
Ŕ periodica polytechnica

Electrical Engineering
54/3-4 (2010) 111–121

doi: 10.3311/pp.ee.2010-3-4.05
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2010

RESEARCH ARTICLE

A comparison of programmers’
opinions in change impact analysis
Gabriella Tóth

Received 2011-09-13

Abstract
Change impact analysis is generally regarded as a very dif-

ficult program comprehension problem. One of the reasons for
this is that there is no universal definition for dependency be-
tween software artifacts, only algorithms that approximate the
dependencies.

In the past two decades, different kinds of algorithms have
been developed by researchers. But which algorithm is the most
suitable in a specific situation, which one finds the relevant de-
pendencies in the best way? What kinds of dependencies are
important for the programmers? What kinds of algorithms do
they work with? Finding the most relevant dependencies is diffi-
cult, and it is essentially a creative mental task.

A possible way to answer the above questions is to involve
programmers in a survey, and listen to their subjective opin-
ions based on expertise and experience in program comprehen-
sion. In this paper, we present the results of our survey on this
theme. We wanted to know what the difference was between the
results of some well-known algorithms and programmers’ opin-
ions and, in addition, among programmers’ opinions as well.
Hence we conducted a case study.

Keywords
Change impact analysis · software dependencies · JRipples ·

BEFRIEND

Gabriella Tóth

Department of Software Engineering, SzTE, H-6720 Szeged, Árpád tér 2, Hun-
gary

1 Introduction
During its lifecycle, a software program can have various re-

leases in which new features are added, bugs are fixed or new
requirements are met. In order to implement such changes in
the software, not only do the developers add new modules to the
program, but they also alter the existing code itself to make it
fit the new demands or requirements. Consequently, as the pro-
gram evolves, more developers may be involved and the poten-
tial impact of change may not be fully understood by a developer
making later modifications on the software. This is why impact
analysis techniques are often used to determine the potential ef-
fect of a proposed software change on a subset or the whole of a
given program [38].

Over time, different impact analysis algorithms have been de-
veloped. One of the most general groups is called computation-
based algorithms, where the computational relationships be-
tween program elements are tracked, in particular via program
slicing, call graphs and other similar methods. Another ap-
proach is to analyze different software artefacts in order to find
possible semantic links e.g. a historically consistent co-change
of program elements [17].

As observed by Boehm [34], modifying software generally
involves three phases, namely understanding the existing soft-
ware, modifying the software, and revalidating the modified
software. In order to successfully complete a modification task,
programmers must locate and understand the part of the soft-
ware system that will be modified.

When the code to be understood is completely new to the
programmer, Pennington [26] found that the programmers first
build a control flow abstraction of the program called the pro-
gram model. If the program model representation exists, he
showed that a situation model is developed. This representation
uses the program model to create a data-flow/functional abstrac-
tion. Then the integrated model assumes that programmers can
start building a conceptual model at any level that appears suit-
able. Programmers can switch between any of the three model
components during the comprehension process.

In this survey, we examined the thinking and approaches ap-
plied by different programmers during several impact analysis

A comparison of programmers’ opinions in change impact analysis 1112010 54 3-4

http://www.pp.bme.hu/ee


tasks to generalize the programmers’ decisions, and learn what
kinds of dependencies they were able to identify. We used two
different impact analysis tools, which present the potential de-
pendencies in a different way. The impact sets found by using
two different tools were compared and we examined the differ-
ences between programmers’ impact sets based on their qualifi-
cations and experience as well.

The rest of the paper is organized as follows. In Section 2, we
review related work on the comparison of programmers’ views
on program understanding. In Section 3, we continue a moti-
vation example and draw up the main research questions. Then
we overview the methods used in the study in Section 4. In Sec-
tion 5, we describe the design and methodology of our study.
Section 6 describes the results of the study, and Section 7 lists
all the possible problems that might affect its validity. In the last
section we draw some pertinent conclusions about the result of
our survey.

2 Related work
Many empirical studies of programmers in software engineer-

ing have been reported in the literature. Basili et al. [27] laid
the foundational work on this topic. They devised a framework
for analyzing most of the experimental work performed in soft-
ware engineering in the 1980s. They recommended that their
framework be used to facilitate the definition, planning, opera-
tion, and interpretation of future studies as well. Moreover, the
authors identified several key problem areas of experimentation
in software engineering and discussed their possible solutions.

Ko et al. [30] presented a new model for program understand-
ing as a process of searching, relating, and collecting informa-
tion. Their goal was to investigate the programmers’ strate-
gies for understanding and utilizing relevant information and
discover ways in which tools and environments (e.g. Eclipse)
might be related to these strategies. There were two types of de-
pendency navigations that they outlined; those based on direct
and indirect static dependencies. In contrast to their approach,
we looked for more kinds of static dependencies in the program-
mers’ impact sets (direct and indirect dependencies as well) such
as call, co-changing, slice and SEA relations.

Robillard et al. [31] not only looked at what developers do
in general during a program modification task, but they also in-
vestigated what successful programmers do in contrast to unsuc-
cessful ones. They concluded that in the context of a program
investigation task, the systematic examination of a piece of code
is generally more effective than the opportunistic approach. It
tells us that algorithmic thinking is important in the understand-
ing of a program, especially in the case of a modification task.
We will try to identify the range of dependency methods avail-
able in programmers’ impact sets.

Mosemann and Wiedenbeck [29] presented three methods for
collecting information about the program: sequential, control
flow, and data flow. Novice programmers were asked to use
only one of these methods to understand a program. They found

that the sequential and control flow methods of navigation were
significantly different from the mean of the data flow naviga-
tion. Novice programmers had great difficulty in reading the
program using just data flow navigation. However, there was no
significant difference between the sequential and control flow
methods. In our survey, we compared the impact sets computed
by programmers and algorithms. While the programmers could
access the code before and after the examined code part – so the
sequential flow was given – , in our experiment, slice informa-
tion consisted of control and data dependencies, while SEA and
call information only consisted of control dependencies. So in
this survey we examined this kind of methods and co-changing
as well.

The above-mentioned papers are about program comprehen-
sion by programmers. However, our aim was also to retrieve
different kinds of impact sets and compare them with the im-
pact set identified by programmers. We found some papers that
discussed a comparison of impact sets identified different.

Lindvall and Sandahl [12] sought to quantify how well ex-
perienced software developers predicted changes by conducting
RDIA (Requirement-Driven Impact Analysis), where RDIA in
their case was the general activity of predicting changes based
on the change request. They compared and evaluated the predic-
tions by examining the changes in the concrete implementation.
Their results indicated that the impacted set predicted by the
programmers without any help is generally correct but underes-
timated.

In one of our previous articles [32] we used the same data as
in this paper. Then we presented an empirical comparison of
four static impact analysis techniques (call information, static
slice, SEA relation and co-changing files retrieved from SVN
repositories) and dependencies which were determined by pro-
grammers. The paper reported an empirical study that focused
on how much the different kinds of dependency sets support pro-
gram comprehension. In that article we examined static impact
analysis algorithms, not the programmers’ opinions. Now we
turn our attention to the programmers.

3 Motivation
There are several kinds of dependencies that may be found

during a change impact analysis. Many algorithms exist which
can determine the possible dependencies. In a certain situation
it is important to know what kinds of dependencies are present.
While some algorithms may provide irrelevant dependencies,
some of them can be essential to propagate the given change.
To illustrate the differences between impact sets computed by
different algorithms, consider the example in Fig. 1.

When we compute the dependencies of these classes with dif-
ferent kinds of impact analysis algorithms, we may obtain quite
different results. If we determine the impact sets of the partic-
ular classes with a call graph [21], we find that class C depends
on class A and class B due to the method invocations. Using the
static forward slice approach [33], we find that class C depends

Per. Pol. Elec. Eng.112 Gabriella Tóth



class A{

int x;

public A(int i){

x=i;

}

public int getX(){

return x;

}

}

class B{

int y;

public B(int j){

y=j;

}

void setY(int i){

y=i;

}

}

class C{

A a;

B b;

public void set(){

b.setY(a.getX());

}

}

Fig. 1. Motivating example.

on class A and class B due to control dependency and class B
depends on class A because of data dependency. After by deter-
mining Static Execute After (SEA) relations [35], each class is
related to each class.

This example shows how the behaviour of the impact analysis
algorithms can vary. But what about the programmers? If the
programmers try to collect all the relevant dependencies for a
potential change requirement, what kinds of dependencies are
they interested in?

Our goal is to contrast the impact sets identified automatically
by algorithms with those identified manually by programmers.
With the help of this study, we can get a deeper insight into a
programmer’s way of thinking and see what kinds of dependen-
cies they find relevant or irrelevant in a given situation. We used
two tools (JRipples [37] and BEFRIEND [45]) that can help the
programmer to find the impact set of a given modification in
two different ways: JRipples gives the potential dependencies in
a step-by-step fashion through direct dependencies, while BE-
FRIEND shows the potential direct and indirect dependencies
without the dependency path. Here we formulate the following
research questions:

• Q1: In the case of determining dependencies in an incremen-
tal way by using JRipples, what proportion of dependencies
identified by programmers are identified by the different im-
pact analysis algorithms?

• Q2: In the case of determining dependencies from a set of
direct and indirect dependencies by using BEFRIEND, what
proportion of dependencies accepted by programmers were
identified by the different impact analysis algorithms?

• Q3: Is there any difference among programmers’ impact sets
based on their qualifications and experience?

4 Impact analysis methods
During the evolution of a software program, programmers add

new functionalities and release its new versions. If a program-
mer changes the source code, it may be difficult to determine the
impact of the changes, especially in large applications, hence
different tools (algorithms) are needed to handle this problem.

In the survey we applied different impact analysis algorithms.
In this section, we will overview the algorithms that were used.

The algorithms were implemented within the JRipples Java
tool and framework [37, 41], which is an integrated tool in
the Eclipse development environment supporting incremental
change and relevant program analysis for the programmer, and
it manages the organization of the steps that comprise the im-
pact analysis and the subsequent change propagation. JRipples
is based on the philosophy of ‘intelligent assistance’, which re-
quires cooperation between the programmer and the tool itself.
First, the tool analyzes the program, keeps track of any incon-
sistencies, and then automatically marks the classes/methods
which should be visited by the programmer. Its main advantage
is that it covers the algorithmic parts of the change propagation,
which are often difficult or error-prone for humans.

Since it is straightforward to incorporate other analyzers (al-
gorithms) into JRipples, it can serve as a framework for identify-
ing several kinds of static dependencies. JRipples itself supports
analysis on the granularity of classes and methods. In our exper-
imental study, we determine dependencies on the granularity of
methods (except historical co-change), but we raise the granu-
larity to the class level for our comparison.

We implemented the following algorithms within JRipples:

• Callgraph. We built a directed graph that represents call-
ing relationships between methods [21]. The graph was built
based on AST computed by Eclipse JDT.

• Static slice. We apply static forward program slicing [33]
(considering data and control dependencies) to determine the
impact of the method modifications. The static forward slices
were computed by the Indus Java static slicer API [23]. A
slice is performed for each statement.

• Static Execute After (SEA). According to the definition of
SEA dependencies, method B depends on method A if and
only if Bmay be executed after A in any possible execution of
the program [35,36]. The computation of SEA relations is an
efficient analysis algorithm, which is able to produce conser-
vative impact sets at the method level. The determination of
these relations is based on the ICCFG representation [35] of

A comparison of programmers’ opinions in change impact analysis 1132010 54 3-4



the program. We built the ICCFG graph based on AST com-
puted by Eclipse JDT. We implemented the SEA algorithm on
this graph and determined all the method pairs which are in a
SEA relationship.

• Co-changing files retrieved from SVN repositories. Some
dependencies are explicitly observed in the code; the software
engineer only ’knows’ which certain set of modules needs to
be changed [40] to make a certain type of change. In such
cases, to derive the set of source files impacted by a proposed
change request, we can use historical data stored in a version-
ing system, namely Subversion (SVN). Since this way just
the changed files can be retrieved, this analysis has only class
granularity. A correlation value can be set between 0 and 1.0,
if we would like to filter the co-changed classes found by the
algorithms. For example, if the correlation value is 0.4, it
means that class A depends on class B if in 40% of the com-
mits when the A file changed, the B file changed as well. We
got two result sets, one with a 0.4 correlation value and one
with a 1.0 correlation value. We chose the correlation value
of 40% because we did not want the union of the dependency
sets to be overly large. The number of the SEA relations and
the dependencies determined by programmers were the most
extended and finding co-changing classes with a 40% corre-
lation value gave the same amount of dependencies.

Altogether, we have 5 kinds of dependency sets (call, static
forward slice, SEA, co-change0.4, and co-change1.0 relations).
Two of these result sets have a method; two of them have a class;
and one of them originally has a statement granularity but, of
course, we raise all results to the class level to be able to compare
them. Since the callgraph determines the call dependencies only
one step at a time, we compute the transitive closure of the call
relations of each method.

5 Description of the experiment
The experiment involving the participant programmers was

performed in two stages (see Fig. 2). First, the participants were
asked to use JRipples in 7 different use cases to discover the
impact set of the hypothetical changes in some particular meth-
ods of our chosen sample project. Secondly, for each scenario
we stored their results together with the results produced by the
specific algorithms mentioned in the previous section in a com-
mon repository (BEFRIEND) that served as a control bench-
mark. Then we asked the participants to evaluate all of the stored
dependencies individually. By doing this, we were able to cal-
culate valuable statistics about the relationship between the dif-
ferent impact sets. The following subsections provide a detailed
description of the above-mentioned stages and the preparation.

5.1 Subject project
First, we set up a test environment. We needed a sample

project where the impact sets were defined according to the hy-
pothetical modifications. When choosing the test project, we

took the following into account:

• The code is written in Java, since JRipples analyzes only Java
code.

• It has an accessible SVN repository with an extended history.

• It is a relatively complex, but not overly large piece of code –
since the Indus slicer could not produce slices for large pro-
grams due to excessive memory consumption.

• It is compatible with JRE 1.4, since the Indus static slicer
works only on this version of Java code.

• The code should be unknown to the participants, but be read-
ily comprehensible.

Based on these requirements, we found an open source Java
project called ownSync.1 This is a small Java application that
can synchronize two folders (on different machines or on the
same machine) in both directions. The main characteristics of
the sample project can be seen in Table 1.

Tab. 1. The characteristics of the subject system (ownSync).

No. of No. of LOC Non-empty No. of

classes methods LOC commits

30 234 3666 3108 92

In this project, we defined some hypothetical change scenar-
ios. We gave 7 methods from the sample project to the pro-
grammers so that they could examine them and determine the
impact sets of their hypothetic changes. The methods were the
following:

• writeFolderState of FolderState class,

• internalMoveFile of SyncTrashbox class,

• loadConfig of OwnSyncConfiguration class,

• DeleteFolderAction of DeleteFolderAction class,

• forceDelete of FileUtils class,

• getSyncFolder of FolderConfiguration class,

• isAnyActionFailed of OwnSyncResult class.

This selection was based purely on investigating the method
types and their call information. Among them there are methods
such as a constructor, a recursive, a getter method, a simple and
a complex one, one which is called several times and one which
calls several methods.

1http://sourceforge.net/projects/ownsync/

Per. Pol. Elec. Eng.114 Gabriella Tóth



5.2 Participants
After selecting the sample project, 11 programmers with dif-

ferent qualifications and experience were invited to participate in
our experiment. The group of participants consisted of 4 com-
puter science students, 5 PhD students, and 2 software devel-
opers. Most of them have been working as software developer
for years: they have experience in Java and program analysis
as well. It is also interesting to note that the PhD students all
attended an Impact Analysis course. From here on, the partici-
pants will be referred to simply as programmers.

5.3 Overview of the experiment
First, the list of the 7 methods from our sample project was

given to each programmer and the task of the programmers was
to apply JRipples to discover all of the methods impacted by
any possible change made in these methods. As the starting
point of the change (concept location) was found by the pro-
grammers with the help of JRipples, the remaining methods of
the impact set were discovered in a step-by-step-look-at-the-
neighbours fashion in the dependency graph built by JRipples.

We logged the programmers’ actions to retrieve the depen-
dencies, which were determined by the participants using JRip-
ples. After everyone had finished their first stage task, the logs
were collected. The log files contained the method level depen-
dency for each scenario. Despite the fact that the programmers
searched for dependencies at the method level, we raised the re-
sults to the class level.

The algorithms mentioned in Section 4 were implemented
within JRipples and we collected all the class level impact sets
for the same 7 criteria produced by the different algorithms. We
got the union of all class level dependencies for each kind of
impact set for all 7 methods.

Before the second stage, the union of the results, either found
by a programmer or an algorithm, were provided together in
BEFRIEND, whose database used in our experiment is publicly
available online [45]. BEFRIEND (BEnchmark For Reverse en-
gInEering tools workiNg on source coDe) [42] is a general pur-
pose benchmark tool. The benchmark was successfully applied
for evaluating and comparing design pattern miner tools [44],
clone detector tools [42], rule violation checkers, and now im-
pact analysis algorithms. Although BEFRIEND is designed to
be very general, some major improvements were required in or-
der to make it capable of evaluating and comparing impact anal-
ysis results. After the BEFRIEND improvements, the union of
the impact sets computed by algorithms or programmers was
uploaded to the benchmark grouped by the scenarios.

In the second stage, the programmers evaluated the class level
dependencies grouped by the scenarios without knowing which
tool or programmer had found them. The programmers were
asked the following question: ‘Do you think there is a real de-
pendency between these classes?’ for each uploaded depen-
dency. There were 4 possible answers to this question, which
were

• Yes, I am sure that there is a dependency. (100%)

• I think there is a dependency. (66%)

• I think there is NO dependency. (33%)

• No, I am sure that there is no dependency. (0%)

We provided the opportunity of the evaluators not only to choose
yes/no answers, but to describe their level of confidence. Each
answer was associated with a percentage value forming a nu-
merical scale from the firm negative answer through the solid
negative and solid positive answer to the firm positive answer.

The second stage was complete when all the contributing pro-
grammers evaluated every single dependency. The outcome of
the second stage yielded some valuable statistics that could be
used as input for our key research questions.

6 Results and discussion
In this section, we supply concrete answers to our research

questions. We calculated statistics from the different impact sets
from Stage 1 and Stage 2. The two stages are very different:
tools with different user interfaces and different confidence lev-
els. In the first stage, the programmers determined the depen-
dencies in a step-by-step fashion where only one piece of source
code could be seen at the same time and only a dependency or
not a dependency could be stated. Unlike JRipples, in the sec-
ond stage BEFRIEND displays not only all the dependency can-
didates, but both sources of the classes of a certain dependency
as well. BEFRIEND returns 4 possible values (0%, 33%, 66%,
and 100%) in order to characterize the programmers’ level of
confidence.

6.1 Q1: In the case of determining dependencies in an
incremental way by using JRipples, what proportion of de-
pendencies identified by programmers are identified by the
different impact analysis algorithms?
In the first stage, the programmers used the JRipples tool

where they could identify dependencies incrementally via the
dependency graph. They had to decide whether potential depen-
dencies were really dependencies or not. The difficulty in using
JRipples is that the potential dependencies appear step-by-step
and the programmers can follow only one step graphically and
they must keep the former dependencies (the path of origin) in
their mind so as to think in a transitive way. The programmers
can easily lose track of some information or overlook something
important.

The algorithms and the programmers recognized 118 depen-
dencies in total. Table 2 lists how many dependencies were de-
termined by the given algorithms and the given programmers.

Table 3 shows the percentage of the dependencies identified
by the given programmer obtained from the impact sets of dif-
ferent algorithms. There are dependencies that are not identified
by any algorithms and their values can be seen in the last row
(others). The sum of the rates in a column is over 100% due to

A comparison of programmers’ opinions in change impact analysis 1152010 54 3-4



Fig. 2. An overview of the empirical study.

Tab. 2. The number of dependencies identified by the algorithms and the
programmers.

Agent No. of identified dependencies

call 15

slice 13

SEA 62

co-change1.0 4

co-change0.4 37

programmer1 19

programmer2 14

programmer3 39

programmer4 15

programmer5 26

programmer6 6

programmer7 17

programmer8 36

programmer9 27

programmer10 12

programmer11 13

the overlapping parts of the impact sets (e.g. the SEA impact set
contains the call impact set). Since the SEA and co-change0.4 al-
gorithms provide the most extended impact sets, this is why the
values in these rows are the highest. SEA relationships cover
the programmers’ impact sets very well. But it should not be
forgotten that slice and call relations are SEA relations as well.
If we look at the average values, on average, most of the de-
pendencies come from the SEA impact set, then co-change0.4,
callgraph, slice and finally co-change1.0.

Considering that in Table 2 programmer3 and programmer8

found the most dependencies, among their dependencies there
are a lot of other dependencies which were not determined by
any algorithms used. While the SEA algorithm found the most
dependencies, these two programmers found only about half of
these dependencies. By contrast, programmer6 found the fewest
dependencies but all of them were SEA dependencies as well.

We can also view the dependencies identified by the program-
mers from another aspect; namely what proportion of the de-
pendencies identified by the given algorithms were identified

by the given programmers. Perhaps the call relations are the
most easily recognizable. Table 4 shows that three program-
mers identified 40% of the call dependencies, which is the high-
est value on that row. However, programmer4 did not identify
any call relations, only SEA and co-change relations. It seems
that the method to be modified was not examined by him, only
those methods that are executed after it. Only 13% of SEA re-
lations were identified by him because he was only looking for
direct dependencies. Since programmer3 found the most depen-
dencies, he best covered the given kinds of relations. On aver-
age, almost the same percentage value of all the call, SEA and
cochange0.4 were identified by the programmers; they are about
20 - 22%. The slice dependencies were not so widely identified.
Based on the higher call and SEA values, the control dependen-
cies were considered, but the data dependencies were neglected.

6.2 Q2: In the case of determining dependencies from
a set of direct and indirect dependencies by using BE-
FRIEND, what proportion of dependencies accepted by
programmers were identified by the different impact analy-
sis algorithms?
In the second stage the programmers had to determine depen-

dencies again, but this time using the BEFRIEND tool. Here
they had to decide whether a set of potential dependencies were
really dependencies or not. The programmers could see all of
the dependencies grouped by the scenarios, along with the di-
rect and the indirect dependencies. The programmer could see
the start and the end point of the dependency path, but the path
was missing. Here we regard a potential dependency as a real
dependency if the programmer’s vote was at least 66%.

As seen in Figure 3, in most cases the programmers found
more dependencies in the second stage than in the first stage.
One reason for this difference is that in the second stage, we
treat a dependency as a real dependency if the programmers’
votes are at least 66%, while with JRipples they can only say
whether it is dependency or not. So the accepted dependen-
cies in the second stage consist of dependencies with less than
100% confidence level as well. Another reason is that in the first

Per. Pol. Elec. Eng.116 Gabriella Tóth



Tab. 3. The distribution of the different kinds of dependencies among the dependencies identified in Stage 1.

pr. 1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr. 9 pr. 10 pr. 11 avg.

call 5% 21% 15% 0% 23% 33% 18% 11% 22% 8% 31% 17%

slice 0% 7% 8% 0% 15% 17% 6% 8% 7% 0% 15% 8%

SEA 84% 79% 56% 53% 58% 100% 94% 47% 52% 75% 100% 73%

co-change1.0 5% 0% 3% 7% 4% 0% 0% 3% 4% 0% 0% 2%

co-change0.4 32% 50% 28% 33% 35% 33% 35% 28% 37% 42% 38% 36%

others 5% 7% 31% 40% 31% 0% 0% 42% 33% 8% 0% 18%

Tab. 4. The percentage of all the call, SEA, slice, co-change dependencies identified by the programmers in Stage 1.

Type pr. 1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr. 9 pr. 10 pr. 11 avg.

call 7% 20% 40% 0% 40% 13% 20% 27% 40% 7% 27% 22%

slice 0% 8% 23% 0% 31% 8% 8% 23% 15% 0% 15% 12%

SEA 26% 18% 35% 13% 24% 10% 26% 27% 23% 15% 21% 22%

co-change1.0 25% 0% 25% 25% 25% 0% 0% 25% 25% 0% 0% 14%

co-change0.4 16% 19% 30% 14% 24% 5% 16% 27% 27% 14% 14% 19%

stage, JRipples represents dependencies in a step-by-step fash-
ion, while in the second stage the programmers can see all of
the dependencies for a scenario (dependencies that were iden-
tified by algorithms or programmers in the first stage). In the
first case the programmer can follow only one step graphically
and they must keep the former dependencies in mind in order to
think in a transitive way. However, with BEFRIEND, they see
the transitive dependencies and they only have to examine the
given dependency and not keep information in their mind from
an earlier step. The programmers can easily lose track of some
information or overlook important information in the first stage.

Not surprisingly, we see that the programmers identified more
dependencies in the second stage than in the first stage. We de-
termined the intersection and the differences between the depen-
dency sets identified in the first stage and the second stage for
each programmer. In Table 5, the values in the table have been
normalized by the size of the union of the given sets. According
to this table, as a general rule, we can say that a few depen-
dencies from the impact sets were missing, but several appeared
in the second stage. We can see that programmer8 found the
same number of dependencies in both stages. But they are not
the same dependencies; only 50% of these dependencies are the
same, a quarter of the dependencies are absent and a quarter of
the dependencies are new, so the contents of the set changed.

More precisely, the dependencies that were identified in the
first stage, but rejected in the second stage are mainly SEA re-
lations. This is due to the visual presentation of the tools: with
JRipples the programmer could follow the dependency path, but
with BEFRIEND to identify a two-or-more-unit-distance SEA
relation is much more difficult. In the first stage, the program-
mers found a relatively large amount of SEA relations, some of
which were rejected in the second stage. In contrast, the other
kinds of dependencies (call, slice, co-change) were identified in
smaller numbers in the first stage, so in the second stage the
programmers were easily able to accept these kinds of new de-

pendencies.
Table 6 shows that in the second stage the impact sets got by

the programmers contain a higher percentage of dependencies
identified by algorithms. The reason could be that if the pro-
grammers can see the possible dependencies together, they can
examine them individually and it is easier to decide whether it
is really a dependency to at least a 66% confidence level.

The SEA relations are present in smaller amounts, despite the
increased number of identified dependencies. There are more
identified dependencies, and the proportion of SEA relations
is lower. The programmers did not discover new SEA rela-
tions. This may be because of the visual presentation of the
BEFRIEND tool, and the indirect dependencies with a greater
distance cannot be so easily identified based on the start and the
end points.

On average, the amount of the dependencies identified only
by programmers and not by any algorithm is the same, although
the values got by the given programmers are not the same as in
the first stage. The lower values increased and the higher val-
ues decreased. In the case of higher values, the dependencies
not identified by any algorithms were simply absent. If the pro-
grammer did not find so many other dependencies in the first
stage, they only accepted some dependencies identified by other
programmers.

Although in the second stage the dependencies identified by
an algorithm were in the potential dependencies which they had
to examine, they identified many more dependencies that had
been identified by one or more algorithms/programmers. Table 7
tells us that the scores are higher than in the first stage. The rank
of the average values is different as well. Call relations were
covered the best (49% of the call relations were identified on
average); this kind of dependency can be recognized relatively
easily, especially with the help of the recommendations by those
programmers who identified more call relations. The data and
control dependencies identified came to 36% of cases, while in

A comparison of programmers’ opinions in change impact analysis 1172010 54 3-4



Fig. 3. The number of dependencies identified by the programmers in Stage 1 and Stage 2.

Tab. 5. Comparison of dependency sets identified by different algorithms.

Stage 1∩Stage 2 Stage 1\Stage 2 Stage 2\Stage 1

programmer1 64% 12% 24%

programmer2 33% 25% 42%

programmer3 46% 8% 46%

programmer4 16% 11% 73%

programmer5 69% 6% 26%

programmer6 29% 14% 57%

programmer7 29% 0% 71%

programmer8 50% 25% 25%

programmer9 36% 39% 25%

programmer10 46% 4% 50%

programmer11 28% 17% 55%

40% co-changed classes they were identified in 33% of cases.

6.3 Q3: Is there any difference among programmers’ im-
pact sets based on their qualifications and experience?
As we mentioned earlier, the participants are PhD stu-

dents, computer science students and developers. There
were 2 female PhD students (programmer7 and programmer9),
while the others were males. Programmer3, programmer5,
programmer7, programmer8, and programmer9 were PhD stu-
dents, programmer1 and programmer4 were developers, and
programmer2, programmer6, programmer10 and programmer11

were computer science students.
According to Table 5, programmer3, programmer5,

programmer7, programmer8, and programmer9 covered
the results of the algorithms better than the rest. These partici-
pants were the PhD students. Fig. 4 contains the average values
in Table 5 for participants grouped according to qualifications
and experience. This diagram also tells us that the PhD students
covered best the different kinds of dependencies.

In Table 3 and Table 6 the developers and the students found
more SEA relations, which means that in practice they consider
SEA relations more useful than the PhD students. If a program-

mer has less background theoretical knowledge of impact anal-
ysis algorithms, the classes which are statically executed after
the examined class are the most helpful during program com-
prehension or impact analysis. The PhD students are familiar
with impact analysis algorithms, and about half of their identi-
fied dependencies are SEA relations, while other relations were
identified with a higher score. The PhD students must have had
other information – like comments and method with the same
body – to go on in their final assessments.

7 Threats to Validity
This paper is an empirical study, and it has limitations that

must be taken into account when evaluating the results and gen-
eralizing the findings to other contexts.

First, our hypothetical change requests may not equally rep-
resent real maintenance situations. If a programmer has a main-
tenance task, there is a certain program point in a method which
needs some modification. By contrast, in our experiment the
programmer had to find all the methods/classes impacted by any
changes of the forward defined methods. This is necessary be-
cause the algorithms have a method or class granularity, not a
statement granularity. However, for the testers this may repre-

Per. Pol. Elec. Eng.118 Gabriella Tóth



Tab. 6. The distribution of the different kinds of dependencies among the dependencies identified in Stage 2.

Type pr. 1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr. 9 pr. 10 pr. 11 avg.

call 9% 44% 20% 20% 24% 25% 15% 14% 27% 35% 38% 25%

slice 0% 33% 11% 20% 12% 17% 8% 8% 18% 17% 29% 16%

SEA 73% 83% 33% 43% 67% 83% 63% 53% 68% 78% 71% 65%

co-change1.0 5% 0% 3% 4% 3% 0% 5% 3% 9% 0% 0% 3%

co-change0.4 36% 28% 35% 29% 36% 33% 39% 39% 50% 43% 42% 37%

others 14% 6% 33% 33% 21% 8% 22% 28% 18% 9% 8% 18%

Tab. 7. The percentage values of the all call, SEA, slice, co-change dependencies identified by the programmers in Stage 2.

Type pr. 1 pr. 2 pr. 3 pr. 4 pr. 5 pr. 6 pr. 7 pr. 8 pr. 9 pr. 10 pr. 11 avg.

call 13% 53% 87% 67% 53% 20% 60% 33% 40% 53% 60% 49%

slice 0% 46% 54% 77% 31% 15% 38% 23% 31% 31% 54% 36%

SEA 26% 24% 35% 34% 35% 16% 60% 31% 24% 29% 27% 31%

co-change1.0 25% 0% 50% 50% 25% 0% 75% 25% 50% 0% 0% 27%

co-change0.4 22% 14% 62% 38% 32% 11% 62% 38% 30% 27% 27% 33%

sent a real maintenance situation: if the developers just supply
the names of the changed methods to the testers, they must pro-
ceed from these methods to determine their impact sets and the
necessary test cases.

There is another factor which is uncommon in software main-
tenance: the programmers are not familiar with the test project.
Not every participant knows all the projects equally well, hence
we chose a project which was not known to any of them. And
here, the participants were all computer science students, PhD
students or software engineers. Most of them were not famil-
iar with impact analysis, but were common programmers who
identified dependencies to the best of their knowledge and expe-
rience.

We considered algorithms that found impact sets for only
one program. Other constraints were also mentioned in Sec-
tion 5 (only Java code, memory consumption limitation, ex-
tended SVN history, etc.). In this case, the programmer can
understand the project much better despite only having a par-
tial understanding of several projects. Nevertheless, this project
is an actual, non-trivial software system with a real SVN his-
tory. While only one subject system was examined, the empiri-
cal study has low statistical predictive power. We cannot claim
that the results are generalizable.

When we compared the programmer evaluations, we noticed
that they insisted on their previously observed dependencies, so
it is possible that they remembered their opinions from the first
stage. The solution to this might be to split the programmers
into two groups and one of the groups determines dependencies
only in the first stage, while the others do it only in the second
stage.

8 Conclusions
Here we presented a detailed empirical comparison of im-

pact sets determined by programmers and impact analysis algo-
rithms. To investigate the relations between dependencies iden-

tified by programmers and impact analysis algorithms, we car-
ried out a case study to examine the programmers’ thinking dur-
ing a program comprehension task and to find out what kind of
impact analysis methods they are likely to apply. We learned that
the qualifications and experience of the participants also affected
the composition of the impact sets. Our main goal was to inves-
tigate programmers’ strategies for understanding and utilizing
relevant information and to find different tools to help them dur-
ing impact analysis sessions.

Based on our analysis of the data collected during the study,
we found that different programmers using different tools for
different impact sets. Due to the different visualization tech-
nologies, the programmers also identified different dependen-
cies. The majority of them neglected SEA relations and ac-
cepted all kinds of new dependencies. From a concrete list of
dependencies (see BEFRIEND), they identified more dependen-
cies. However, the new dependencies had a lower confidence
level. Here we treated a dependency as a real dependency if the
programmer voted to at least a 66% confidence level.

We found that SEA impact sets cover the programmers’ im-
pact sets the best. Most of their dependencies were SEA rela-
tions, and the developers and the students best recognized these
kinds of dependencies. Without extra knowledge about impact
analysis methods, they most easily recognized those methods
which are executed after the method examined.

In contrast, PhD students thought in a systematic way. They
covered best the dependencies identified by any impact analy-
sis algorithms. They learned about these kinds of methods in
courses and actively looked for them in the code.

References
1 Orso A, Apiwattanapong T, Law J, Rothermel G, Harrold M J, An

Empirical Comparison of Dynamic Impact Analysis Algorithms, ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering,
IEEE Computer Society, Washington, DC, USA, 2004, 491–500.

A comparison of programmers’ opinions in change impact analysis 1192010 54 3-4



Fig. 4. Identified dependencies grouped according to participants’ qualifications.

2 Bible J, Rothermel G, Rosenblum D S, A comparative study

of coarse- and fine-grained safe regression test-selection techniques,
ACM Trans. Softw. Eng. Methodol., 10(2), (2001), 149–183, DOI
10.1145/367008.367015.

3 Sridhara G, Hill E, Pollock L, Vijay-Shanker K, Identifying Word Rela-

tions in Software: a comparative study of semantic similarity tools, Proc Int’l
Conf. on Program Comprehension, IEEE, June, 2008, 123-132.

4 Roy C K, Cordy J R, Scenario-Based Comparison of Clone Detection Tech-

niques, ICPC ’08: Proceedings of the 2008 The 16th IEEE International Con-
ference on Program Comprehension, IEEE Computer Society, Washington,
DC, USA, 2008, 153–162, DOI http://dx.doi.org/10.1109/ICPC.2008.42, (to
appear in print).

5 de Alwis B, Murphy G C, Robillard M P, A Comparative

Study of Three Program Exploration Tools, ICPC ’07: Proceedings of
the 15th IEEE International Conference on Program Comprehension,
IEEE Computer Society, Washington, DC, USA, 2007, 103–112, DOI
http://dx.doi.org/10.1109/ICPC.2007.6, (to appear in print).

6 Ceccato M, Marin M, Mens K, Moonen L, Tonella P, Tourwe T, A

Qualitative Comparison of Three Aspect Mining Techniques, IWPC ’05:
Proceedings of the 13th International Workshop on Program Comprehen-
sion, IEEE Computer Society, Washington, DC, USA, 2005, 13–22, DOI
http://dx.doi.org/10.1109/WPC.2005.2, (to appear in print).

7 Lange C, Harry M. Sneed, Andreas Winter, Comparing Graph-Based

Program Comprehension Tools to Relational Database-Based Tools, In-
ternational Conference on Program Comprehension, 0, (2001), 0209, DOI
http://doi.ieeecomputersociety.org/10.1109/WPC.2001.921732.

8 Nicolas A, A Comparison of Graphs of Concept for Reverse Engineering,
IWPC ’00: Proceedings of the 8th International Workshop on Program Com-
prehension, IEEE Computer Society, Washington, DC, USA, 2000, 231.

9 Arnold R S, Bohner S A, Impact Analysis - Towards a Framework for

Comparison, ICSM ’93: Proceedings of the Conference on Software Main-
tenance, IEEE Computer Society, Washington, DC, USA, 1993, 292–301.

10 Breech B, Tegtmeyer N, Pollock L, A Comparison of Online and

Dynamic Impact Analysis Algorithms, CSMR ’05: Proceedings of the
Ninth European Conference on Software Maintenance and Reengineer-
ing, IEEE Computer Society, Washington, DC, USA, 2005, 143–152, DOI
10.1109/CSMR.2005.1, (to appear in print).

11 Rajlich V, Gosavi P, Incremental Change in Object-

Oriented Programming, IEEE Software, 21, (2004), 62-69, DOI
http://doi.ieeecomputersociety.org/10.1109/MS.2004.17.

12 Lindvall M, Sandahl K, How well do experienced software develop-

ers predict software change?, J. Syst. Softw., 43(1), (1998), 19–27, DOI
10.1016/S0164-1212(98)10019-5.

13 von Knethen A, Grund M, QuaTrace: A Tool Environment for (Semi-) Au-

tomatic Impact Analysis Based on Traces, ICSM ’03: Proceedings of the In-
ternational Conference on Software Maintenance, IEEE Computer Society,
Washington, DC, USA, 2003, 246.

14 IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering

Terminology, Institute of Electrical and Electronics Engineers, 1990.
15 Cohen J, A coefficient of agreement for nominal scales, Psychologi-

cal Bulletin, 20, (1960), 37–46, http://www.bibsonomy.org/bibtex/
2495049be4ef603f5b67ce1dd7ecccdf8/chato.

16 Bohner S A, Impact analysis in the software change process: a year 2000

perspective, ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, IEEE Computer Society, Washington, DC, USA,
1996, 42–51.

17 German M D, Hassan A E, Robles G, Change impact graphs: Deter-

mining the impact of prior codechanges, Information and Software Technol-
ogy, 51(10), (2009), 1394 – 1408. Source Code Analysis and Manipulation,
SCAM 2008.

18 Marcus A, Sergeyev A, Rajlich V, Maletic J I, An Information Retrieval

Approach to Concept Location in Source Code, The 11th IEEE Working Con-
ference on Reverse Engineering (WCRE’04), 2004.

19 Rajlich V, Intensions are a key to program comprehension, ICPC, 2009, 1-9,
DOI 10.1109/ICPC.2009.5090022, (to appear in print).

20 Hassan A E, Holt R C, Predicting Change Propagation in Software Systems,
ICSM ’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, IEEE Computer Society, Washington, DC, USA, 2004,
284–293.

21 Ryder B G, Constructing the Call Graph of a Program, IEEE Trans. Softw.
Eng., 5(3), (1979), 216–226, DOI 10.1109/TSE.1979.234183.

22 Horwitz S, Reps T, Binkley D, Interprocedural Slicing Using Dependence

Graphs, ACM Transactions on Programming Languages and Systems, 12(1),
(1990), 26–61.

23 Indus project: Java program slicer and static analyses tools., http://
indus.projects.cis.ksu.edu/.

24 Zimmermann T, Weißgerber P, Diehl S, Zeller A, Mining Version Histo-

ries to Guide Software Changes, IEEE Trans. Software Eng., 31(6), (2005),
429-445, DOI 10.1109/TSE.2005.72.

25 Kitchenham B A, Pfleeger S L, Pickard L M, Jones P W, Hoaglin D C,

Emam K E, Rosenberg J, Preliminary guidelines for empirical research in

software engineering, IEEE Trans. Softw. Eng., 28(8), (2002), 721–734, DOI
10.1109/TSE.2002.1027796.

26 Pennington N, Comprehension strategies in programming, Ablex Publish-
ing Corp., Norwood, NJ, USA, 1987, 100–113.

27 Basili V R, Selby R W, Hutchens D H, Experimentation in software engi-

neering, IEEE Trans. Softw. Eng., 12(7), (1986), 733–743.
28 Corritore C L, Wiedenbeck S, An exploratory study of program compre-

Per. Pol. Elec. Eng.120 Gabriella Tóth

http://www.bibsonomy.org/bibtex/2495049be4ef603f5b67ce1dd7ecccdf8/chato
http://www.bibsonomy.org/bibtex/2495049be4ef603f5b67ce1dd7ecccdf8/chato
http://indus.projects.cis.ksu.edu/
http://indus.projects.cis.ksu.edu/


hension strategies of procedural and object-oriented programmers, Int. J.
Hum.-Comput. Stud., 54(1), (2001), 1–23, DOI 10.1006/ijhc.2000.0423.

29 Mosemann R, Wiedenbeck S, Navigation and Comprehension of Pro-

grams by Novice Programmers, IWPC ’01: Proceedings of the 9th Inter-
national Workshop on Program Comprehension, IEEE Computer Society,
Washington, DC, USA, 2001, 79.

30 Ko A J, Myers B A, Coblenz M J, Aung H H, An Exploratory Study of How

Developers Seek, Relate, and Collect Relevant Information during Software

Maintenance Tasks, IEEE Trans. Softw. Eng., 32(12), (2006), 971–987, DOI
10.1109/TSE.2006.116.

31 Robillard M P, Coelho W, Murphy G C, How Effective Developers Inves-

tigate Source Code: An Exploratory Study, IEEE Trans. Softw. Eng., 30(12),
(2004), 889–903, DOI 10.1109/TSE.2004.101.

32 Tóth G, Hegedűs P, Jász J, Beszédes Á, Gyimóthy T, Comparison of

Different Impact Analysis Methods and Programmer’s Opinion – an Empiri-

cal Study, The 8th International Conference on the Principles and Practice of
Programming in Java (PPPJ 2010), 2010.

33 Weiser M, Program slicing, ICSE ’81: Proceedings of the 5th international
conference on Software engineering, IEEE Press, Piscataway, NJ, USA,
1981, 439–449.

34 Boehm B W, Software Engineering, IEEE Transactions on Computers, 25,
(1976), 1226–1241, DOI 10.1109/TC.1976.1674590.

35 Beszédes Á, Gergely T, Jász J, Tóth G, Gyimóthy T, Rajlich V, Compu-

tation of Static Execute After Relation with Applications to Software Mainte-

nance, Proceedings of the 2007 IEEE International Conference on Software
Maintenance (ICSM’07), IEEE Computer Society, Oct, 2007, 295-304.

36 Jász J, Beszédes Á, Gyimóthy T, Rajlich V, Static Execute After/Before

as a Replacement of Traditional Software Dependencies, Proceedings of the
2008 IEEE International Conference on Software Maintenance (ICSM’08),
IEEE Computer Society, Oct, 2008, 137-146.

37 JRipples tool for Incremental Change, available at http://jripples.
sourceforge.net/.

38 Arnold R S, Bohner S A, Software Change Impact Analysis, IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1996.

39 Weiser M, Program Slicing, IEEE Trans. Software Eng., 10(4), (1984), 352-
357.

40 Antoniol G, Rollo V F, Venturi G, Detecting groups of co-changing files in

CVS repositories, IWPSE ’05: Proceedings of the Eighth International Work-
shop on Principles of Software Evolution, IEEE Computer Society, Wash-
ington, DC, USA, 2005, 23–32, DOI 10.1109/IWPSE.2005.11, (to appear in
print).

41 Buckner J, Buchta J, Petrenko M, Rajlich V, JRipples: A Tool for Pro-

gram Comprehension during Incremental Change, IWPC, 2005, 149-152,
DOI 10.1109/WPC.2005.22, (to appear in print).

42 Fülöp L, Hegedűs P, Ferenc R, Gyimóthy T, Towards a Benchmark

for Evaluating Reverse Engineering Tools, Tool Demonstrations of the 15th
Working Conference on Reverse Engineering (WCRE 2008), Antwerpen,
Belgium, Oct, 2008, DOI 10.1109/WCRE.2008.18, (to appear in print).

43 Fülöp L, Hegedűs P, Ferenc R, BEFRIEND - a Benchmark for Evaluating

Reverse Engineering Tools, Per. Pol. Elec. Eng., 52(3–4), (2008), 153–162,
DOI 10.3311/pp.ee.2008-3-4.04.

44 Fülöp L, Ferenc R, Gyimóthy T, Towards a Benchmark for Evaluating

Design Pattern Miner Tools, Proceedings of the 12th European Conference
on Software Maintenance and Reengineering (CSMR 2008), IEEE Computer
Society, Athens, Greece, Apr, 2008, DOI 10.1109/CSMR.2008.4493309, (to
appear in print).

45 The BEFRIEND homepage, available at http://www.inf.u-szeged.hu/
befriend/.

A comparison of programmers’ opinions in change impact analysis 1212010 54 3-4

http://jripples.sourceforge.net/
http://jripples.sourceforge.net/
 http://www.inf.u-szeged.hu/befriend/
 http://www.inf.u-szeged.hu/befriend/

	Introduction
	Related work
	Motivation
	Impact analysis methods
	Description of the experiment
	Subject project
	Participants
	Overview of the experiment

	Results and discussion
	Q1: In the case of determining dependencies in an incremental way by using JRipples, what proportion of dependencies identified by programmers are identified by the different impact analysis algorithms?
	Q2: In the case of determining dependencies from a set of direct and indirect dependencies by using BEFRIEND, what proportion of dependencies accepted by programmers were identified by the different impact analysis algorithms?
	Q3: Is there any difference among programmers' impact sets based on their qualifications and experience?

	Threats to Validity
	Conclusions

