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Abstract
Distributed Hash Tables (DHT’s) are sophisticated Peer-to-

Peer (P2P) overlay networks. Such overlays have the ability
to retrieve stored data in a limited time, usually in a logarith-
mic number of steps. However in contrast to the well-known
Gnutella and FastTrack networks, these can only locate data
quickly, if the key associated with the data requested is accu-
rately specified. In this article we analyze the reliability of the
Kademlia network, and describe our model, which can be used
to determine its system-wide configuration parameters. We also
present a novel algorithm that implements broadcast messages
in Kademlia. The developed algorithm ensures reliable delivery
of broadcast messages in an error prone environment. Broad-
cast messaging is an elementary service in an overlay network.
Using broadcast messages, queries of any key type or part of
key, can be realized.
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1 Introduction
Kademlia is a peer-to-peer distributed hash table with many

desirable features [1]. It minimizes the number of system-wide
configuration parameters, as well as the network maintenance
overhead traffic. Routing information used by its nodes is spread
as a side-effect of delivering payload traffic, i.e. data store and
lookup requests. Due to its design, it is also partially resilient to
Sybil attacks [11].

Kademlia does not require its nodes to pass their stored key-
value pairs over to neighboring nodes when leaving the network.
Therefore it gives a probabilistic guarantee for being able to re-
trieve data stored in it. To enhance data retention time, replica-
tion is used, which means that data is not stored only at the node
determined by its key, but at a range of nodes closest to the key.
The level of replication is a small integer value designated by k.
The value of k is the only system-wide configuration parameter
required. It is estimated by the designers of Kademlia using av-
erage peer availability and session duration data collected from
the Gnutella network [1].

In this article we show that replication can also be used to
deal with network errors. We describe a method named KPM
(Kademlia Performance Model), which can be used to calcu-
late the value of k for any given reliability demand and a given
number of average network errors. We present a simulation to
validate our results and give an insight about how replication
makes it possible in Kademlia to enhance data availability and
retention time.

In a further addition to the possibilities of Kademlia, we de-
signed broadcast algorithms on top of its binary tree topology.
Our broadcast algorithms give probabilistic guarantees to de-
liver the broadcast message to all nodes in the network. We
compare our algorithms in terms of speed, efficiency and net-
work load induced.

The rest of the paper is organized as follows. First we present
an overview of the Kademlia network. Then in the next section
we explain our Kademlia Performance Model. The broadcast
algorithms, which can be implemented on top of the binary tree
topology, are described afterwards.
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2 Overview of the Kademlia Overlay Network
Peer-to-peer networks are decentralized, virtual overlay net-

works, which enable applications to communicate among each
other using a network topology that is more feasible to them
than the one of the underlying physical network.

Applications running the P2P software are usually called
peers or nodes. P2P networks can be either structured or un-
structured. In unstructured networks, nodes can easily be dis-
pensed; the overlay handles parting and failing of nodes flex-
ibly. Queries for data items are handled by all nodes in such
networks, by means of mechanisms built into the substrate [2].
Gnutella, Freenet and FastTrack are typical examples for un-
structured overlays [12].

Structured substrates are Distributed Hash Tables (DHT’s).
The connection between nodes, i.e. the topology of the network
is precisely defined. These overlays store key-value pairs, and
allow quick lookup of any value associated with a given key.
Each key-value pair is stored at a node, given by an appropri-
ate algorithm. Each node is assigned a node identifier (NodeID)
from a large range of integer numbers. Similarly, pieces of in-
formation are also assigned a key, which can be a hashed value
of a file name. This key can be called a file identifier (FileID),
which has the same number of bits as the NodeID. Every node
stores those key-value pairs having their hashed keys closest to
its NodeID, i.e. their FileID’s closest to the NodeID. Given a
precise key, the exact location of a file can be determined.

Structured networks differ from each other in their methods
of overlay management, routing algorithm and distance func-
tion applied for measuring the relation of participants. Nodes
of a Kademlia DHT can be represented with a binary tree [3].
In their routing tables they maintain a list of possible connec-
tions (IP address and port number) for every subtree, called k-
buckets. The size of these lists is a small integer k, which is the
only system-wide configuration parameter. Large networks can
have subtrees with a size much larger than k. A single node has
relatively smaller knowledge for large subtrees, and it knows its
close neighbors perfectly.

Nodes in the Kademlia overlay have comparatively greater
knowledge about their closer neighbors. Routing is imple-
mented as follows. To find a node with a specific NodeID,
one successively queries nodes closer and closer to the desti-
nation, by each query addressing a smaller subtree towards it.
Consider Fig. 1 for an example. If the black node with address
00110 wishes to send a message to node 11100, it has to send a
query to any node with address 1****, which has more precise
knowledge about nodes with addresses 11***. The node queried
replies with a k-bucket, containing IP addresses of nodes which
have their NodeIDs closer to the destination. Then the sender
chooses node 11000, which is also queried and so on. The des-
tination of the message is looked up in O(log n) steps.

The distance (which is measured on the topology, and is not
to be confused with the geographical locations of nodes) be-

tween two identifiers is calculated with the exclusive-or (XOR)
function. The magnitude of the distance is the height of the
smallest subtree, which contains both nodes. If two nodes are
A and B, the distance between them is denoted by d(A, B)that
is calculated using the XOR metric, i.e. with the formula
d(A, B) = AXORB.

3 Properties of Routing in Kademlia
The routing of Kademlia is more flexible than the methods

used in other DHT systems. The nodes of most types of DHT
networks communicate only with their neighbors, i.e. when a
message is sent to some distant node; it is usually forwarded
from one node to another until it arrives at its final destina-
tion. However this is not the case for the Kademlia network. In
Kademlia, the routing procedure presented above works rather
like an IP address lookup procedure [1]. If a node is willing to
communicate with another one, it will ask other nodes succes-
sively closer to the destination for the IP address and port num-
ber of the node which is the destination of its message. Then the
two nodes communicate directly by using UDP packets. This
makes overlay management in Kademlia totally different from
methods used in other networks.

Kademlia nodes leaving the overlay do not pass their key-
value pairs over to other neighbors. If a node quits the network,
data it stored would also disappear, unless it is stored at multiple
locations.

The method of routing, namely nodes looking up IP addresses
of each other and communicating directly, simplifies manage-
ment of data replication. It can be implemented simply by the
publisher node requesting not only the closest node to the key,
but a range of nodes to store the key-value pair. The size of this
range is also k, equals to the size of k-buckets. The choice of
k therefore affects also the stability of the network, as well as
the availability of the key-value pairs stored. Given the fact that
in a DHT the availability of a specific node directly implies the
availability of a key, it is feasible that the level of replication
is the same as the degree of stability, namely k, the size of the
k-buckets [6].

The cost of increasing replication to achieve higher reliabil-
ity of the overlay increases the network traffic. In the Kademlia
overlay, nodes are responsible to store their data to be shared at
different destinations. The cost of a single store message is the
cost of the message itself plus the cost of the required lookups
to find the destination node. When the level of replication in-
creased, the per-store cost of messages increases slower than
linearly (i.e. it is less than O(x)), as the k-buckets resulting
from lookups required for different destinations can have items
in common. This is caused by the iterative lookup procedure
Kademlia uses [1] – the route on which a node lookup is carried
out may share subtrees with another lookup.

Lookups in Kademlia have the advantage of keeping the rout-
ing tables of nodes fresh [1]. In a low traffic network, the routing
tables also benefit from using replication.
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Fig. 1. Locating a node in the Kademlia overlay.

3.1 A Probabilistic Model of Network Errors
Replication in Kademlia is more important than in other over-

lay networks. Some nodes might be unable to connect each other
due to packet losses, packet filtering, network address transla-
tion or other reasons [3], [4]. It is possible that the IP address of
a destination node is looked up, but after that the sender is not
able to communicate with it. Replication can solve this prob-
lem, as if data is not only stored at one node rather at k different
nodes, the probability for the sets of nodes for data store and the
sets of nodes of data lookup requests to have a common one in
their intersection is much higher. Replication also increases data
availability if the routing tables are partially incorrect, which is
the case in high churn networks [5], where nodes join and quit
the network frequently. This is caused by the side-effect of net-
work traffic keeping the routing table elements fresh in Kadem-
lia [1].

To model how replication solves problems of availability and
network packet losses, we take the following facts into consid-
eration. Nodes joining the Kademlia network choose a specific
application level identifier for themselves randomly. Also the
output of hash functions is a uniformly distributed, seemingly
random number. This means that the data to be stored seems to
end up at randomly selected nodes.

As the properties of hash functions, and the random selection
of NodeID’s result in STORE requests ending up at random lo-
cations, the exact association of error ratios to nodes – i.e. which
specific pairs of nodes are able to communicate and which pairs
not – is indifferent. Only the global distribution of the errors is
important, since some nodes can receive most of the messages,
some not. For Kademlia, the exact distribution of network errors
only affects numeric results, but not the fact that replication can
make stored data available with higher possibility. Various dis-
tributions yield different availability ratios for each node in the
system. If part of the nodes are fully accessible (for example,
they have public IP addresses [3]), one of them will be among
the ones designated to store the key currently in question with
high probability, provided that the level of replication is suffi-
ciently high.

If the Kademlia overlay implements replication, a node has
more than one, exactly k opportunities to store or retrieve data.
Practically speaking, the probability of correct lookups denoted
with P increases. Calculating the probability of all lookups fail-

ing (P ′ is the probability of a single lookup being successful)
to estimate the probability of at least one correct lookup, we get
Eq. (1).

Fig. 2. Storing keys in a simulated Kademlia overlay.

P = 1 −
(
1 − P ′

)k (1)

This gives us the probability of successful lookup despite net-
work errors. In this formula, k is the level of replication, the
number of nodes storing a given key-value pair.

By solving Eq.(1) for k, the necessary replication factor can
be estimated, if the ratio and distribution of network errors (P ′)
and required probability of correctness (P) are given. The repli-
cation factor k, for which we gave above a method to estimate,
is essentially the same as the size of the k-buckets in Kadem-
lia. The model we presented here named KPM (Kademlia Per-
formance Model) can be used to determine this configuration
parameter k for such an overlay, as it is a trade-off between de-
pendability and induced network traffic.

3.2 Verification of the Kademlia Performance Model by
Simulation
To verify the model presented above, we developed an appli-

cation specific simulator, KadSim. The program simulates the
following scenario: in a Kademlia overlay, every node decides
to send a STORE request to a selected node (to k nodes clos-
est to the selected one, when using replication). By visualizing
the number of packets received by nodes closest to the key (of
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which can be more than one, if one of the senders could not
reach the exact destination of the message), we get an overview
of network errors. In the overlay simulated by KadSim, every
node looks up the node closest to this key, not counting nodes
that are unreachable.

Fig. 3. Correctness of Kademlia lookups.

At the end of the simulation, KadSim sorts nodes by their dis-
tance to the hashed key, and plots the number of messages re-
ceived by each. Ideally, if all network connections work, the plot
shows a step function: the k closest nodes receive n messages,
and others receive zero, where n is the number of all nodes in
the overlay. As an example to demonstrate what happens when
network errors hinder the data store and lookup procedures, Fig.
2 shows the results for a simulation with 20% of the links fail-
ing, with replication k = 16. On Fig. 2, if one of the nodes is
unable to send the message to the 12th and 15th closest nodes,
it will send it to the 16th and 17th . Those are out of the 0..15
range of the k = 16 replication, but some nodes cannot reach all
neighbors in the 0..15 range, and therefore they decide to send
their store requests to others.

Fig. 4. The broadcast algorithm implemented for the Kademlia overlay.

Simulation results show that a relatively low, k = 8 repli-
cation already ensures that there will be a node, which is able
to receive all messages (Fig. 3). This might look too much for
an overlay counting a hundred of participants. Nevertheless, in-
creasing the number of nodes does not involve the need to in-
crease the level of replication, since the level required is only
determined by the ratio of failing links, and not the number of

participant nodes. With high probability there will be a node
that is reachable by every other participant.

4 Broadcast in P2P Overlays
Implementing broadcast (one to all) messages in P2P net-

works is rare, due to the large number of nodes. Still, there
are applications, which require this type of communication. It is
important to note that the term ‘broadcast’ can have two differ-
ent meanings in the context of P2P networks. Broadcast mes-
sages are one to all messages, the type of communication when
a single node sends some piece of data (maybe with the help
of other nodes) to every other entity in the network. When re-
ferring to multimedia content delivery, ‘broadcasting’ content
means delivering media streams to some, usually most but not
all, nodes in the network. The latter is called broadcast for his-
torical reasons (as we use the same term for radio and television
transmissions [9]), but is essentially a multicast-type communi-
cation. In this article, we use the term ‘broadcast’ in its ‘one to
all’ meaning.

The inherent topology of structured networks is a useful sub-
strate to implement an efficient broadcast service. As messages
can be duplicated at any node, the broadcast will take place in
logarithmically many steps, and logarithmic time. A further ad-
vantage of the Kademlia overlay is that there is no need to initi-
ate new connections during a broadcast. The list of ecently seen
nodes can be used. The topology of the overlay is essentially an
implicit multicast tree.

In the following sections three different algorithms to imple-
ment broadcast service in Kademlia will be presented. In our
tests and simulations we treat packet losses as terminal, i.e.
nodes do not try to detect and resend lost messages. This en-
ables us to study how the algorithms perform in a short time-
frame. Detecting a packet loss usually takes many seconds;
that is enough for a complete broadcast sequence to take place,
as the number of nodes receiving the message grows exponen-
tially in time.

First algorithm: broadcast using flooding. All nodes send
received messages to any other nodes they know. As a single
message can be received in duplicates, every broadcast request
is tagged with a unique identifier. Already known messages are
dropped by nodes. This solution is simple, but it generates a lot
of network traffic, especially when k-buckets are large. It has no
practical use, but is rather a theoretical reference; by simulating
this method on an overlay, the time the broadcast requires can
be seen.

Second algorithm: broadcast using the topology. Every sub-
tree in the Kademlia overlay is assigned a node, which is re-
sponsible for broadcasting the message in its own tree (Fig. 4).
In Fig. 4 the node with the identifier (00110, black dot) initiates
the broadcast by sending it to one freely chosen node from each
of its k-buckets. The nodes in the example are 11000, 01010,
00100 and 00000. The nodes receiving the message are re-
sponsible for sending them on in their own subtrees, which are
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1****, 01***, 000** and 0010*. This is shown using dashed
lines. Broadcast using this method will be finished in logarith-
mic time.

Fig. 5. Errors of the implicit tree broadcast algorithm.

Nodes forwarding messages must know which subtree they
are responsible for. Each message is therefore tagged with a
small integer, which denotes the height of the subtree. This
shows how many bits the address of the subtree should share
a common prefix with the NodeID of the node the message is
sent to. As the Kademlia protocol requires that at least one node
is always known for every subtree [1]; there is no need to main-
tain an auxiliary routing table for the broadcast. Messages are
forwarded to the subtree and all the smaller trees:

broadcast: function of(text, height)

for i=height to number of bits

if bucket i is not empty, then

select any random node from bucket i

send the message to the node: text, i+1

endif

endfor

This method is cost-efficient as there are no duplicate mes-
sages. Problems arise when there are packet losses on the net-
work, as not only single nodes, but complete subtrees will miss
the broadcast. Messages are practically directed to subtrees in
this method: the original sender sends the message to the neigh-
boring half tree, and is itself responsible for his own half tree.
Then it sends to the other quarter of the overlay, and is respon-
sible for its own quarter and so on. Every subtree has a single
responsible node.

Fig. 5 was generated by our Kadsim application discussed
in the next chapter, and it shows a simulation of this method.
Nodes shown as white dots received the message, while black
ones did not. As one can see, there are complete subtrees drawn
in black. It is possible for such a message to be lost, which
was sent to a high subtree. In a worst case scenario, the num-
ber of nodes not getting the message can be more than 50%,
not even depending on the packet loss ratio. Although the net-
work is decentralized, this algorithm is not, in its essence; as the
importance of messages is vastly different, depending on which
subtree they are addressed to.

Fig. 6. Number of messages generated by each broadcast algorithms

Third algorithm: broadcast using the topology with replica-
tion. Addressing the problem mentioned above, the two algo-
rithms can be combined. This algorithm is similar to the second,
but from every subtree, not only a single, rather multiple nodes
are selected to be responsible for forwarding the message. This
way the probability of skipping a subtree is falling rapidly. Du-
plicate messages are possible in this case, so a unique identifier
is required for all broadcasts initiated. Replication level can vary
from 2 to k, the size of k-buckets.

4.1 Comparison of Broadcast Algorithms
To evaluate the algorithms presented above, we used our pre-

viously mentioned application specific simulator KadSim. The
simulator models a moderately sized DHT network (in our tests
with up to 1000 nodes). A Kademlia routing table is generated
for the nodes at the simulator setup. Latencies are assigned to
each node pair which communicate with each other. During the
simulation, broadcast messages are randomly initiated by nodes,
and are disseminated with the algorithms discussed above.

The simulator records the following data:

• number of all messages sent,

• number of messages per node,

• the number and ratio of nodes receiving the broadcast,

• time required for sending the message to as many nodes as
possible.

In terms of traffic costs, flooding gives the worst results. The
number of messages grows rapidly with increasing the node
count or sizes of k-buckets. The second algorithm using the im-
plicit multicast tree evidently results in one message for each
node. For the third method the number of messages grows
rapidly for large k-buckets, but only slowly for increasing the
number of nodes. For k = 5, there were 7 messages/node for an
overlay of 100 nodes, and only 9 for 1000 nodes (see Fig. 6.)

To evaluate the reliability of the algorithms, we simulated an
overlay of 200 nodes. Packet loss ratio varied from 0% to 20%,
replication from no replication to fivefold. Flooding almost al-
ways yields perfect results, due to the enormous number of mes-
sages. The reliability of the enhanced algorithm is of course the
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same as the second for k = 1. In turn, using k = 2, this algo-
rithm produces 90% reliability even for one fifth of the packets
lost; k = 3 gives 97%.

Simulating the first (flooding) algorithm gives us the shortest
time, in which the broadcast can be achieved, given an overlay
and its routing tables. Many P2P systems select nearby nodes
to speed up lookup and other operations [2]. This can also be
used in Kademlia, and can also reduce the time required for the
broadcasts. The factor of the achievable speed-up depends on
the exact distribution of round trip times (RTT’s) in the network.
Increasing replication can also be used to speed up the broadcast
messages, as network packets can use links with smaller latency.

4.2 Applicability of Broadcast Messaging
DHT networks have a well-known drawback, namely that

they do not support partial keyword searches. This is due to
the properties of hash functions – a very small change, even one
missing character from the filename causes the hash value to be
totally different.

Broadcast messaging can be used in DHT networks to imple-
ment partial keyword searches, for example, part of a filename.
In this case, the lookup is not based on the hash function, but the
value of the key itself. A lookup for a file in this case works sim-
ilarly to that used in the Gnutella network. By using the inherit
topology of the network, the number of messages used for the
broadcast can be limited and thus can be much more effective.

The P2P network named BubbleStorm uses broadcast mes-
sages to lookup data stored in the overlay created by its nodes
[8]. BubbleStorm replicates pieces of data and also search
queries to many randomly chosen nodes, in the hope that the set
of nodes storing data and the set of nodes receiving the query
will intersect. The advantage of the Kademlia network with our
broadcast algorithm compared to BubbleStorm is that the latter
generates high network traffic for file store requests as well, and
therefore it is not as efficient as Kademlia. Furthermore, Bub-
bleStorm is not based on a DHT network, and it must use broad-
cast messages to implement lookups of precisely given keys,
too.

The use of broadcast messaging in our P2P based network in-
trusion detection method named Komondor is essential [10]. In
Komondor, network hosts to be protected create a DHT over-
lay which is used to store data of detected intrusion attempts.
The overlay enables us to collect and correlate intrusion detec-
tion data globally. If a possible intrusion is detected, an alert is
sent to all nodes in the system. Komondor is also the reference
implementation of the broadcast algorithm presented in this ar-
ticle, as the alerts discussed are sent via the broadcast algorithm
described above.

5 Conclusion
The reliability of the two elementary services of the presented

network-based intrusion detection system, namely sending at-
tack reports and broadcasting alerts can both be increased us-

ing replication. The only system-wide configuration parame-
ter affecting the substrate peer-to-peer network, the level of this
replication, can be determined in advance, with the methods pre-
sented.

The described method can be applied as a substrate over-
lay for specific applications. The advantages of the developed
method has been proved, however its implementation in a dis-
tributed network-based intrusion detection system needs further
investigations of the stability of the system in case of churn net-
work.
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