subdivides the notion of defects into
the following categories: failure is a program behavior differing
from user expectations; fault is an underlying cause that could
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lead to failures, and error is a missing or incorrect human action
that could inject faults into the SW.

2.1 Measuring quality
An objective PM approach needs a quantitative indicator of

the quality in the form of a metrics. The most basic quality met-
rics is defect density expressing the ratio of defects measured in
terms of KSLOC (kilo source lines of code) or pages (in docu-
ments):

defect density =
number of known defects

product size
(1)

An important derived metrics is the defect profile which predicts
the reliability of the product by describing the dynamics of de-
fect removal during development, including document inspec-
tions, code inspections, and testing. It represents the efficiency
of defect removal of the development corporation in each phase
of development.

Different modules under development have frequently differ-
ent defect densities originating in differences in their size, com-
plexity and design personnel properties etc. As the overall qual-
ity of the system is dominated by the module of the worst qual-
ity, a fine granular PM solution is required to handle these dif-
ferences. A defect density profile is a vector composed of the
defect densities of the individual modules well-visualizable by
means of radar charts (Fig. 1):

The principle of optimization of the use of QA resources is
simply that more testing resources should be allocated to defect
prone and/or mission critical modules to bring them to a uniform
quality level of the system. In other words, the efforts dedicated
to testing and repair should be harmonized with the expected
number of defects in the individual modules under a constrained
total quality budget.

2.2 Cost of quality
The two main types of software quality costs [8] are: confor-

mance, and nonconformance. The cost of conformance includes
prevention (do it right for the first time) costs and appraisal costs
(quality improvement activities), while the cost of nonconfor-
mance includes all defect removal costs.

The ratio of defect removal costs during the different phases
of the software lifecycle (design and code inspection, testing,
and maintenance) follows typically the 1:10:100 rule. This em-
phasizes the importance of an optimized use of the quality bud-
get: early defect removal is cheaper [4, 13].

The Constructive Quality Model (COQUALMO) [14] esti-
mates the total number of defects remaining in a software sys-
tem based on defect introduction (DI) and defect removal (DR)
models.

The set of factors in COQUALMO are the same as in CO-
COMO extended by the factors related to the QA process. This
model is capable to predict the expected numbers of defects at

the end of requirement specification, design and coding phases
separately.

3 Defect occurrence modeling
Defect occurrence models can be divided into two major cat-

egories [4]: reliability models predict end-product reliability by
extrapolating the number of residual defects remaining unde-
tected and uncorrected at the end of the testing process from the
observed defect profile, while quality management models con-
tinuously monitor the entire workflow from the point of view of
quality.

Model based defect occurrence prediction can provide the
project manager with early warnings on quality related prob-
lems; therefore timely actions can be executed to reinforce the
QA process.

3.1 Weibull model as a defect occurrence model
While COQUALMO is a proper approach for initial quality

prediction and QA related cost allocation, it lacks the potential
incorporating results gained from observations during the QA
process and especially it is unable to model the dynamics of the
testing process.

Many studies pointed out [7, 9] that a Weibull model is flex-
ible enough to capture the dynamics of defect manifestations
faithfully across a wide range of development situations. The
Weibull model λ(t) is formulated as:

λ(t) = Nαβtα−1 exp (−βtα) (2)

where N represents the total number of events (e.g. defect oc-
currences), α determines the shape of the model (shape param-
eter), and β is the scale of the curve (scale parameter). In the
practice, the parameters of the Weibull model are estimated by
a best fit setting to the series of defect observation date clus-
tered in a histogram-like form according to some user-defined
temporal resolution (Fig. 2).

The area below the curve representing the entire workflow
corresponds to the expected total number of defects introduced,
and the area right to the instance of the termination of the QA
activities to the predicted number of residual defects remaining
undetected prior to issuing the software product.

A typical quality management model (Fig. 2a) characterizes
the defect manifestation sequence over the entire QA lifecycle.
The vertical line indicates the end of the production related QA
activities. The area below the curve right to this line corre-
sponds to the number of residual defects. The reliability model
in Fig. 2b presents defect manifestations from the beginning of
testing.

The Weibull formula can be splitted into two major parts hav-
ing their own interpretation for QA activities. The monotonic
increasing αβtα−1 component dominates early phases when in-
spection and testing starts. The decreasing exp(−βtα) factor
corresponds to the fact that testing has to reveal less and less
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III. Background and Definitions 
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siderably subjective [3]. Although, subjective ratings are better than not measuring at all, we focus 
on a much restrictive, but objective interpretation of quality, namely that of the lack of defects in the 
sense of conformance to the requirements. The IEEE standard [12] subdivides the notion of defects 
into the following categories: failure is a program behavior differing from user expectations; fault is 
an underlying cause that could lead to failures, and error is a missing or incorrect human action that 
could inject faults into the SW. 

A. Measuring Quality  

An objective PM approach needs a quantitative indicator of the quality in the form of a metrics. The 
most basic quality metrics is defect density expressing the ratio of defects measured in terms of 
KSLOC (kilo source lines of code) or pages (in documents): 

 
number of known defects

defect density = 
product size

   (Eq. 1) 

An important derived metrics is the defect profile which predicts the reliability of the product by 
describing the dynamics of defect removal during development, including document inspections, 
code inspections, and testing. It represents the efficiency of defect removal of the development cor-
poration in each phase of development.  

Different modules under development have frequently different defect densities originating in 
differences in their size, complexity and design personnel properties etc. As the overall quality of the 
system is dominated by the module of the worst quality, a fine granular PM solution is required to 
handle these differences. A defect density profile is a vector composed of the defect densities of the 
individual modules well-visualizable by means of radar charts (Figure 1): 

  

Figure 1 Two Different Defect Density Profiles 

The principle of optimization of the use of QA resources is simply that more testing resources 
should be allocated to defect prone and/or mission critical modules to bring them to a uniform qual-
ity level of the system. In other words, the efforts dedicated to testing and repair should be harmo-
nized with the expected number of defects in the individual modules under a constrained total quality 
budget. 

B. Cost of Quality 

The two main types of software quality costs [8] are: conformance, and nonconformance. The 
cost of conformance is include prevention (do it right for the first time) costs and appraisal costs 

Fig. 1. Two different defect density profiles

(quality improvement activities), while the cost of nonconformance includes all defect removal costs. 
The ratio of defect removal costs during the different phases of the software lifecycle (design and 

code inspection, testing, and maintenance) follows typically the 1:10:100 rule. This emphasizes the 
importance of an optimized use of the quality budget: early defect removal is cheaper [13, 4]. 

The Constructive Quality Model (COQUALMO) [14] estimates the total number of defects re-
maining in a software system based on defect introduction (DI) and defect removal (DR) models.  

The set of factors in COQUALMO are the same as in COCOMO extended by the factors related to 
the QA process. This model is capable to predict the expected numbers of defects at the end of re-
quirement specification, design and coding phases separately.  

IV. Defect Occurrence Modeling 

Defect occurrence models can be divided into two major categories [4]: reliability models predict 
end-product reliability by extrapolating the number of residual defects remaining undetected and un-
corrected at the end of the testing process from the observed defect profile, while quality manage-

ment models continuously monitor the entire workflow from the point of view of quality. 
Model based defect occurrence prediction can provide the project manager with early warnings on 

quality related problems; therefore timely actions can be executed to reinforce the QA process.  

A. Weibull Model as a Defect Occurrence Model 

While COQUALMO is a proper approach for initial quality prediction and QA related cost alloca-
tion, it lacks the potential incorporating results gained from observations during the QA process and 
especially it is unable to model the dynamics of the testing process. 

Many studies pointed out [7, 9] that a Weibull model is flexible enough to capture the dynamics of 
defect manifestations faithfully across a wide range of development situations. The Weibull model 
λ(t) is formulated as: 
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where N represents the total number of events (e.g. defect occurrences), α determines the shape of 
the model (shape parameter), and β is the scale of the curve (scale parameter). In the practice, the pa-
rameters of the Weibull model are estimated by a best fit setting to the series of defect observation 
date clustered in a histogram-like form according to some user-defined temporal resolution (Figure 
2).  

  

a) Entire development lifecycle      b) Reliability model 

Figure 2 Defect Manifestation Models 
Fig. 2. Defect manifestation modelsa. Entire development lifecycle b. Reliability model

failures due to defect removal with the progress of the QA pro-
cess.

The Rayleigh model is a special case of the Weibull model
(α = 2), which is used in quality management models. The nec-
essary conditions to use this restricted model [7] are: unimodal
staffing profile, life-cycle phases of a similar duration, reason-
ably complete reporting of defects, use of observable defects
only in the statistics, and stable QA processes.

Defect manifestation is roughly proportional to the QA ef-
forts (more efforts dedicated to QA shrink the time axis of the
Rayleigh distribution and stretch the event rates). This obser-
vation will be utilized in the optimization of the QA resource
allocation.

4 Case studies
The defect manifestation logs of two real-life projects were

post-processed to check the faithfulness of the defect number
estimators and correspondingly to test the feasibility of our ap-
proach. The first example was an e-business application (doc-
ument registration system for a large enterprise) serving as a

pilot application for calibrating the defect prediction measures
vs. costs. The second one was a safety critical railway con-
trol system developed by means of upgrading the reliability of
a traditional SCADA application by further tests. This later one
was selected as a representative of the evolving class of appli-
cations integrating originally low or medium quality SW (like
public domain SW) into critical applications after an exhaustive
QA process.

Subsequently a “what-if” analysis was carried out in order
to evaluate the practical importance of using mathematical opti-
mization techniques in the QA related PM.

4.1 Commercial system
The pilot e-business application was developed by an internal

team of 12 members supported by a consulting company during
a period of 10 months from the project definition to its end.

The application was built over a typical three layered architec-
ture composed of a presentation layer (Internet Explorer compo-
nent embedded in a Visual Basic 6.0 host application), business
logic (COM+ components developed in Visual Basic), and data
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management layer (stored procedures and functions executed on
a MS SQL 2000 Server database) implemented as three mod-
ules. The total size of the application was about 40kSLOC.

Our investigation was based on two major sets of data logs
collected during the development process at the enterprise: the
test result log database (based on Rational ClearQuest) contain-
ing all the defects detected during the development, and the
COCOMO II and COQUALMO factors estimated by the local
project manager.

The first step was the analysis of defect logs according to the
three major development phases: requirements capture, design,
and implementation indicating a moderately steep increase at the
beginning and a slight decrease in the number of defects over the
different phases of development.

The next step was a complete COQUALMO analysis check-
ing the faithfulness of the estimation of the total number of
faults. This emphasized the accuracy of the COQUALMO based
predictions w.r.t. logged real-life data (the first three histograms
in Fig. 3), as the two result set differ only by a linear factor.
The difference can be significantly decreased after an appropri-
ate calibration of the assignment of COQUALMO factors to the
local process. The fourth histogram illustrates only the number
of residual defects estimated by COQUALMO, since there was
no available(“?”) project data in this phase.

w.r.t. logged real-life data (the first three histograms in Figure 3), as the two result set differ only by 
a linear factor. The difference can be significantly decreased after an appropriate calibration of the 
assignment of COQUALMO factors to the local process. The fourth histogram illustrates the number 
of residual defects estimated by COQUALMO.  

 
Figure 3 Relationships between the Defect Log and the COQUALMO Estimators 

Subsequently the model of the dynamics of the QA process was created by means of fitting a 
Weibull distribution to the observed defect manifestation log data (Figure 2a). 

Both COQUALMO and the Weibull model had shown a good correlation with the empirical data 
sets. COQUALMO can deliver a prediction on the total number of defects from to the predefined 
product and project factors even prior of the start of the project, thus it can be used as a basic metrics 
in QA related resource allocation in the project planning phase. However, it can not reflex the tempo-
ral properties of the defect detection and removal process. The Weibull model delivers extrapolated 
estimators of the dynamics of defect occurrences based on the observations. It can be gradually re-
fined as the QA process advances and delivers more and more log data. 

B. Safety critical system  

This pilot application was developed at a company specialized in embedded control system design. 
Their objective was to create a new product of a high required safety level (railway supervisory con-
trol system) based on a product developed originally for non-critical industrial applications. The 
company has decided on exhaustive re-inspection and re-testing of the existing application according 
to the domain specific standards related to safety critical system development (EN 5012x series) 
eliminating this way a completely new software development process.  

The software consists of five major modules composed of totally more than 60 sub-modules by a 
project team of 20 persons. The applied software technology used UML based modeling tools ex-
tended by data flow models. Versioning- and a change tracking systems were applied during the 
project, from which the investigated defect log data were extracted. The size of the software was a 
total of 470 kSLOC written mainly in C, C++, Perl and Awk. 

Our aim was the estimation of the correlation between the applied QA methods, efforts and the 
achieved safety level with respect to the logged defect removal data during the re-inspection and re-
testing process. This experiment was a demonstrator of cases of software reuse, where additional QA 
activities aim to increase the reliability of the software. 

Our first step was to create a COQUALMO based estimator of the number of defects removed 
during the quality improvement process and to compare it with the data logged during this additional 
QA phase. Two separate COQUALMO calculations were performed to predict the number of resid-
ual defects in the original product and in the enhanced one, respectively. The number of defects de-
tected during re-inspection and re-testing was estimated as their difference (Figure 4).  

 

Fig. 3. Relationships between the Defect Log and the COQUALMO Esti-
mators

Subsequently the model of the dynamics of the QA process
was created by means of fitting a Weibull distribution to the ob-
served defect manifestation log data (Fig. 2a).

Both COQUALMO and the Weibull model had shown a good
correlation with the empirical data sets. COQUALMO can de-
liver a prediction on the total number of defects from the pre-
defined product and project factors even prior of the start of the
project, thus it can be used as a basic metrics in QA related re-
source allocation in the project planning phase. However, it can
not reflex the temporal properties of the defect detection and re-
moval process. The Weibull model delivers extrapolated estima-
tors of the dynamics of defect occurrences based on the obser-
vations. It can be gradually refined as the QA process advances
and delivers more and more log data.

4.2 Safety critical system
This pilot application was developed at a company special-

ized in embedded control system design. Their objective was
to create a new product of a high required safety level (railway
supervisory control system) based on a product developed orig-
inally for non-critical industrial applications. The company has
decided on exhaustive re-inspection and re-testing of the exist-
ing application according to the domain specific standards re-
lated to safety critical system development (EN 5012x series)
eliminating this way a completely new software development
process.

The software consists of five major modules composed of to-
tally more than 60 sub-modules by a project team of 20 per-
sons. The applied software technology used UML based mod-
eling tools extended by data flow models. Versioning- and a
change tracking systems were applied during the project, from
which the investigated defect log data were extracted. The size
of the software was a total of 470 kSLOC written mainly in C,
C++, Perl and Awk.

Our aim was the estimation of the correlation between the ap-
plied QA methods, efforts and the achieved safety level with re-
spect to the logged defect removal data during the re-inspection
and re-testing process. This experiment was a demonstrator of
cases of software reuse, where additional QA activities aim to
increase the reliability of the software.

Our first step was to create a COQUALMO based estimator of
the number of defects removed during the quality improvement
process and to compare it with the data logged during this addi-
tional QA phase. Two separate COQUALMO calculations were
performed to predict the number of residual defects in the orig-
inal product and in the enhanced one, respectively. The number
of defects detected during re-inspection and re-testing was esti-
mated as their difference (Fig. 7).

The majority of the factors influencing the quality (platform,
personal, project quality etc.) were identical in these two cases.
The difference between the two estimators originates in the dif-
ferent defect removal methods applied reflected as different CO-
QUALMO defect removal factor assignments (Table 1). Only
simple automated analysis (syntax-, type-checking in the static
software code), complemented by the usual basic level tests,
peer reviews and execution tests was used during the develop-
ment of the original software. QA was supported by basic test
coverage tools and ISO 9000 compliant test process manage-
ment.

The additional QA activities producing the improved software
product were carried out under the strict checking and verifica-
tion rules prescribed by the standard by using, for instance:

1 Sophisticated automated analysis tools, including syntax and
semantics analyzers, requirements and design consistency
and traceability checkers, formal verification and validation
tools etc.;

2 Peer reviews covering all important aspects according to the
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Figure 4 COQUALMO estimations 

The majority of the factors influencing the quality (platform, personal, project etc) were identical 
in this two cases. The difference between the two estimators originates in the different defect 
removal methods applied reflected as different COQUALMO defect removal factor assignments 
(Table 1). Only simple automated analysis (syntax-, type-checking in the static software code), 
complemented by the usual basic level tests, peer reviews and execution tests was used during the 
development of the original software. QA was supported by basic test coverage tools and ISO 9000 
compliant test process management.  

The additional QA activities producing the improved software product were carried out under the 
strict checking and verification rules prescribed by the standard by using, for instance:   

1. Sophisticated automated analysis tools, including syntax and semantics analyzers, require-
ments and design consistency and traceability checkers, formal verification and validation 
tools etc.; 

2. Peer reviews covering all important aspects according to the standardized scenario; 
3. Execution testing of 100% instruction-coverage (driven by Cantata). 

 
 Original SW development Safety critical SW re-testing 

Automated analysis Low Very High 

Peer reviews High High 

Execution testing High Extra High 

Table 1 COQUALMO defect removal factor assignments 

COQUALMO estimated the number of residual defects as 763 in the original product (traditional 
QA), and as 263 in the improved one (strict QA), respectively.  Accordingly, the detection of 500 de-
fects was predicted for the re-testing phase. The project test log database contained a total of 399 de-
fects detected during re-testing, thus the relative error of the prediction was by about 20%. 

While the results in the current experiment were better than expected from the point of view of the 
accuracy of the estimates with respect to the real log data, its general use requires some caution. One 
of the potential dangers in this approach is that the difference of two uncertain large numbers may 
have a large relative error. Overestimation of the difference (a large number of residual faults) leads 
to redundant test resource allocation, while underestimation may result in underpowering of the QA 
process resulting in a large number of residual faults under a deadline constraint. 

Uncertainty in COQUALMO has two roots. The first one is that the COQUALMO quality 
estimator formula itself is only a best fitting extrapolation based on empirical data from a large set of 
historical pilot projects and expert predictions used for the actual project.  

The second one is the so-called calibration problem, as a potential misquantification of 
COQUALMO factors by a misjudgment of the project manager potentially resulting in a large de-
viation from the real data observed later.  

A simple form of sensitivity analysis was performed for the most critical three factors (level of 
automated analysis, execution testing and peer reviews) in order to assess the impact of a miscalibra-
tion of the estimation by a wrong categorization (Figure 5) of the factors.  

Fig. 4. COQUALMO estimations

standardized scenario;

3 Execution testing of 100% instruction-coverage (driven by
Cantata).

Tab. 1. COQUALMO defect removal factor assignments

Original SW
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Safety critical
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Peer reviews High High

Execution testing High Extra High

COQUALMO estimated the number of residual defects as
763 in the original product (traditional QA), and as 263 in the
improved one (strict QA), respectively. Accordingly, the detec-
tion of 500 defects was predicted for the re-testing phase. The
project test log database contained a total of 399 defects detected
during re-testing, thus the relative error of the prediction was by
about 20%.

While the results in the current experiment were better than
expected from the point of view of the accuracy of the estimates
with respect to the real log data, its general use requires some
caution. One of the potential dangers in this approach is that
the difference of two uncertain large numbers may have a large
relative error. Overestimation of the difference (a large number
of residual faults) leads to redundant test resource allocation,
while underestimation may result in underpowering of the QA
process resulting in a large number of residual faults under a
deadline constraint.

Uncertainty in COQUALMO has two roots. The first one is
that the COQUALMO quality estimator formula itself is only a
best fitting extrapolation based on empirical data from a large
set of historical pilot projects and expert predictions used for the
actual project.

The second one is the so-called calibration problem, as a po-
tential misquantification of COQUALMO factors by a misjudg-
ment of the project manager potentially resulting in a large de-
viation from the real data observed later.

A simple form of sensitivity analysis was performed for the
most critical three factors (level of automated analysis, execu-
tion testing and peer reviews) in order to assess the impact of

a miscalibration of the estimation by a wrong categorization
(Fig. 5) of the factors.

We estimated the maximal impact of the deviation of each
individual factor by one category up or down onto the cost of the
re-testing. The set of potential neighboring estimates includes
23

= 8 for each of the number of defects in the original and
improved software. The largest relative error out of these 64
combinations was by about 60% clearly indicating the need of a
continuous monitoring of the number of defects and not to rely
only on initial estimates.

Please note, that relative error related to the estimation of the
number additional defects may drastically increase, if only a mi-
nor increase in quality is indented, thus the initial and objective
number of defects are near.

We estimated the maximal impact of the deviation of each individual factor by one category up or 
down onto the cost of the re-testing. The set of potential neighboring estimates includes 23=8 for 
each of the number of defects in the original and improved software. The largest relative error out of 
these 64 combinations was by about 60% clearly indicating the need of a continuous monitoring of 
the number of defects and not to rely only on initial estimates.  

Please note, that relative error related to the estimation of the number additional defects may 
drastically increase, if only a minor increase in quality is indented, thus the initial and objective 
number of defects are near.  
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Figure 5 Sensitivity analysis 

The situation is essentially better, if the number of defects in the original software to be improved 
is already known from the logs of the initial QA process, thus only the number of defects in the 
target product has to be estimated. In our case, such data were unavailable due to historic reasons 
(the roots of the original software date back as long as a decade, parts of it were developed already 
prior to the introduction of the ISO9000 QA system at the enterprise). Moreover the lack of testing 
related data logs is typical in reusing third party (including public domain) software, as well. 

VI. Optimized Resource Allocation 

Defect manifestation rates are roughly proportional to QA efforts, like project staffing. The un-
derlying approximation is that the allocation of more resources (e.g. testing personnel) working in 
parallel results in a rate of defects removal proportional to the amount of resources allocated.  

The extraction of a Rayleigh model of defect occurrences from the QA logs during the develop-
ment process helps allocating the proper amount of resources by predicting number of the residual 
defects at the end of the development process according to the current resource allocation scheme 
and development deadline.  

Frequently several modules have to be developed differing in complexity and size, in implementa-
tion technologies (and/or even in their required reliability levels). Each module may have its specific 
defect density value and the overall quality of the system is dominated by the module of the worst 
quality.  

If the estimation of residual defects happens for each module individually, defect prone ones can 
be identified. Adaptive quality management may re-allocate QA resources from non quality-critical 
modules to defect prone ones in order to reach a homogenously good overall quality (same residual 
defect density) in the system.  

The process of resource allocation can be further refined by introducing defect and resource types 
into the clustering of the records in the historical defect databases and the subsequent calculations. 
For instance, defects can be classified according to their severity and source into groups like “minor 
specification deviation” (e.g. usability defects), “minor programming defect” (e.g. bad input check-
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The situation is essentially better, if the number of defects in
the original software to be improved is already known from the
logs of the initial QA process, thus only the number of defects
in the target product has to be estimated. In our case, such data
were unavailable due to historic reasons (the roots of the original
software date back as long as a decade, parts of it were devel-
oped already prior to the introduction of the ISO9000 QA sys-
tem at the enterprise). Moreover the lack of testing related data
logs is typical in reusing third party (including public domain)
software, as well.

5 Optimized resource allocation
Defect manifestation rates are roughly proportional to QA ef-

forts, like project staffing. The underlying approximation is that
the allocation of more resources (e.g. testing personnel) work-
ing in parallel results in a rate of defects removal proportional to
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the amount of resources allocated.
The extraction of a Rayleigh model of defect occurrences

from the QA logs during the development process helps allocat-
ing the proper amount of resources by predicting number of the
residual defects at the end of the development process accord-
ing to the current resource allocation scheme and development
deadline.

Frequently several modules have to be developed differing
in complexity and size, in implementation technologies (and/or
even in their required reliability levels). Each module may have
its specific defect density value and the overall quality of the
system is dominated by the module of the worst quality.

If the estimation of residual defects happens for each module
individually, defect prone ones can be identified. Adaptive qual-
ity management may re-allocate QA resources from non quality-
critical modules to defect prone ones in order to reach a homoge-
nously good overall quality (same residual defect density) in the
system.

The process of resource allocation can be further refined by
introducing defect and resource types into the clustering of the
records in the historical defect databases and the subsequent cal-
culations. For instance, defects can be classified according to
their severity and source into groups like “minor specification
deviation” (e.g. usability defects), “minor programming defect”
(e.g. bad input checking) or “major programming/design de-
fect” (e.g. improper result of a computation). Similarly, the
removal of each defect type may require the involvement of a
different kind of staff (e.g. analyst, designer, and programmer)
and time.

We have the feeling, that this is the maximal granularity of
cost factor allocation which delivers meaningful results in opti-
mization, given the uncertainty of the different estimators.

5.1 Optimization of resource allocation
The availability of a mathematic model describing the QA

process facilitates an optimization of the QA process from sev-
eral aspects. By summing up the ideas described above, this
mathematical model is composed of the following factors:

• Variables representing the expected number of defects for
each individual module (for a given time instance this set con-
sists of three values: the empirical constant for already de-
tected defects and the two estimators of defects detected until
the end of the project and residual ones) majorized jointly by
the expected total number of defects in the module;

• Variables describing the amount of resources for QA activi-
ties to be allocated to the individual modules bounded by the
amount of resources available (eventually these entities are
decomposed into resource type);

• Cost factors contain the required amount of resources (e.g.
analyst, designer, programmer) to remove defects (cost cal-
culations are based on statistical investigation).

A variety of alternate optimization goals can be formulated by
selecting an appropriate objective function.

One category aims at quality maximization constrained by the
resources available and the cost budget, for instance by (i) mini-
mizing the total number of residual defects in the system (repre-
senting a measure for the overall quality in a system composed
of tightly integrated modules); or (ii) minimizing the maximal
residual defect density over the modules (balanced quality of
alternatively used modules). The other category aims at cost
minimization constrained by the resources available and the re-
quired minimal quality level in the terms of quality indicators
formulated in a similar fashion as the objective function above.

5.2 Results of the method
In our pilot experiment the maximization of the number of

defects removed from the entire system was selected as objec-
tive function in order to balance the different defect densities
and therefore maximize the overall quality of the entire system.
The amount of resources per type and the QA cost budget were
selected as constraints. This formulation led to a simple linear
optimization problem producing the following results:

1 Adequate resource allocation was made by incorporating the
costs of defect removal (testing + correction) into the factors
of the objective function.

2 Optimization balanced the different defect densities of the
modules; therefore the defect density profile is roughly a reg-
ular polygon (Fig. 6) indicating a homogenous defect density
(quality) in the system.

3 Optimization revealed an a priori improper resource alloca-
tion in the case of the commercial system: some modules
were over-tested. The optimal resource allocation in the what-
if experiment would use by 20.5 % fewer resources, as indi-
cated in the logs. This fact can be interpreted as 20.5 % of
costs actually spent could have been saved or reallocated to
defect removal in the most critical modules in order to de-
crease later maintenance costs.

Naturally, more sophisticated cost functions can be realized,
for example, which functions deal with defect severity, priority
etc., but our presented solution does not deal with these param-
eters.

6 Architecture of the resource allocation optimization
method
The architecture of the resource allocation optimization

method is presented in Fig. 7:
Upon starting the project:

1 COCOMO and COQUALMO models are built based upon
the product, requirements and the knowledge on the workflow
delivering among others an estimate of the number of total
and residual defects in each module.

Per. Pol. Elec. Eng.76 Ákos Szőke / Orsolya Dobán / András Pataricza



  

Figure 6 Defect Density Profiles: before (left) and after (right) optimization 

Naturally, more sophisticated cost functions can be realized, for example, which functions deal 
with defect severity, priority etc., but our presented solution is not deal with these parameters. 

VII. Architecture of the Resource Allocation Optimization Method 

The architecture of the resource allocation optimization method is presented in Figure 7: 

 
Figure 7 Architecture of the Resource Allocation Optimization Method 

 
Upon starting the project: 
 

1. COCOMO and COQUALMO models are built based upon the product, requirements and 
the knowledge on the workflow delivering among others an estimate of the number of total 
and residual defects in each module. 

2. Initial quality budget and initial resource allocation is performed according to an initial 
Rayleigh model derived from the result of the COQUALMO-based estimation. The 
parameters of this Rayleigh distribution are estimated in such a way, that the number N of 
defects is taken as the COQUALMO estimator, while the shape parameter β describing the 
dynamics of defect manifestations is reused from former projects carried out under similar 

Fig. 6. Defect density profiles: before (left) and after (right) optimization

  

Figure 6 Defect Density Profiles: before (left) and after (right) optimization 

Naturally, more sophisticated cost functions can be realized, for example, which functions deal 
with defect severity, priority etc., but our presented solution is not deal with these parameters. 

VII. Architecture of the Resource Allocation Optimization Method 

The architecture of the resource allocation optimization method is presented in Figure 7: 

 
Figure 7 Architecture of the Resource Allocation Optimization Method 

 
Upon starting the project: 
 

1. COCOMO and COQUALMO models are built based upon the product, requirements and 
the knowledge on the workflow delivering among others an estimate of the number of total 
and residual defects in each module. 

2. Initial quality budget and initial resource allocation is performed according to an initial 
Rayleigh model derived from the result of the COQUALMO-based estimation. The 
parameters of this Rayleigh distribution are estimated in such a way, that the number N of 
defects is taken as the COQUALMO estimator, while the shape parameter β describing the 
dynamics of defect manifestations is reused from former projects carried out under similar 

Fig. 7. Architecture of the Resource Allocation Optimization Method

2 Initial quality budget and initial resource allocation is per-
formed according to an initial Rayleigh model derived from
the result of the COQUALMO-based estimation. The param-
eters of this Rayleigh distribution are estimated in such a way,
that the number Nof defects is taken as the COQUALMO es-
timator, while the shape parameter β describing the dynam-
ics of defect manifestations is reused from former projects
carried out under similar circumstances. The main underly-
ing assumption is that projects characterized by similar CO-
COMO factors share a similar dynamics at an organization.

3 The project management monitors and analyzes the Rayleigh
model periodically updated from the defect tracking database.
This model can provide early warnings on evolving quality
problems.

4 The project management prioritizes and optimizes the quality
budget with the help of optimized resource reallocation thus
takes corrective actions (project control).

This algorithm iterates the steps from 3 to 4 during the project
at stated intervals.

7 Conclusion and future work
Customers are most likely to buy the first product on the mar-

ket that offers all the features they want, at a reasonably low
price and promising a high end-product and maintenance qual-
ity. Apart from these expectations, software development orga-
nizations have to improve their project and in-process activities.
The statistical quality model presented here allows the formula-
tion of a mathematical model reflecting the quality of the entire
software in a given phase of development.

Gradual refinement of the model by using in progress empir-
ical data may compensate the high uncertainty in initial predic-
tions of defect numbers and correspondingly resource alloca-
tion.

This paradigm combined with exact mathematical optimiza-
tion techniques allows optimal resource (re)allocation to get the
highest quality level keeping the given cost and schedule related
constraints.
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