
Ŕ periodica polytechnica

Electrical Engineering
54/3-4 (2010) 123–128

doi: 10.3311/pp.ee.2010-3-4.06
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2010

RESEARCH ARTICLE

In-memory preprocessing of streaming
sensory data – a partitioned relational
database approach
József Marton / Sándor Gajdos

Received 2008-10-03

Abstract
In this paper we present a database architecture and an ap-

plication area and method in detail. As sensory data stream
in the database it is efficient to preprocess them in-memory be-
fore integrating in the repository in order to save storage I/O
cost. After data are integrated, it is important to allow efficient
quering based on data retrieval profile. This can also be sup-
ported by the presented database architecture by partitioning
the database upon different criteria. It is mandatory to hide the
internal partitioned architectural details from higher layers, so
options to allow transparent quering options are also presented.
We have implemented a test system and experimental results are
also given.

Keywords
Partitioned database · streaming data preprocessing ·

József Marton

Sándor Gajdos

Database Research Labs, Department of Telecommunication and Mediainfor-
matics, BME, H-1117 Budapest, Magyar tudósok körútja 2., Hungary

1 Introduction
As the application area of sensors broadens the amount of

streaming sensory data to be processed is also increasing. Ana-
lytical systems working on heterogeneous sensory data require
efficient preprocessing techniques because they require an inte-
grated view of different data sources in order to calculate data
in a short time period. In this paper, we present a partitioned
database approach, i.e. a composite of memory-resident and
disc-resident partition. This approach can provide two to five-
times performance improvement in the data preprocessing stage.
It can adapt to hardware resources efficiently, i.e. adding more
CPU cores and random access memory increases performance
in a near-linear fashion. This is especially the case when data
streams to be integrated are independent of each other ? which
is a common premise. This paper is organized as follows. In
Section 2 we outline where do sensory data originate from and
why do they need preprocessing. Then we move to data and
database partitioning in general, and describe why it can be use-
ful. In Section 3 we introduce the partitioned database approach
and describe the relation of partitions to each other and their
view from outside. We also address options to allow for trans-
parent data retrieval. After showing the traditional, off-line way
of preprocessing in Section 4 we move to the proposed way that
is based on the partitioned database approach. We also give
evaluation results to show the performance gain that could be
achieved. In Section 5 we summarize our results.

2 Sensory data, preprocessing and partitioning
This section is further divided into three subsections re-

garding sensory data, their preprocessing as well as data and
database partitioning in general.

2.1 Sensory data
The majority of data is distributed as they are produced by

individual sensors or by a collection of sensors, i.e. sensor
network distributed spatially and connected by communication
lines. Data is collected over a broad area and streams in at a
much higher rate than before [1]. Transmission of data might be
done using several different approaches. Two such approaches

In-memory preprocessing of data – a partitioned relational database approach 1232010 54 3-4

http://www.pp.bme.hu/ee


are transmission over dedicated measurement lines and through
peer-to-peer network. Physical connectivity medium can be, for
instance, some copper lines or wireless radio channels.

Sensory data, in most of the cases, is time-series [2] data i.e.
as time approaches data from more and more recent measure-
ments are published. The more recent measurement data has the
exact same semantics compared to the very first piece of data
that emerged from the sensor.

For example, stock exchange quotes can be seen as stream-
ing sensory data, as data (i.e. quote) are produced from time to
time and the more recent pieces of data have the same seman-
tics as older pieces of data. Data from different kind of sensors,
or from similar sensors observing different subject (e.g. tem-
perature measurements from different reactor blocks of a power
station) can be, in most of the cases, preprocessed and trans-
ferred independently of each other. Independent preprocessing,
however, does not mean that pieces of data can be preprocessed
on their own. Data might get context for interpretation from
other sensory data (e.g. changes in neutron flux and temperature
of the reactor zone are correlated for a given family of nuclear
reactors).

2.2 Purpose of preprocessing
The main goal of preprocessing is to provide coherent view of

data from different sources and enable more efficient analysis by
reducing the complexity of data [3]. Coherent view is mandatory
in order to allow for comparison and correlation of data over
time or between data of different semantics.

To achieve its goal, preprocessing might involve measurement
unit conversion, scaling or code space translation.

Code space translation might allow for more compact stor-
age, more efficient cross-referencing at retrieval-time (because
of simpler primary or foreign keys). This is why code space
translation is also widely used in data warehousing applications.
As an undoubtedly useful side effect of code space translation
erroneous input data can be identified and data owner can be
informed about that.

2.3 Data and database partitioning
Partitioning data or even a database means physical or logical

separation of stored data based on various criteria. Partitioning
might also involve partial mirroring of data. Partitioning might
be done such a way that different partitions reside on different
storage media [4].

Partitioning criteria might be based on e.g. some hierarchy or
freshness of data (i.e. in some applications the more fresh data
tend to be needed in more detail and more often). In case of
partial mirroring separate partition might be created for separate
application (e.g. alert logging of data that crossed some critical
value, or anonymized data to satisfy regulations).

In case of solely separation of data, transparent data access
need to be provided, that is, from the users’ (or applications’)

point of view the same access path should work to access data
regardless of the actual partition it is stored in.

Why do we need to partition our data? Active portion of data
might be small compared to the whole database size. Identifying
and separating this active database portion makes it cheaper to
achieve the needed data retrieval performance. This is especially
the case when active data portion is stored on faster media than
historical data, which can even be stored on massive array of
idle disks (MAID) [4] or tape drives.

Partitioning also eases data management. Business rules de-
fine how long historical data need to be kept online. In most
cases these business rules define a sliding window. As the win-
dow slides over some data partition (i.e. data age out), that
partition can be archived and put off-line without affecting con-
tinuous access to the active database partition (i.e. arrival and
integration of fresh data and data retrieval for analysis are not
affected).

3 Partitioned database
In this section we present the partitioned database (DB) that

consists of a memory-resident and a disc-resident database par-
tition. We also outline the linkage of partitions to each other as
well as options to hide partitioned scheme from users. In the last
subsection, we introduce two products that can be configured to
operate as partitioned database.

Fig. 1. Architecture of the partitioned database showing IMDB and DRDB
parts. Arrows indicate the cases when data transfer or query serving might occur.

3.1 Architecture
In-Memory Database (IMDB) or Main-Memory Database is

a database management system where the primary copy of man-
aged data reside in the physical memory [5] that allows for ran-
dom access. In contrast, Disc-Resident Database (DRDB) stores
the primary copy of managed data on disc with block-level ac-
cess.

IMDB systems may also involve using of discs to store sec-
ondary copies (e.g. backup) or to ensure data durability, whereas
DRDB systems may be backed up to disc or tape and in case of
partitioned storage they might involve multiple layers of storage
as described where we were talking about the relation of histor-
ical data and MAID devices.

Per. Pol. Elec. Eng.124 József Marton / Sándor Gajdos



DRDB systems also use physical memory for buffering, but
data structures are not converted to suit its random access char-
acteristic. This, in fact, leads us to the key difference between
IMDB and DRDB systems. DRDB systems, their algorithms
and data structures were designed with block-level storage or-
ganization in mind whereas In-Memory Database Management
Systems’ algorithms and data structures [6]-[8] were designed
with random access storage characteristic and CPU cache uti-
lization in mind.

Our approach to partitioned database consists of two parts:
in-memory and disc-resident partition as shown on Fig. 1. In-
memory partition stores frequently accessed subset of data (e.g.
fresh measurement data) along with configuration and lookup ta-
bles which drive processing and interpretation of the data. Disc-
resident partition stores all the data of in-memory partition as
well as less frequently accessed data in order to provide long
term storage.

3.2 Migration of data
In the previous section we have mentioned that data structures

differ in IMDB and DRDB systems to suite primary storage me-
dia. As data transfer occurs between partitions data representa-
tion needs to be changed, i.e. data need to be migrated. Arrows
on Fig. 1 indicate data transfer cases between the two database
partitions which we describe below.

When starting up a partitioned database instance, disc-
resident partition already has data on its primary storage
medium (i.e. on the disc). In contrast, IMDB partition needs
to be loaded into the physical memory. This initial load might
occur based on the data stored in the DRDB partition. Upon
loading from the DRDB into the IMDB part data representation
needs to be changed which demands high resources. In contrast,
initial load can happen using memory image file of a checkpoint
of the IMDB partition. This way initial load-time data structure
changes are not needed anymore. Recently, application area of
database management systems tends to expand: as they accom-
modate files and even act as file systems [9] both methods of
initial load can be backed by disc-resident database.

As we have defined IMDB partition to hold only some sub-
set of data available in the disc-resident partition all the changes
in the IMDB partition need to be reflected in the disc-resident
database. This process is called data propagation. If direct
changes in the DRDB partition would be allowed, they would
also need to be propagated toward the IMDB part.

Query and result passing between the two partitions is the
third case of data transfer which leads us to the next topic,
namely, transparency options. Result passing involve data struc-
ture migration on the partition boundary to allow for integration
of sub-results computed in each parts.

3.3 Options for transparent data access
It is mandatory to hide internal architectural details of the par-

titioned database from components in higher layers. Basically

this demands for a single port to connect to. All internal com-
mand and data flow should be controlled inside.

Two different approaches are possible. According to the first
approach, the partitioned system has a separate query dispatcher
component. This is called the query routing approach. The sec-
ond approach, namely execution fallback, direct queries to the
in-memory database management partition and, if needed, ex-
ecution is redirected to the query execution engine of the disc-
resident database.

The separate dispatcher component has two main roles. Re-
ceiving a query, it should analyze it in order to recognize indi-
vidual elements and route them to the appropriate database par-
tition to compute sub-results. When sub-results arrive they need
to be merged and returned to the user application. By applying
such dispatcher logic, queries which can be served using only
the IMDB or DRDB partition, would slow down.

Should incoming requests be directed to the IMDB partition
for serving, in a properly partitioned system (i.e. frequently ac-
cessed data reside in IMDB partition) high percentage of queries
can be served in just one step. In case IMDB can not serve the
query because lack of input data, query can be passed to the
DRDB part.

Both query routing and execution fallback bases on logical
description of the partitioning scheme. This logical description
can be as simple as describing which data tables and of which
time interval are available in the IMDB partition, or it can be
more complex even involving table access statistics. Database
management systems already gather statistics to support their
cost-based query optimizers. By extending scope of these statis-
tical metadata, new possibilities arise.

3.4 Implementations
In this section, we briefly introduce two in-memory database

products that can be configured to operate as a partitioned
database.

Oracle provides its in-memory database product TimesTen to
store and manage data close to the application clients, i.e. store
them in the main memory in suitable data structures and provide
management routines in the clients’ address space to minimize
process boundary crosses. Recent TimesTen versions claim to
be PL/SQL compatible with Oracle Database. TimesTen can
operate over an Oracle Database to provide an in-memory cache
and can manage basic partitioning of data: some tables (fully or
partially) can be brought in the cache whereas others can be left
in the underlying Oracle Database. TimesTen provides a single
gate to access the whole database: if some operation can not
be served in TimesTen, it is passed on to Oracle Database, and
result is transferred to the client. Though this single gate access
is provided, to achieve optimal performance, the system needs
to consider the partitioned scheme of the database built upon
TimesTen and Oracle Database.

IBM’s soliDB in-memory relational database management
system can also operate as a cache over a disk-resident database,

In-memory preprocessing of data – a partitioned relational database approach 1252010 54 3-4



Fig. 2. Traditional off-line way of preprocessing
utilizing off-line staging area. This process takes
place just before integration of data into the database
that publishes it for analysis tools.

called soliDB Universal Cache. While TimesTen can only op-
erate over an Oracle Database, soliDB Universal Cache can be
backed by different disk-resident database management systems
including particular versions of IBM DB2, Oracle Database, Mi-
crosoft SQL Server and Sybase. soliDB, as an in-memory cache
can also act as a single SQL gate to the partitioned database’s
data, regardless of the location of the table (i.e. whether it is in
the cache or in the disk-resident database). IBM’s soliDB also
enables to transform the schema that is to be cached.

4 Preprocessing: traditional and proposed way
In this section we are going to discuss where preprocessing

should be done and why to do it there. We then proceed to the
traditional, off-line way of preprocessing and the way utilizing
the partitioned database.

4.1 Where to preprocess?
Preprocessing can be done at three different levels: in the sen-

sory device, just before integrating data into the repository or in
analysis-time.

Sensory device might be configurable to allow for preprocess-
ing, but this makes the device more expensive and the resulting
system more error prone (and thus more expensive to manage).
Sensory devices should be kept as simple and as stupid as pos-
sible to avoid involving extra costs.

Should preprocessing be done in analysis-time, analytical
computations would take more time. Furthermore, the exact
same calculation (i.e. preprocessing function) would be applied
each time analytical computation involves using a particular data
element. This is not affordable, as analytical computations usu-
ally take long time, and in order to shorten this process analytical
systems tend to pre-calculate well defined aggregations.

The third option for preprocessing is to do it just before inte-
grating data into the database. This is a more centralized option
compared to the sensory device level as in the first option, and
occurs only once per data element, which contrasts the second
option. This is the point in the lifetime of data where prepro-
cessing occurs in the traditional preprocessing workflow as well
as in the proposed way.

4.2 Off-line preprocessing
Traditional way of preprocessing involves some off-line stag-

ing area just before integrating data into the database. As it is
shown on Fig. 2 data are extracted from data sources and then
transferred to the staging area. Initiated by some trigger events
(e.g. all related data of a specified time frame have arrived) or

time schedule, transformation logic applies preprocessing func-
tion before data enter the database.

Latency caused by the off-line preprocessing process depends
on particular trigger events. On the other hand, this way ensures
that data in the database show a consistent view for further pro-
cessing.

Off-line transformations have at least two drawbacks. Tempo-
rary storing of data at some staging area not only wastes I/O and
communication bandwidth but also decreases usefulness as data
loose their freshness. That is why we move to near real-time
transformation and integration of data into the database (reposi-
tory) using the proposed partitioned database scheme.

4.3 Proposed preprocessing path
In the previous section we have discussed the traditional way

of preprocessing sensory data and showed two drawbacks. Our
proposed preprocessing path addresses these issues. Further-
more, near real-time preprocessing demands for high compu-
tational capacity which can be provided using several different
approaches. Our proposal follow a resource-sensitive way.

We have already described the architecture of the proposed
two-tier database backend in Section 3.1. and on Fig. 1. On the
top of the disc-resident database layer operates a memory resi-
dent database. This means that working set of the current data
and a recent portion of the historical data reside in the physi-
cal memory. In this proposed path, raw data (i.e. data that is
candidate for preprocessing) enter directly the memory resident
partition.

Analysis tools (and possibly other applications) connect to
the partitioned database as a whole and thus they see a coher-
ent view of the database, i.e. they can neglect the partition-
ing scheme applied. On the other hand, transformation logic
is aware of the partitioning scheme and connects directly to the
memory resident database partition, as it would be suboptimal
if transformation logic neglected the fact that raw data reside
in physical memory, i.e. it is stored in the memory resident
database partition.

Fig. 3 shows the proposed relation of data sources, trans-
formation logic and analysis tools to the partitioned database.
Sensory data enter directly the in-memory database partition
which, basically, acts as an in-memory staging area integrated
into the (partitioned) database management system. Transfor-
mation logic also connects directly to the IMDB partition. This
way raw data as well as lookup tables that might be needed for
the transformation are available in the memory address space
of the application driving the preprocessing. Accessing data al-

Per. Pol. Elec. Eng.126 József Marton / Sándor Gajdos



Tab. 1. Experimental result utilizing a partitioned
and a solely dic-resident database setup. In this case,
introducing the partitioned database setup, we have
reached 2-times performance gain with ca. 10% aver-
age CPU time spare.

Record rate CPU utilization Overall

(s−1) (min−1) (average) performance

Partitioned database setup 2500 150000 92% 22,1%

(Oracle 10gR2 + TimesTen 7)

Disc-resident database setup 1200 72000 90% 10,6%

(Oracle 10gR2)

Fig. 3. Analysis tools connect to the partitioned database, whereas fresh data
from data sources arrive directly in the in-memory database partition to allow for
efficient preprocessing by transformation tools

ready in address space minimizes process boundary crosses, and
thus increases performance. It is guaranteed by the partitioning
scheme that no additional I/O cost arise during the transforma-
tion. Excluding additional I/O cost means that cost of prepro-
cessing phase solely depends on the function applied.

Result of the transformation is appended to the repository of
data and can be further used, e.g. for instant monitoring and
prediction.

4.4 Experimental results
Test system has been implemented to measure performance

gain of the proposed partitioned database architecture.
During the performance evaluation, we have used random

generated test data that met the following specification. Incom-
ing data records were textual and were composed of a timestamp
of seconds precision (19 characters), quality code (10 charac-
ters), data source identifier (40 characters) and the measured
value itself (decimal floating point number). Data arrival rate
was specified as 680,000min−1 and most of the queries involved
fresh data. Historical data needed to be retained on-line for 1 to
5 years depending on data source identifier.

We have implemented the partitioned database using Ora-
cle Database 10g Release 2 disc-resident database management
system and Oracle TimesTen 7 in-memory database manage-
ment system. As it was stated in Section 3.1, the disc-resident
database partition holds all the data (except raw sensory data),

and the memory resident partition holds a copy of the fresh data.
In our particular case, fresh data was defined as a moving win-
dow on the timestamp of data records. Raw sensory data enter
the memory resident database and it is not propagated to the
disc-resident database until it has been processed by the trans-
formation logic.

Experimental results are shown in Table 1. Experiments were
carried out on a consumer-class PC with AMD Athlon64 3000+
(1809MHz) CPU and and 7200rpm UltraATA 100 disc. We
found that using the proposed scheme we were able to process
data at 22% of the specified rate. To provide comparable mea-
surement, we have replaced the partitioned database in our im-
plementation by a solely disc-resident database tier. We found
that a naive implementation were able to work at a performance
of 5%, and a tuned version worked at a performance of 11%
utilizing the same hardware. In both of the cases, CPU worked
with ca. 10% performance spare.

5 Summary
In this paper we have focused on a specialized database archi-

tecture that allows resource sensitive and efficient preprocessing
of streaming sensory data.

After an introductory part we have discussed where do sen-
sory data come from, why do data need preprocessing and how
data partitioning can contribute to efficient data management.
We then moved on to discussion of the proposed partitioned
database scheme. We discussed its architecture and showed that
in three cases data representation changes were needed between
partitions. This partitioning scheme needed to show a transpar-
ent view for the user applications, so we described two ways of
transparent data retrieval: query routing and execution fallback.

Having discussed all the tools and concepts we needed, we
moved to discussion of our proposed preprocessing path uti-
lizing the partitioned database scheme, and showed where do
performance gain come from. We also presented experimental
results where we were able to achieve 440% performance gain
using the proposed partitioning scheme.

References
1 Cormode G, Garofalakis M, Streaming in a Connected World: Querying

and Tracking Distributed Data Streams, Tutorial in 32nd International Con-
ference on Very Large Data Bases. Seoul, Korea, (Summer September 12).

2 Michelberger P, Szeidl L, Várlaki P, Alkalmazott folyamatstatisztika és

idősor-analízis (Applied process-statistics and time series analysis), Typotex,
Budapest, 2001, ISBN 978-9-639132-44-3.

3 Coaquira F, Acuna E, Applications of rough sets theory in data preprocess-

ing for knowledge discovery, World Congress on Engineering and Computer
Science 2007, San Francisco, CA, USA., 2007.

In-memory preprocessing of data – a partitioned relational database approach 1272010 54 3-4



4 Hobbs L, Online Archiving with Oracle ILM & COPAN Systems’ MAID

Technology, Oracle-Copan white paper, (February, 2008).
5 Garcia-Molina H, Salem K, Main Memory Database Systems: An

Overview, IEEE Transactions on Knowledge and Data Engineering, 4(6),
(December, 1992).

6 Lehman T J, Carey M J, Query Processing in Main Memory

Database Management Systems, Proceedings of the 1986 ACM SIG-
MOD international conference on Management of data, 15(2), DOI
http://doi.acm.org/10.1145/16894.16878.

7 Analyti A, Pramanik S, Fast search in main memory databases, Proceed-
ings of the 1992 ACM SIGMOD international conference on Management of
data, 21(2), DOI 10.1145/141484.130317.

8 Bohannon Ph, McIlroy P, Rastogi R, Main-Memory Index Structures

with Fixed-Size Partial Keys, Proceedings of the 2001 ACM SIGMOD in-
ternational conference on Management of data SIGMOD ’01, 30(2), DOI
http://doi.acm.org/10.1145/375663.375681.

9 Rajamani R, Oracle Database 11g: Secure Files – An Oracle White Paper,
(June 2007).

Per. Pol. Elec. Eng.128 József Marton / Sándor Gajdos


	Introduction
	Sensory data, preprocessing and partitioning
	Sensory data
	Purpose of preprocessing
	Data and database partitioning

	Partitioned database
	Architecture
	Migration of data
	Options for transparent data access
	Implementations

	Preprocessing: traditional and proposed way
	Where to preprocess?
	Off-line preprocessing
	Proposed preprocessing path
	Experimental results

	Summary

