
Ŕ periodica polytechnica

Electrical Engineering
53/1-2 (2009) 3–9

doi: 10.3311/pp.ee.2009-1-2.01
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2009

RESEARCH ARTICLE

Beyond the limits of kinematics in
planning keyframed biped locomotion
Tamás Juhász / Tamás Urbancsek

Received 2010-05-22

Abstract
Keyframed motion planning is a technique that specifies a

robot motion by its joint variable samples in discrete time-steps.
In this paper, we aim to provide an off-line (i.e. non real-time)
dynamic motion optimizing method for keyframed humanoids.
Let’s assume that a desired reference movement has been de-
signed, it can be simulated using a real-time kinematics model.
Due to dynamic effects the robot segments will not exactly follow
the reference trajectories. Assuming a detailed, sophisticated
dynamics model (running offline) we can formulate a norm that
expresses the difference of dynamic and kinematic simulations.
In this article we present our idea, how the motion could be
automatically tailored by lowering this norm using numerical
methods in a way, that the output of the dynamic model better
approximates the reference motion. Finally, we show our exper-
imental results within a modern simulation environment as well
as on our test humanoid platform.

Keywords
Humanoid · keyframe · motion planning · dynamics

Acknowledgement
We would like to acknowledge the European Commission and

the Fraunhofer Society for the Marie Curie EST Program, fur-
thermore the Hungarian Scientific Research Fund grant No.:
T-042634OTKA and the EuroPR Computers Ltd for their kind
support in practical exploitation of the research results.

Tamás Juhász

Department Virtual Engineering, Fraunhofer Institute for Factory Operation and
Automation„ Sandtorstrasse 22, D-39106 Magdeburg„ Germany
e-mail: Tamas.Juhasz@iff.fraunhofer.de

Tamás Urbancsek

Department of Control Engineering and Information Technology, BME, Magyar
tudósok krt. 2, H-1117 Budapest„ Hungary
e-mail: urbi@iit.bme.hu

1 Introduction
The methods of locomotion planning for biped robots have

been studied for many years. Presently, several companies have
announced the commercial availability of various humanoid
robot prototypes with diverse controllability.

However a family of existing (small) humanoids is being con-
trolled in a discrete time manner (using so called "keyframes").
The keyframe technique lets us specify the target angular posi-
tion of the joints only in discrete time-steps, whereby the length
of the individual intervals is also defined. These platforms have
built-in path planning algorithms and have their own control
electronics: i.e. no external feedback is given about actual joint
torques. They do not support the widely spread methods, thus
they need a different approach for locomotion planning.

Humanoids should keep their dynamic balance in order not to
fall down while walking. Therefore besides geometric motion
planning and kinematics, dynamical effects should also be taken
into account.

In case of a biped locomotion, start and goal positions are
given in a virtual environment. Some existing motion-planner
methods (the lazy RPM procedure [2], the randomized planning
techniques [3, 5] or the footstep planning [4]) give continuous
time functions how to move the robot through the desired path.
This means, the reference signal for all the robot joints will be
set in every moment.

Albeit, these techniques cannot be used directly for those
kinds of systems, which can only be regulated in a discrete
time manner externally (using so called “keyframe” inputs).
Keyframed humanoids allow the user to specify target servo an-
gles only for discrete moments; their onboard path planner in-
terpolates the reference path for the actual time using nth order
polynomial approximations.

In a special case, when n = 1, we talk about linear interpo-
lation: the reference path in servo space is a broken line; the
reference (angular) speed of the every (rotational) servo remains
constant within each of the intervals.

The joint correction signals are mostly produced in a decou-
pled way by on-board or in-servo controllers and the user has no
access to them.

Beyond the limits of kinematics in planning keyframed biped locomotion 32009 53 1-2

http://www.pp.bme.hu/ee

Some systems do not even allow real-time tracking of mo-
tion execution; actual joint values cannot be read externally. For
these robots the whole motion shall be planned in advance.

This paper deals with these biped platforms and proposes a
different approach for locomotion planning.

2 Keyframe based motion planning
2.1 Keyframed character animation
Among the various numerical techniques, the keyframe

methodology can also be used to define a robot motion.
Each keyframe includes a snapshot of robot servo parameters

and a timestamp that defines the time of sampling. Thereby a
robot motion can be defined by a series of keyframes – here-
inafter we will refer to them also as motion phases.

Each keyframe includes a snapshot of robot servo parameters
and a timestamp that defines the time of sampling. Thereby a
robot motion can be defined by a series of keyframes – here-
inafter we will refer to them also as motion phases.

2.2 Role of inverse kinematics and inverse geometry in mo-
tion planning
The keyframe-based method combined with inverse kinemat-

ics makes character animation design faster. The animator de-
fines the new motion phase by altering the previous one. He can
move segments both in servo and in Cartesian space: e.g. lift-
ing up left foot or translating body forward. Servo values are
computed then by the inverse geometric model. If the animator
takes a snapshot of the actual robot state a new motion phase is
created.

Using this technique an arbitrary locomotion can be designed.
The reference motion is played with help of the kinematic
model.

Using this technique an arbitrary locomotion can be designed.
The reference motion is played with help of the kinematic
model.

2.3 Kinematic model
Let us assume our biped robot has J joints, we will refer to

them 1 ≤ j ≤ J . The robot has then J + 1 segments indexed by
0 ≤ j ≤ J. We can define K keyframes, when we define the τ k

length of the kth time interval (→ τ vector) between the phases
k and (k −1), as well as the qk j joint angles (→2 [K×J] matrix).

The robot has a hierarchical structure, where the torso seg-
ment plays the role of the root node. If we know all joint angles,
we can calculate the local pose of each segment (where “local”
means relative to the torso).

As the torso has the segment number j=0, let us call the
startup pose of that segment 000 =

j0t |t=0 which is a 6 compo-
nent vector in global Cartesian space as 3 position coordinates
and 3 Euler-angles describe the pose of an object in 3D space.

In kinematical modeling it can be assumed that the pose of a
robot segment does not change during the motion phase. This
so called “unyielding” object can be one of the feet: it stays

always on the ground and every segment moves relatively to it.
The index of the unyielding segment is also a parameter of each
motion phase, so we introduce the u vector with length k for
these indices during the whole motion.

If we know the interpolation method between the keyframes,
we can formulate a continuous vector-functional, describing the
pose of the j th segment in global Cartesian-space:

j0Kin(t) ≡
j9Kin(2, u, τ, 000, t) , 0 < j ≤ J (1)

The j0Kin(t)vector has a dimension of 6 ·0Kin(t) will be used
for the aggregate pose vector with 6*(J+1) long representing the
pose of every segment:

0Kin(t) ≡ 9Kin(2, u, τ, 000, t) (2)

From now on, the non-linear operator 9Kin will be called the
kinematic model of the robot.

3 Iterative motion correction using dynamic model
Let us assume we designed a reference motion using the

keyframe-technique: apparently this will run only in the ideal
virtual world smoothly. Nevertheless this motion represents ex-
actly what we would like to achieve with the real robot (e.g.:
stepping forward by a given step length). If the servos could
exactly follow the reference signal, 0Kin(t) would describe the
robot state in Cartesian space. Considering the dynamic effects
of the real world, there will be some difference between the real
and the reference motions (e.g.: the given forward-step will be
shorter or longer) – in extreme case the robot might also fall. We
present an algorithm that finds a new motion that approximates
0Kin(t) better in real world.

3.1 Output of dynamics simulation
As a first step, the dynamic model of our robot has to be built

(the general procedure is not included in this article, but details
can be found in [7]).

Our motion-optimization process uses an iterative approach,
where the 2 input matrix and τ will vary step by step. Using
dynamic simulation we have the following output after i steps:

0
Dyn
(i) (t) ≡ 9Dyn

{
2(i), u, τ(i),

000

}
(t) (3)

0
Dyn
(i) (t) is a vector-scalar function of dimension 6·(J + 1), and

it represents the time-dependent pose of all the robot segments,
but using the dynamic model for the particular time.

3.2 Iterative conformance enhancement
Taking a given iteration into account, the difference of the ac-

tual output of the dynamics simulation and the reference motion
is also a vector-scalar function:

0(i)(t) = 0
Dyn
(i) (t) − 0Kin(t) (4)

In some cases the position error has higher priority than the ori-
entation error; furthermore it is usually desired to have better

Per. Pol. Elec. Eng.4 Tamás Juhász / Tamás Urbancsek

compliance on the feet as for example on the head. Each seg-
ment has a 6 dimensional w j pose-weight vector, so for the
whole system the following diagonal weight matrix can be in-
troduced:

W(t) = diag < w0(t), wl(t), . . . w j (t) > (5)

This W matrix has [(J + 1) · 6 × (J + 1) · 6] dimensions. In the
ith iteration we can define a weighted error function with help of
an inner product:

E2
(i) (t) =< W · 0(i)(t), W · 0(i)(t) > (6)

Using this error function we want to define aχnorm, in order
to have a non-negative scalar value that represents the corre-
spondence between the reference motion and the simulated one
(considering the whole simulation length is T):

χ(i)

{
2(i), u, τ(i),

000

}
=

T∫
0

E2
(i)(t) · dt (7)

One can easily see that all members χ(i)of the series χdefine a
norm for the 0(i)(t) functions, which form a Hilbert space over
this norm. As we want to lower this norm, we need to alter
the 2(i) and τ(i) input parameters each step, and leave the other
input variables constant. During the steps some boundary con-
ditions (initial and final servo configurations, motion duration,
etc.) have to be fulfilled.

We would like to have a monotonous descending series of χi

elements to reach the optimal input keyframes:

(2opt, τopt) = argmin
(2,τ)

χ
{
2, u, τ, 000

}
(8)

In the next section we present a numerical solution for this prob-
lem.

3.3 Numerical solution
The goal of the numerical correction algorithm is that the dy-

namical behavior approximates the reference movement.
Let us define D as a subset of input parameter domain x0 :=

(2K in, τK in) with the following properties: D shall be the
largest connected subset that fulfils all the boundary conditions
and contains all the motion parameter combinations where the
robot does not fall down and contains the reference movement.

Before applying any numerical optimization method the fol-
lowing presumptions must be taken

• χ(x)shall be continuous and differentiable over D,

• close to the boundaries of D the negative gradient −∇χ points
inwards,

• the optimum xopt = (2opt, τopt) lies inside of D,

• there are no other local extremities.

Without the exact mathematical proof, we show that in practical
cases these presumptions hold

• As long as the robot does not fall down, any infinitesimal
change in input parameters effects a proportional infinitesimal
change in norm. It is clear that there will be a discontinuity in
the norm function where the robot falls.

• Nearby the boundaries of D the robot motion becomes un-
stable. The robot body starts to oscillate, therefore the robot
segments will have more significant difference from the ref-
erence motion, thus the χ norm grows. Consequently, the
negative gradient vector points inwards.

• The animator can create a motion, which “seems quite dy-
namic”; the robot remains standing, and does what he wanted;
thus the motion is in D and close to the optimum we search.

It is clear that the final motion will not match the reference mo-
tion. It might be impossible to follow due to ignored dynamics.
Therefore, its norm will not reach zero. A local optimum is
reached where the gradient is zero.

χ(x) is a strongly non-linear function of its input parame-
ters with narrow potential tunnels, therefore we decided to im-
plement the non-linear conjugated gradient method described in
[8].

For this method we needed the gradient of the potential
function. We computed it numerically in a component-by-
component way using partial differentials. For the i th compo-
nent:

∇χ(x)i =

[
χ(x + 1xi) − χ(x)

1xi

]
, 1xi = ±ε · ei (9)

where ei is the i th basis vector of the input space. As D is
bounded, it can happen that a x + 1xi vector points outside of
D. It is very uncommon as the negative gradients of D at the
boundaries point inwards, so the algorithm does not approach
the boundaries. If it is still the case, one has to take the in-
verse of 1xi . In an extreme case if it still points outside of D,
then D is very thick along that dimension, most likely the algo-
rithm has reached an extremity of D. The obvious opportunity
is to renounce the derivative in this direction at the particular
step. In this iteration the dynamical simulation has to be exe-
cuted (J*K + K+1) times.

At initial phase, the algorithm has to perform a line search
along the direction of steepest descent. It is an iterative method
that should find the minimum along this line. It is a one-
dimensional search method. The result is x1.

Then, the algorithm consists of 5 steps:

1 Compute the gradient in the actual position: xn ,

2 Compute βn according to the Polak–Ribière formula:

βn = max
[
∇χ(xn)T

∗ (∇χ(xn) − ∇χ(xn−1))

∇χ(xn−1)T ∇χ(xn−1)
, 0

]
(10)

3 Compute the next conjugated direction

3xn = ∇χ(xn) + βn3xn−1 (11)

Beyond the limits of kinematics in planning keyframed biped locomotion 52009 53 1-2

4 Perform a line search along the last conjugated direction:

min
αn

χ(xn + αn ∗ 3xn) (12)

5 Next iteration will be then

xn+1 = xn + αn∗3xn (13)

The algorithm ends if the gradient sinks below a given thresh-
old. Note that the stability reserve of motion is not guaranteed
by the algorithm. It is mainly depending on the reference mo-
tion.

4 Implementation
At the Department of Control Engineering and Information

Technology of Budapest University of Technology and Eco-
nomics we have a modified version of a KHR-1 humanoid robot
(see Fig. 1), the original of which is a commercial product of
Kondo Kagaku Co. Ltd., Japan. This experimental biped plat-
form is 34 centimeters tall, has 21 degrees of freedom, and has
an onboard control electronic that can interpret only the afore-
mentioned keyframe-based motions.

the derivative in this direction at the particular step. In this step the dynamical

simulation has to be executed (J*K +K+1) times.

At initial phase, the algorithm has to perform a line search along the direction of

steepest descent. It is an iterative method that should find the minimum along this

line. It is a one-dimensional search method. The result is x1.

Then, the algorithm consists of 5 steps:

1. Compute the gradient in the actual position: xn ,

2. Compute βn according the , Polak–Ribière formula:

∇∇

∇−∇∇
=

−−

− 0,
)()(

))()((*)(
max

11

1

n

T

n

nn

T

n
n

xx

xxx

χχ

χχχ
β (10)

3. Compute the next conjugated direction

1)(−Λ+∇=Λ nnnnx xx βχ (11)

4. Perform a line search along the last conjugated direction:

)*(min nnn

n

xx Λ+ αχ
α

 (12)

5. Next iteration will be then

 xn + 1 = xn + αn*Λxn (13)

The algorithm ends if the gradient sinks below a given threshold. Note that the

stability reserve of motion is not guaranteed by the algorithm. It is mainly

depending on the reference motion.

4 Implementation

At the Department of Control Engineering and Information Technology of

Budapest University of Technology and Economics we have a modified version of

a KHR-1 humanoid robot (see Figure 1), the original of which is a commercial

product of Kondo Kagaku Co. Ltd., Japan. This experimental biped platform is 34

centimeters tall, has 21 degrees of freedom, and has an onboard control electronic

that can interpret only the aforementioned keyframe-based motions.

Figure 1: Our humanoid (KONDO KHR-1) Fig. 1. Our humanoid (KONDO KHR-1)

4.1 Kinematics modeler
We have developed a kinematics-based gait-authoring appli-

cation for keyframe-controlled robots. This program can be used
by an experienced 3D animator to create the keyframes of a de-
sired motion in the virtual world. For this purpose many kinds
of interactive tools stay at the user’s disposal (a screenshot of
the user interface can be seen on Fig. 2).

For each phase of the motion that is currently being edited,
one can use the constrained inverse kinematics tools first with
the mouse for draft setups, and later fine tune a given group of
joints either with the mouse or with the keyboard manually. The
length of the individual phases can also be varied, of course.

Assuming our robot is “standing at attention” (we call it as the
initial pose), in our example our goal is a single stepping loco-
motion, where the real robot has to step forward with its left foot
exactly 3 centimeters, and then finish movement with the ini-
tial pose. We have modeled this locomotion using 9 keyframes

(phases), where the startup and the final phase contain exactly
the same servo angles. Meanwhile a double support phase (both
feet on the floor) transfers to a single support phase (standing on
the right foot, swinging the left one), and finally we finish in a
double support phase again.

The output of this task is a smooth, harmonic movement in the
ideal virtual world (note, that for the time being we neglect the
dynamical behavior of the robot). If we play back this motion
using a dynamic model, it definitely behaves differently. It is
predictable that due to inertial-, contact- and friction forces the
real dynamical behavior will issue a pose error at the end, con-
taining two components: a real robot will probably step shorter
or longer than 3 cm (position error), and it might deflect from
the ideal forward direction (orientation error).

4.2 Using dynamic multibody simulation
In order to overcome the pose error between the realized- and

the designed reference motion, we use our presented iterative
procedure that reduces this difference. For our method we need
a fair dynamic model of the robot.

The Dymola [9] is a multi-engineering modeling and simu-
lation tool, developed by Dynasim AB, Sweden. The multi-
engineering capabilities of Dymola present new and revolution-
ary solutions for modeling and simulation as it is possible to
simulate the dynamic behavior and complex interactions be-
tween systems of many engineering fields, such as mechanical,
electrical, thermodynamic, hydraulic, pneumatic, thermal and
control systems. This means that users of Dymola can build
more integrated models and have simulations results that better
depict reality. Dymola interprets the declarative object-oriented
modeling language Modelica [10], and has interfaces to use ad-
ditional external user modules written in C or FORTRAN lan-
guages.

In Dymola we have built a detailed electro-mechanics model
(Fig. 3) of the KHR-1 humanoid:

We have developed special building components, which ex-
tend the standard models from Modelica.Mechanics.MultiBody
library. We had to model contact between objects (and collision
response in this manner) and the KRS-784 ICS Digital Servo,
which is used in the real KHR-1 robot.

4.2.1 Servo model
The basic actuated revolute joint is encapsulated in a com-

plex servo model (Fig. 4) that contains also the electronic model
of the KRS-784. The target angle position control loop is im-
plemented with a simple P controller (the closed loop contains
an integrator element, because of the DC motor model). Some
parameters of the servo model (e.g.: permanent DC motor’s
Vnominal, Inominal, Ra , La electromagnetic parameters, rotor iner-
tia, gear ratio, nomial rpm speed) can be found in the data-sheet
of the KRS-784, and the others are identified after doing some
tests.

Per. Pol. Elec. Eng.6 Tamás Juhász / Tamás Urbancsek

4.1 Kinematics modeler

We have developed a kinematics-based gait-authoring application for keyframe-

controlled robots. This program can be used by an experienced 3D animator to

create the keyframes of a desired motion in the virtual world. For this purpose

many kinds of interactive tools stay at the user’s disposal (a screenshot of the user

interface can be seen on Figure 2).

For each phase of the motion that is currently being edited, one can use the

constrained inverse kinematics tools first with the mouse for draft setups, and later

fine tune a given group of joints either with the mouse or with the keyboard

manually. The length of the individual phases can also be varied, of course.

Figure 2: Main GUI of our kinematics modeler

Assuming our robot is “standing at attention” (we call it as the initial pose), in our

example our goal is a single stepping locomotion, where the real robot has to step

forward with its left foot exactly 3 centimeters, and then finish movement with the

initial pose. We have modeled this locomotion using 9 keyframes (phases), where

the startup and the final phase contain exactly the same servo angles. In the

meanwhile a double support phase (both feet on the floor) transfers to a single

support phase (standing on the right foot, swinging the left one), and finally we

finish in a double support phase again.

The output of this task is a smooth, harmonic movement in the ideal virtual world

(Note, that for the time being we neglect the dynamical behavior of the robot). If

we play this motion on a real robot back, it will definitely behave different. It is

foreseeable, that due to inertial-, contact- and friction forces the real dynamical

behavior will issue in a pose error at the end, containing two components: our real

robot will probably step shorter or longer than 3 cm (position error), and it might

deflect from the ideal forward direction (orientation error).

4.2 Using dynamic multibody simulation

In order to overcome the pose error between the realized- and the designed

reference motion, we use our presented iterative procedure that reduces this

difference. For our method we need a fair dynamic model of the robot.

The Dymola [9] is a multi-engineering modeling and simulation tool, developed

by Dynasim AB, Sweden. The multi-engineering capabilities of Dymola presents

new and revolutionary solutions for modeling and simulation as it is possible to

simulate the dynamic behavior and complex interactions between systems of

Fig. 2. Main GUI of our kinematics modeler

many engineering fields, such as mechanical, electrical, thermodynamic,

hydraulic, pneumatic, thermal and control systems. This means that users of

Dymola can build more integrated models and have simulations results that better

depict reality. Dymola interprets the declarative object-oriented modeling

language Modelica [10], and has interfaces to use additional external user

modules written in C or FORTRAN languages.

In Dymola we have built a detailed electro-mechanics model (Figure 3) of the

KHR-1 humanoid:

Figure 3: Our humanoid model in Dymola environment

We have developed special building components, which extend the standard

models from Modelica.Mechanics.MultiBody library. We had to model contact

between objects (and collision response in this manner) and the KRS-784 ICS

Digital Servo, which is used in the real KHR-1 robot.

4.2.1 Servo model

The basic actuated revolute joint is encapsulated in a complex servo model

(Figure 4) that contains also the electronic model of the KRS-784. The target

angle position control loop is implemented with a simple P controller (the closed

loop contains an integrator element, because of the DC motor model). Some

parameters of the servo model (e.g.: permanent DC motor’s Vnominal, Inominal, Ra, La

electromagnetic parameters, rotor inertia, gear ratio, nomial rpm speed) can be

found in the data-sheet of the KRS-784, the others and are identified after doing

some tests.

Figure 4: Our electro-mechanics model of a KRS-784 servo

Fig. 3. Our humanoid model in Dymola environment

4.2.2 Contact and collision model
As a part of the Dymola 6.0d environment, the stan-

dard Modelica 2.2.1 multibody library does not include
contact processing. We had to extend the basic Model-
ica.Mechanics.MultiBody.Parts.Body rigid body model (con-
taining shape, mass, inertia tensor and the Newton/Euler equa-
tions of dynamics) with the support of collision handling.

In an articulated multibody system there are dynamic con-
straints between the connected rigid bodies. Dymola solves
the arisen differential algebraic equations (DAEs) and ordinary
differential equation sets (ODEs) internally (partially symboli-
cally), where all state variables – including positions and veloc-

many engineering fields, such as mechanical, electrical, thermodynamic,

hydraulic, pneumatic, thermal and control systems. This means that users of

Dymola can build more integrated models and have simulations results that better

depict reality. Dymola interprets the declarative object-oriented modeling

language Modelica [10], and has interfaces to use additional external user

modules written in C or FORTRAN languages.

In Dymola we have built a detailed electro-mechanics model (Figure 3) of the

KHR-1 humanoid:

Figure 3: Our humanoid model in Dymola environment

We have developed special building components, which extend the standard

models from Modelica.Mechanics.MultiBody library. We had to model contact

between objects (and collision response in this manner) and the KRS-784 ICS

Digital Servo, which is used in the real KHR-1 robot.

4.2.1 Servo model

The basic actuated revolute joint is encapsulated in a complex servo model

(Figure 4) that contains also the electronic model of the KRS-784. The target

angle position control loop is implemented with a simple P controller (the closed

loop contains an integrator element, because of the DC motor model). Some

parameters of the servo model (e.g.: permanent DC motor’s Vnominal, Inominal, Ra, La

electromagnetic parameters, rotor inertia, gear ratio, nomial rpm speed) can be

found in the data-sheet of the KRS-784, the others and are identified after doing

some tests.

Figure 4: Our electro-mechanics model of a KRS-784 servo
Fig. 4. Our electro-mechanical model of a KRS-784 servo

ities – have to be differentiable. Thus there is no way to use the
other popular impulse-based collision response method, which
would require sometimes overriding the objects’ velocities in-
stantaneously. This is not allowed in Dymola – because this
would make the velocity vectors not differentiable. Because of
this, we must use a force based method in collision response.

Besides Modelica language, we used partially external C++
implementation with the popular SOLID interference detection
library [11], which can be used to retrieve contact points be-
tween pairs of objects (it uses the GJK algorithm [12]), but it
does not calculate the response, by default. We made a spring
and damper material model, and calculate the contact force in
normal direction (along the vector defined by two contact points)
the following way:

|FNORMAL| =

{
0, p < 0[
1 +

1−ε
ε·υCOLL

· ṗ⊥

]
· S · p, p ≥ 0

(14)

Beyond the limits of kinematics in planning keyframed biped locomotion 72009 53 1-2

The scalar ‘p’ means the penetration depth [m]. If we project
the relative velocity of the contact points to normal direction
vector, we get the signed ṗ⊥ [m/s] component of penetration
velocity, the value of which is stored in ‘vCOLL’ at the moment
of first contact. The spring coefficient ‘S’ [N/m] and the restitu-
tion factor ε of the contacting materials are used in the previous
formula.

When the relative velocity of two interpenetrating bodies have
nonzero tangential component (vt), it is very important that we
calculate friction forces using a friction model. Without this ef-
fort our virtual robot will not be able to make any translational
movement at all. These forces are parallel to the plane, the nor-
mal of which is the vector between the two contact points. The
friction model is the following:

|FFRICTION| =

{
µkin · |FNORMAL| , |vt | > vst

µstat ·
|vt |
vst

· |FNORMAL| , |vt | < vst
(15)

We have two friction coefficients for the static and for the kinetic
cases. The constant speed value vst represents the limit, which
influences whether objects are considered as sliding or stay rest-
ing. The result of these two forces will act in opposite directions
on both objects in each colliding pair.

4.2.3 Implementing our iterative enhancement method for
the realized motion
We implemented the iterative algorithm in Matlab environ-

ment. Fig. 5 explains the block scheme of the implementation,
with the three main software components:

4.2.3 Implementing our iterative enhancement method for the realized
motion

We implemented the iterative algorithm also in Dymola environment. Figure 5

explains the block scheme of the implementation, with the three main software

components:

Figure 5: The three main modules of the implemented algorithm

The “Kinematic Model” module serves the reference pose-time functions of all

robot segments using linear keyframe interpolation. The “Enhancer” module can

query the pose of a given segment at any time instant between 0 and T (the

simulation length).

In all iterations the “Dynamic Model” module calculates actual pose functions for

the segments, using the internally constructed dynamic model. The Enhancer

analyses the difference of these outputs and calculates the new input keyframes

(joint angles and interval-lengths) according to the method presented in sections

3.2 and 3.3. The output of the Enhancer is fed back to the Dynamic Model, thus

forming a closed loop of iterative motion enhancement procedure.

5 Results and application

We tested our locomotion enhancement algorithm on several stepping motions. In

a particular case the kinematic model prescribed a step forward motion starting

with the right foot and the length of 3 cm. The robot has taken 2.7 cm askew in

real and turned about 11 degrees right.

The diagonal weight matrix W was set to identity to Cartesian elements and 0.1 to

the angles, so that angular errors were punished equally to the arc length of a 10

cm long section (average height of center of gravity). The simulation length (T)

was set to 1.5 times as long as the last motion phase timestamp, in order that step

length becomes dominant in the optimization criterion; in addition, the final robot

body oscillation at the end of the optimized motion could also have been decayed.

The motion correction algorithm runs very long. In Dymola the dynamic model of

the humanoid ran almost half the real-time on an Intel Core 2 Duo processor. The

reference keyframed motion used in our example is 1.5 s long; Dymola requires

~4.5 s for each run of the dynamic model. Computation of the gradient requires

199 simulation runs – so it takes about 15 minutes. In addition the line search

method requires 40 additional iterations, thus a single enhancement cycle requires

ca. 18 minutes. Finally the total simulation time was approximately 2 days. In

[]
Kin

6,22Γ

[]9,21Θ0[]90 τ

0

0
Γ

[]9u
Kinematic

Model

Dynamic
Model

Enhancer

[]9,21iΘ[]9τi

[]
Dyn

6,22iΓ

Reference Motion: Optimization loop:

[]9,211i Θ+

[]91i τ+

Fig. 5. The three main modules of the implemented algorithm

The “Kinematic Model” module serves the reference pose-
time functions of all robot segments using linear keyframe in-
terpolation. The “Enhancer” module can query the pose of a
given segment at any time instant between 0 and T (the simula-
tion length).

In all iterations the “Dynamic Model” module calls a Dymola
block that calculates actual pose functions for the segments, us-
ing the created dynamic model. The Enhancer analyses the dif-

ference of these outputs and calculates the new input keyframes
(joint angles and interval-lengths) according to the method pre-
sented in sections 3.2 and 3.3. The output of the Enhancer is
fed back to the Dynamic Model, thus forming a closed loop of
iterative motion enhancement procedure.

5 Results and applications
We tested our locomotion enhancement algorithm on several

stepping motions. In four particular cases the kinematic model
prescribed a step forward motion starting with the right foot and
with various lengths (e.g.: 2.5, 3, 4 and 5 cm). Using the dy-
namic model the robot stepped askew and turned about 7-11 de-
grees right.

The components of the wi weight vectors in equation (5) were
always set to identity for the position coordinates and 0.1 for the
Euler-angles, so that angular errors were punished equally to the
arc length of a 10 cm long section (average height of center of
gravity). The duration of the simulation (T) was set to 1.5 times
longer than the last motion phase timestamp, in order to incor-
porate the analysis of the oscillations at the end of the motions
that should also be decayed.

Fig. 6 shows the iterated norm function in the four aforemen-
tioned particular cases. The horizontal axis shows the iterations
taken by the enhancer algorithm. As the reference motions have
9 keyframes and the robot has J = 21 joints, the dimension of
the optimization problem were 9·(21+1)=198 in these examples.
This dimension equals also the number of complete iterations
that were running each time.

In order to normalize the vertical axis of Fig. 6, the result
norm values were divided here by their initial (t=0) values,
therefore each motion has a unit norm before the first iteration.

Fig. 6. The norm function during the optimization of four locomotions

It can be seen that such minima have been found for each ref-
erence motion, where the monotonous decreasing norm cannot
be reduced further. In the various cases the initial norm could
be lowered by 25-65 percent, so the matching of the reference
motion related to the dynamic simulation was improved signifi-
cantly.

Per. Pol. Elec. Eng.8 Tamás Juhász / Tamás Urbancsek

This motion correction algorithm runs very long, however the
demanded optimization of the reference motions doesn’t need
to be real-time. In Dymola the dynamic model of the humanoid
can run with a speed almost half the real-time on a 3 GHz Intel
Pentium 4 processor. The reference keyframed motions used in
our examples were 1.5 s long; Dymola requires ∼4.5 s for each
run of the dynamic model. Computation of the gradient (par-
tial differences along each dimension) requires 199 simulation
runs – so it takes about 15 minutes. In addition the line search
method (13) requires 40 additional iterations, thus a single en-
hancement cycle requires ca. 18 minutes. Our implemented
nonlinear conjugate gradient method requires at least as many
complete iterations as the dimensionality of the problem (198
in the examples above). Therefore the total optimization took
approximately 59 hours for a single motion.

The actual contact processing implementation introduces
rapidly changing state variables in the system. This makes the
ordinary differential equation set stiff, so the variable step-length
ODE-solver of Dymola has to take sometimes extreme small it-
eration steps. The whole implementation of our algorithm is
now a single-threaded process, so the main steps are carried out
strictly sequentially.

Despite its high time complexity our new algorithm can re-
sult smoother motions, so the real robots behave similarly to the
reference. Thanks to the well-designed reference motions, the
results are also robust to model parameter changes.

6 Future work
The generated reaction forces in 4.2.2 can be smoothed with

a polynomial in order to make the ODE better conditioned, so
the solver can take larger steps (thus simulation can run faster).
Sometimes – because of numerical precision problems – the al-
gorithm has to be reset to use rather the gradient direction in-
stead of following a line-search along the computed conjugate
direction.

Calculating the gradient vector in the first main step of
the algorithm requires numerical differentiation of a multi-
dimensional function. Using modern parallel computation sys-
tems (multi-core systems, computer clusters) this task could be
easily parallelized, so the algorithm could be considerably ac-
celerated.

References
1 Amato N, Bayazit O, Dale L, Jones C, Vallejo D, Choosing good distance

metrics and local planners for probabilistic roadmap methods, IEEE Trans.
Robot. & Autom. 16 (August 2000), no. 4, 442–447.

2 Bohlin R, Kavraki L, Path planning using Lazy PRM.
3 LaValle SM, Kuffner JJ, Randomized kinodynamic planning,

Proc. IEEE Int Conf. Robot. & Autom. (ICRA), May 1999, DOI
10.1109/ROBOT.1999.770022, (to appear in print).

4 Kuffner JJ, Nishiwaki K, Kagami S, Inaba M, Inoue H, Footstep planning

among obstacles for biped robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot.
& Sys. (IROS), October 2001, DOI 10.1109/IROS.2001.973406, (to appear
in print).

5 Kuffner JJ, Kagami S, Nishiwaki K, Inaba M, Inoue H, Dynamically-

stable motion planning for humanoid robots, Autonomous Robots (special
issue on Humanoid Robotics) 12 (2002), no. 1, 105–118.

6 Girard M, Interactive design of computer-animated legged animal motion,
IEEE Computer Graphics & Applications 7 (June 1987), no. 6, 39–51, DOI
10.1145/319120.319131.

7 Vukobratovic M, Borovac B, Surla D, Stokic D, Biped Locomotion: Dy-

namics, Stability, Control, and Applications, Springer-Verlag, Berlin, 1990.
8 Nonlinear conjugate gradient method – Wikipedia [2007.05.21], available at
http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient.

9 Dynasim AB: Dynamics Modeling Laboratory, available at http://www.
dynasim.com.

10 Modelica, available at http://www.modelica.org.
11 SOLID - Software Library for Interference Detection, available at http://
www.dtecta.com.

12 Gilbert EG, Johnson DW, Keerthi SS, A fast procedure for computing the

distance between complex objects in three-dimensional space, IEEE Journal
of Robotics and Automation 4 (1988), no. 2, 193–203.

Beyond the limits of kinematics in planning keyframed biped locomotion 92009 53 1-2

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient
http://www.dynasim.com
http://www.dynasim.com
http://www.modelica.org
http://www.dtecta.com
http://www.dtecta.com

	Introduction
	Keyframe based motion planning
	Keyframed character animation
	Role of inverse kinematics and inverse geometry in motion planning
	Kinematic model

	Iterative motion correction using dynamic model
	Output of dynamics simulation
	Iterative conformance enhancement
	Numerical solution

	Implementation
	Kinematics modeler
	Using dynamic multibody simulation
	Servo model
	Contact and collision model
	Implementing our iterative enhancement method for the realized motion

	Results and applications
	Future work

