
Ŕ periodica polytechnica

Electrical Engineering
53/1-2 (2009) 17–30

doi: 10.3311/pp.ee.2009-1-2.03
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2009

RESEARCH ARTICLE

Combining Description Logics and
object oriented models in an
information integration framework
Gergely Lukácsy / Péter Szeredi

Received 2007-10-16, revised 2008-03-13, accepted 2009-03-16

Abstract
We present an information integration system called SIN-

TAGMA which supports the semantic integration of heteroge-
neous information sources using a meta data driven approach.
The main idea of SINTAGMA is to build a so called Model Ware-
house, containing several layers of integrated models connected
by mappings. At the bottom of this hierarchy there are the mod-
els representing the actual information sources. Higher level
models represent virtual databases which can be queried, as the
mappings provide a precise description of how to populate these
virtual sources using the concrete ones.

The implementation of SINTAGMA uses constraints and logic
programming, for example, the complex queries are translated
into Prolog goals.

This paper focuses on a recent development in SINTAGMA
allowing the information expert to use Description Logic (DL)
based ontologies in the development of high abstraction level
conceptual models. Querying these models is performed us-
ing the Closed World Assumption as we argue that traditional
Open World DL reasoning is less appropriate in the context of
database oriented information integration environments.

Keywords
description logic · information integration · logic program-

ming

Acknowledgement
The authors acknowledge the support of the Hungarian

NKFP programme for the SINTAGMA project under grant no.
2/052/2004. We thank all the people participating in this project,
especially Tamás Benkő, the lead architect.

We are also grateful to the anonymous reviewers of this paper
and its preliminary version [22], for their insightful comments.

Gergely Lukácsy

Péter Szeredi

Department of Computer Science and Information Theory, BME, H-1117 Bu-
dapest, Magyar tudósok körútja 2, Hungary

1 Introduction
This paper presents the Description Logic modeling capabili-

ties of the SINTAGMA Enterprise Information Integration sys-
tem.

SINTAGMA is based on the SILK tool-set, developed within
the EU FP5 project SILK (System Integration via Logic &
Knowledge) [3]. SILK is a Prolog based, data centred, mono-
lithic information integration system supporting semi-automatic
integration of relational and semi-structured sources.

The SINTAGMA system extends the original framework in
several directions. As opposed to the monolithic SILK struc-
ture, SINTAGMA is built from loosely coupled distributed com-
ponents. The functionality has become richer as, among others,
the system now deals with Web Services as information sources.
The present paper discusses a recent extension of the system
which allows the integration expert to use Description Logic
models in the integration process.

This paper is a revised and extended version of the paper
presented at the ALPSWS ’07 workshop in Porto [22]. It is
structured as follows. Section 2 introduces description logic and
logic programming. In Section 3 we give a general introduction
to the SINTAGMA system, describing the main components, the
SILan modeling language, and the query execution mechanism.
In the next section we discuss the description logic extension
of SILan: we introduce the syntactic constructs and the mod-
eling methodology. Section 5 describes the execution mecha-
nism used when querying Description Logic models. Section 6
presents a fairly complex example, demonstrating the use of the
tools and techniques discussed previously. In Section 7 we ex-
amine related work. Finally, we conclude with a summary of
our results.

The examples we use in the upcoming discussions are part of
the integration scenario described in detail in Section 6. This
scenario represents a world where we attempt to integrate var-
ious information sources about writers, painters and their work
(i.e. books, paintings, etc.) and present this information in the
form of abstract views.

Combining Description Logics and object oriented models 172009 53 1-2

http://www.pp.bme.hu/ee

2 Background
Below we give a brief introduction to Description Logics and

logic programming as these technologies form the basis of our
work.

2.1 Description Logics
Description Logics (DL) [17] is a family of simple logic lan-

guages used for knowledge representation. DLs are used for de-
scribing various kinds of knowledge for a selected field. The
terminological system of a description logic knowledge base
consists of concepts, which represent sets of objects, and roles,
describing binary relations between concepts. Objects are the
instances occurring in the modelled application field, and thus
are also called instances or individuals.

A description logic knowledge base consists of two disjoint
parts: the TBox and the ABox. The TBox (terminology box), in
its simplest form, contains terminology axioms of the form C v

D (concept C is subsumed by D). The ABox (assertion box)
stores knowledge about the individuals in the world: a concept
assertion of the form C(i) denotes that i is an instance of concept
C , while a role assertion R(i, j) means that the objects i and j
are related through role R.

Concepts and roles may either be atomic (referred to by a con-
cept name or a role name) or composite. A composite concept
is built from atomic concepts using constructors. The expres-
siveness of a DL language depends on the constructors allowed
for building composite concepts or roles. Obviously there is a
trade-off between expressiveness and inference complexity.

We use the language ALCN (D) in this paper. ALCN (D)

concept expressions (often simply referred to as concepts) are
built from role names, concept names, and the top and bottom
concepts (> and ⊥) using the following constructors: intersec-
tion (C u D), union (C t D), negation (¬C), value restriction
(∀R.C), existential restriction (∃R.C) and number restrictions
(> n R and 6 n R). Here, C and D are concept expressions
and R is a role name. The two kinds of number restrictions
are jointly referred to as (Z n R). In ALCN (D) we can also
use concrete domains, such as integers or strings, when building
concepts. For a detailed introduction to description logics we
refer the reader to the first two chapters of [1].

2.2 Logic programming and Prolog
The main idea of Logic Programming is to use mathemati-

cal logic as a programming language. The execution of a logic
program can be viewed as a reasoning process.

Prolog (Programming in Logic) [26] is the first and so far
the most widely used logic programming language. Prolog uses
Horn-clauses and SLD resolution [25] for reasoning. The basic
elements of the Prolog execution process are procedure invoca-
tions based on unification and backtracking [28].

Prolog, and logic programming in general, is successfully
used in several areas of computer science. These include nat-
ural language processing, planning, different kinds of reasoning

systems, and information integration.
The notion of term is a principal concept of the Prolog lan-

guage. It is either (a) a simple value (number, string) or (b) a
variable or (c) a structure with a name and arbitrary number of
arguments. These arguments are Prolog terms themselves. The
name and the arity of a term together is referred to as the functor
of the term. A Prolog structure with three arguments can be seen
below:

’Work:class:220’(DT, [A, B, C, D, E], _) (1)

Here the name of the structure is ’Work:class:220’. The first
and the third arguments are variables. These are denoted by
identifiers starting with a capital letter or an underline. A sin-
gle underline (_) is an anonymous variable, the value of which
is of no interest. Multiple occurrences of such anonymous vari-
ables are considered different. The second argument of (1) is a
structure in a special list notation. A list is actually a recursive
structure [Head|Tail], consisting of a Head (its first element)
and a Tail, which is a list of the remaining elements. The list
in the second argument contains five variables and is given in
a simplified notation, i.e. [A,B,C,D,E], which, in fact, corre-
sponds to [A|[B|[C|[D|[E|[]]]]]]. Here [] represents an
empty list (a list with no elements).

A Prolog program consists of a set of clauses of the form
Head :- Body, meaning Head is implied by Body. The Head
is a term, while the Body is a term or a comma-separated
sequence of terms. Here the comma denotes a conjunction.
Clauses whose heads have the same functor are grouped together
into predicates. The name of a predicate is the shared structure
name of the heads of its clauses.

A Prolog goal (query) has the same form as a clause body.
The execution of a goal wrt. a Prolog program succeeds if an
instance of the goal can be deduced from the program. A goal
can succeed multiple times, providing different variable substi-
tutions as results. For example, let us consider the goal shown
below.

’Writer:class:234’(ID), ’Painter:class:236’(ID)

This complex goal consists of two goals, separated by a comma.
It succeeds if there is an instantiation of variable ID under which
both goals can be deduced from the given program (not shown
here). The result of the execution is the enumeration of such
IDs. Informally, this query enumerates those people who are
writers and painters at the same time.

Further control constructs such as disjunction (Goal1 ;
Goal2) and negation \+Goal are also supported by Prolog. The
latter is the so called “negation by failure”, which is not capable
of enumerating solutions, just checks if the execution of Goal
fails.

The standard for the Prolog language [26] defines a wide
range of built-in predicates. Of these we mention the predicate
bagof, which plays an important role in the execution of DL

Per. Pol. Elec. Eng.18 Gergely Lukácsy / Péter Szeredi

models. This predicate serves for collecting all solutions of a
goal. For example,

bagof(ID, (’Writer:class:234’(ID),

’Painter:class:236’(ID)), IDs)

collects the identifiers of all people who are writers and painters,
and returns these in the list IDs. An important property of
bagof is that it can return multiple solutions, if there are vari-
ables in its second argument which do not appear in the first.
For example, consider a predicate edge describing the edges of
a directed graph:

edge(a,b). edge(a,c). edge(c,d).

edge(d,a). edge(c,e).

By invoking the goal bagof(End, edge(Start, End),
EndPoints) we collect the endpoints of the edges. This goal
produces three answers, one for each possible value of variable
Start:

Start = a, EndPoints = [b,c]

Start = c, EndPoints = [d,e]

Start = d. EndPoints = [a]

More about the Prolog language can be read in the ISO stan-
dard for Prolog [26] and in textbooks, such as [10, 28].

3 SINTAGMA System Architecture
The overall architecture of the SINTAGMA system can be

seen in Fig. 1. The main idea of the system is to collect and
manage meta-information on the sources to be integrated. These
pieces of information are stored in the Model Warehouse, in the
form of UML-like models [12], constraints and mappings. This
way we can represent structural as well as non-structural infor-
mation, such as class invariants, etc. The Model Warehouse re-
sides in and is handled by the Model Manager component.

We use the term mediation to refer to the process of query-
ing SINTAGMA models. Mediation decomposes complex inte-
grated queries to simple queries answerable by individual infor-
mation sources, and, having obtained data from these, composes
the results into an integrated form. Mediation is the task of the
Mediator component.

Access to heterogeneous information sources is supported by
wrappers. Wrappers hide the syntactic differences between the
sources of different kinds, by presenting them to upper layers
uniformly, as UML models. These models (called interface
models) are entered into the Model Warehouse automatically.
The following subsections give a brief description of the main
SINTAGMA components.

3.1 The Model Manager
The Model Manager is responsible for managing the Model

Warehouse and providing integration support, such as model
comparison and verification (not covered in this paper). Here
we focus on the role of the Model Warehouse.

The content of the Model Warehouse is given in the language
called SILan which is based on UML [12] and Description Log-
ics [17]. The syntax of SILAN resembles IDL, the Interface
Description Language of CORBA [19]. We demonstrate the
knowledge representation facilities of SINTAGMA by a simple
SILan example showing the relevant features of the meta-data
repository (Fig. 2).

1 model Art {

2 class Artist: BuiltIns::DLAny {

3 attribute String name;

4 attribute Integer birthDate;

5 constraint self.creation.date > 1900;

6 };

7

8 class Work: BuiltIns::DLAny {

9 attribute String title;

10 attribute String author;

11 attribute Integer date;

12 attribute String type;

13 primary key title;

14 };

15

16 association hasWork {

17 connection Artist as creator;

18 connection Work as creation;

19 };

20 };

Fig. 2. SILan representation of the model Art

The example describes the model Art containing two classes,
Artist and Work. It also contains an association hasWork be-
tween artists and their works. We explain the details of this ex-
ample below.

3.1.1 Semantics of SILan models
The central elements of SILan models are classes and associa-

tions, since these are the carriers of information. A class denotes
a set of entities called the instances of the class. Similarly, an
n-ary association denotes a set of n-ary tuples of class instances
called links.

Classes can have attributes which are defined as functions
mapping the class to a subset of values allowed by the type of the
attribute. Classes can inherit from other classes. All instances of
the descendant class are instances of the ancestor class, as well.
In our example both Artist and Work inherit from the built-in
class BuiltIns::DLAny1 (cf. lines 2 and 8). See Section 4.3
for more details.

Associations have connections, an n-ary association has n
connections. In an association some of the connections can
be named, providing intuitive navigation. For example, the
connections of association hasWork, corresponding to classes

1In SILan double colons (::) separate the model name from the name of its
constituent (class, association, etc.).

Combining Description Logics and object oriented models 192009 53 1-2

PSfrag replaementsMetaServerDataServerComparatorModel Veri�erUni�erCorr. generatorData Veri�erSpe Advisor
Model ManagerModelWarehouseModelImport/Export

AgentCon�gu-rator Mediator
ClientProgramsBrowserShell. . .User

WrapperWrapperWrapper
Modelling Tool(Protege, Rose)Wrappers:- Relational- XML- RDF- HTML- Web Servie Fig. 1. The arhiteture of the SINTAGMA systemas lass invariants, et. The Model Warehouse resides in and is handled by theModel Manager omponent.We use the term mediation to refer to the proess of querying SINTAGMAmodels. Mediation deomposes omplex integrated queries to simple queries an-swerable by individual information soures, and, having obtained data fromthese, omposes the results into an integrated form. Mediation is the task ofthe Mediator omponent.Aess to heterogeneous information soures is supported by wrappers. Wrap-pers hide the syntati di�erenes between the soures of di�erent kinds, by pre-senting them to upper layers uniformly, as UML models. These models (alledinterfae models) are entered into the Model Warehouse automatially. The fol-lowing subsetions give a brief desription of the main SINTAGMA omponents.3.1 The Model ManagerThe Model Manager is responsible for managing the Model Warehouse andproviding integration support, suh as model omparison and veri�ation (notovered in this paper). Here we fous on the role of the Model Warehouse.The ontent of the Model Warehouse is given in the language alled SILanwhih is based on UML [12℄ and Desription Logis [17℄. The syntax of SILANresembles IDL, the Interfae Desription Language of CORBA [19℄. We demon-strate the knowledge representation failities of SINTAGMA by a simple SILanexample showing the relevant features of the meta-data repository (Figure 2).5

Fig. 1. The architecture of the SINTAGMA system

Artist and Work, are called creator and creation, respec-
tively (lines 17–18).

Classes can have a primary key, composed of one or more
attributes. This specifies that the given subset of the attributes
uniquely identifies an instance of the class. In our example, as
a gross simplification, attribute title serves as a key in class
Work, i.e. there cannot be two works (books, for example) with
the same title.

Finally, invariants can be specified for classes and associa-
tions using the object constraint extension of UML, the OCL
language [9]. Invariants give statements about instances of
classes (and links of associations) that hold for each of them.
The constraint in the declaration of Artist (line 5) is an invari-
ant stating that the publication date of each work of an artist is
greater than 19002. The identifier self refers to an arbitrary
instance of the context, in this case the class Artist. Then two
navigation steps follow. In the first step, by creation, we nav-
igate through the association hasWork to an arbitrary piece of
work of the artist, while in the second step, by date, we go from
the work to its publication date. Finally we state that this date is
always greater than 1900.

In addition to the object oriented modeling paradigm, the
SILan language also supports constructs from the Description
Logic (DL) world [17]. This recently added feature of SIN-
TAGMA is discussed in Section 4.

2This may be so because the underlying information sources are known to
be dealing with works of art of 20th century or later.

3.1.2 Abstractions
For mediation, we need mappings between the different

sources and the integrated model. These mappings are called
abstractions because they often provide a more abstract view
of the notions present in the lower level models. An example
abstraction called w0 can be seen in Fig. 3.

1 abstraction w0 (m0: Interface::Product,

2 m1: Interface::Description

3 -> m2: Art::Work) {

4

5 constraint

6 m1.id = m0.id and

7 m1.category = "artwork"

8 implies

9 m2.DL_ID = m0.name and

10 m2.title = m0.name and

11 m2.author = m0.creator and

12 m2.date = m0.creation_date and

13 m2.type = m1.subcategory;

14 };

Fig. 3. SILan representation of the abstraction populating class Work

This abstraction populates the class Work (cf. Fig. 2) in the
model Art using classes Product and Description, both from
the model Interface (lines 1–3). This means that the abstrac-
tion specifies how to create a “virtual” instance of class Work,
given that the other two classes are already populated (e.g. they
correspond to real information sources). In lines 1–3 the identi-
fiers m0, m1 and m2 are declared, and these are used throughout
the abstraction specification to denote instances of the appropri-

Per. Pol. Elec. Eng.20 Gergely Lukácsy / Péter Szeredi

ate classes.
The abstraction describes that given an instance of class
Product called m0 and an instance of class Description called
m1, for which the conditions in lines 6–7 hold, there exists an in-
stance m2 of class Work with attribute values specified by lines
9–133. Note that line 6 specifies that the id attributes of the two
instances have to be the same, and thus corresponds to a rela-
tional join operation. In our integration scenario (see Section 6)
Product and Description actually correspond to real-world
Oracle tables containing various products and their descriptions,
including books and paintings.

These two sources share the key id (line 6). While the first
one supplies four fields to Work objects (title, author, date
and DL_ID), the contribution of the second one is a single field
(type). However, this second source has information to ensure
that only relevant products (works of art) are included in class
Work, through the condition in line 7.

We note that other abstractions can also populate class Work.
In this case the set of instances of Work will be the union of the
instances produced by the appropriate abstractions. Note that if
a new information source is added, we only have to specify a
new abstraction corresponding to this source, while the existing
abstractions do not have to be modified.

Notice that the abstraction in Fig. 3 takes the form of an impli-
cation describing how the given sources can contribute to popu-
lating the high level class Art::Work. This is characteristic of
the Local as View integration approach [6].

3.2 The wrappers
Wrappers provide a common interface for accessing various

information source types, such as relational and object-oriented
databases, semi-structured sources (e.g. XML or RDF), as well
as Web-services.

A wrapper has two main tasks. First, it extracts meta-data
from the information source and delivers these to the Model
Manager in the form of SILan models. For example, in case
of relational sources, databases correspond to models, tables to
classes, columns to attributes, as shown in Fig. 4.

The other principal task of a wrapper is to transform queries,
formulated in terms of this interface model, into the format re-
quired by the underlying information source, and thus allow for
running queries on the sources.

3.3 The Mediator
The Mediator [2] supports the execution of queries on high

level model elements by decomposing them into interface model
specific questions. This is performed by creating a query plan
satisfying the data flow requirements of the sources. During the
execution of this query plan the data transformations described
in the abstractions are carried out. Whenever we query a model

3Attribute DL_ID comes from the class DLAny, of which class Work is a
descendant. It has a special role, as explained in Section 4.3.

element in SINTAGMA, the Model Manager provides the fol-
lowing two kinds of information to the Mediator:

1 the query goal itself, i.e. a Prolog term representing what to
query;

2 a set of mediator rules, using which the Mediator can decom-
pose the complex query into primitive ones (i.e. queries that
refer only to interface models).

For example, let us consider the query shown below involving
class Work.

query RecentWork

select *

from w: Art::Work

where w.date > 2000;

This query is looking for recent works, namely those instances
of the class Art::Work that were created after 20004. In this
case, the query goal is similar to the following simple Prolog
expression:

:-’Work:class:220’(DT,[ID,Ti,Au,Date,Ty],DA),

Date > 2000. (2)

Here, the first Prolog goal retrieves an instance of Art::Work.
The variables in this term will be instantiated during query exe-
cution. The predicate name ’Work:class:220’ is a concatena-
tion of three strings: the kind of the model element (class) and
its unique internal identifier (220), preceded by the unqualified–
and thus non-unique–SILan name (Work), provided for readabil-
ity. Model elements are often referred to by handles of the form
Kind(Id), e.g. class(220). Note that the above predicate name
represents the static type of the instances queried for, as opposed
to the dynamic type which can be different, if the returned object
happens to belong to a descendant class of Work.

The dynamic type of the queried instance, i.e. the handle of
the most specific class it actually belongs to, is returned in the
first argument of the goal. The second argument contains a list of
the static attributes. In the example we have five such variables,
the first of which is inherited from the class DLAny, while the
remaining four are the attributes of the class Work, see lines 9–
12 in Fig. 2). The last but one of these, Date, denotes the value
of the attribute date. The third argument of the query term, DA,
carries the values of the dynamic attributes. These represent the
additional attributes (not known at query time) of the instance if
it happens to belong to a descendant class of Art::Work.

The second part of the query goal corresponds to a simple
arithmetic OCL constraint, which uses the variable Date.

The mediator rules representing the abstraction w0, shown in
Fig. 3, take the following form (note that in w0 we stated that

4We could have created a class named RecentWork and populated it by an
appropriate abstraction. Then, instead of formulating a SILan query, we could
have simply directly asked for the instances of this class. The question whether
to use a query or an abstraction is a modeling decision.

Combining Description Logics and object oriented models 212009 53 1-2

PSfrag replaements

olumn → attribute
database → model

table → lass
Produt . . .name Stringid Integerreator Stringreation_date String

model Interfae {lass Produt {attribute String name;attribute Integer id;attribute String reator;attribute String reation_date;primary key id;};};
Interfae

Fig. 4. Modelling relational soures in SILanperformed by reating a query plan satisfying the data �ow requirements ofthe soures. During the exeution of this query plan the data transformationsdesribed in the abstrations are arried out. Whenever we query a model ele-ment in SINTAGMA, the Model Manager provides the following two kinds ofinformation to the Mediator:1. the query goal itself, i.e. a Prolog term representing what to query;2. a set of mediator rules, using whih the Mediator an deompose the omplexquery into primitive ones (i.e. queries that refer only to interfae models).For example, let us onsider the query shown below involving lass Work.query ReentWorkselet *from w: Art::Workwhere w.date > 2000;This query is looking for reent works, namely those instanes of the lassArt::Work that were reated after 20004. In this ase, the query goal is sim-ilar to the following simple Prolog expression::- 'Work:lass:220'(DT, [ID,Ti,Au,Date,Ty℄, DA), Date > 2000. (2)Here, the �rst Prolog goal retrieves an instane of Art::Work. The variablesin this term will be instantiated during query exeution. The prediate name4 We ould have reated a lass named ReentWork and populated it by an appropri-ate abstration. Then, instead of formulating a SILan query, we ould have simplydiretly asked for the instanes of this lass. The question whether to use a query oran abstration is a modelling deision. 9

Fig. 4. Modeling relational sources in SILan

both m2.title and m2.DL_ID are populated by the same value,
denoted by Title below):

’Product:class:190’(_,[Title,Id,Author,Date],_),

’Description:class:191’(_,["artwork",Id,Type],_)

---> ’Work:class:220’(class(220),

[Title,Title,Author,Date,Type],[])

The specific rule above describes how to create an instance of
the class Work whenever we have two appropriate instances of
classes Product and Description available. If there were
more abstractions, the Mediator would get more rules as there
would be more than one possible way to populate the given
class.

Note that the mediator rules are also used to describe inheri-
tance between model elements. In such a case the dynamic type
of the model element on the right hand side of the rule is a vari-
able (as opposed to the constant class(220) above). This vari-
able is the same as the dynamic type of the model element on the
left hand side. The dynamic attributes are propagated similarly.

Finally, let us state that an n-ary association is implemented as
an n-ary relation, each argument of which is a ternary structure
corresponding to a class instance, similar to the first goal of (2).
For example, a query goal for the association hasWork (Fig. 2)
has the following form:

:-’hasWork:association:227’(

’Artist:class:218’(

DT1,[DL_ID1,Name,Birthdate],DA1),

’Work:class:220’(

DT2,[DL_ID2,Title,Author,Date,Type],DA2)

). (3)

4 DL modeling in SINTAGMA
We now introduce the new DL modeling capabilities of the

SINTAGMA system. First we discuss why we need Descrip-
tion Logic models during the integration process and provide an

introductory example. Then we present the DL constructs sup-
ported by our system and discuss the restrictions we place on
their usage. Finally, we summarise the tasks of the integration
expert when using DL elements during integration.

4.1 An introductory example
In the Model Warehouse we handle models of different kinds.

We distinguish between application and conceptual models.
The application models represent existing or virtual information
sources and because of this they are fairly elaborate and precise.
Conceptual models, however, represent mental models of user
groups, therefore they are vaguer than the application models.

Our experience shows that to construct such models it is more
appropriate to use some kind of ontological formalism instead
of the relatively rigid object oriented paradigm. Accordingly,
we have extended our modeling language to incorporate sev-
eral description logic constructs, in addition to the UML-like
ones described earlier. In the envisioned scenario, the high-level
models of the users are formulated in description logic and via
appropriate definitions they are connected to lower-level mod-
els. Mediation for a conceptual model follows the same idea we
use for any other model: the query is decomposed, following the
definitions and abstractions, until we reach the interface models
(in general, through some further intermediate models) which
can be queried directly.

Before going into the details, we show an example to illustrate
the way how DL descriptions are represented in SILan (note that
Writer and Painter are both descendants of class Artist, but
otherwise they are normal UML classes; we will present more
details about these classes in Section 6).

model Conceptual {

class WriterAndPainter {};

constraint equivalent { (4)

WriterAndPainter,

Unified::Writer and Unified::Painter};

};

Per. Pol. Elec. Eng.22 Gergely Lukácsy / Péter Szeredi

Here we define the class WriterAndPainter by providing a
SILan constraint. This constraint can be placed anywhere in the
Model Warehouse: in the example above we simply put it in the
very model that declares the class WriterAndPainter itself.
The constraint actually corresponds to a DL concept definition
axiom: WriterAndPainter ≡ Writer u Painter. Namely, it states
that the instances of class WriterAndPainter are those (and
only those) who belong to the unnamed class containing the in-
dividuals who are both writers and painters. Thus, DL concepts
are defined using the Global as View approach [6], as opposed
to the Local as View techniques applied in populating high-level
classes using abstractions (cf. Section 3.1.2).

Note that the class WriterAndPainter could be created
without DL support. However, in that case the integration ex-
pert would have to go through a much more elaborate process of
creating the high level class WriterAndPainter, specifying all
its attributes and populating it with an appropriate abstraction.
This abstraction would have to implement the constraint (??),
through an appropriate join-like operation.

Now, with DL support, the expert simply formulates a very
short and intuitive DL axiom. We argue that this is easier for
the expert to do, and it also makes the content of the Model
Warehouse more readable to others.

4.2 DL elements in SILan
From the DL point of view, SINTAGMA supports acyclic De-

scription Logic TBoxes containing only concept definition ax-
ioms, which are formulated in an extension of the ALCN (D)

language (see more below about the extension). Only single
atomic concepts, so called named symbols can appear on the left
hand side of the axioms, such as WriterAndPainter in exam-
ple (??). The remaining atomic concepts, not appearing on the
left hand side are called base symbols. Such a TBox is defini-
torial, i.e. the meaning of the base symbols unambiguously de-
fines the meaning of the named symbols. The base symbols,
in our case, correspond to normal SINTAGMA classes and as-
sociations, e.g. Writer and Painter in the example (4). The
ABox is a set of concept and role assertions, as determined by
the instances of the classes which correspond to the base sym-
bols participating in the TBox.

The DL concept constructors supported by SINTAGMA and
their SILan equivalents are summarised in Table 1. Note that
this table actually describes the possible concept formats on the
right hand side of a definition axiom, assuming that we have
expanded the TBox5.

The only non-classical DL element in Table 1 is the concrete
domain restriction (the last line in the table). Such a restric-
tion specifies a subset of instances of the base concept A for

5The expanded version of an acyclic TBox is obtained by repeatedly replac-
ing every named symbol on the right hand side of an axiom by its definition.
This process is repeated until no further named symbols are left on the right
hand side. The fact that the TBox is acyclic ensures the termination of this pro-
cess.

Tab. 1. DL-related constructs supported in SILan

Name DL Syntax SILan equivalent

Base concept A UML class

Atomic role R UML association

Intersection C u D C and D

Union C t D C or D

Negation ¬C not C

Value restriction ∀R.C slot constraint R all

values C

Existential restriction ∃R.C slot constraint R some

value C

Number restriction Z n R slot constraint R

cardinality i..j

Top > DLAny

Bottom ⊥ DLEmpty

Concrete restriction — class constraint A

satisfies OCL

which the given OCL constraint holds. This is a generalisation
of the idea of concrete domains in the Description Logics world.
Below we show an example of a concrete SILan restriction de-
scribing those works whose type (i.e. the value of the attribute
type) is “painting”.

class constraint Art::Work

satisfies self.type="painting"

The reason we allow only concept definition axioms is that we
aim to use DL concepts to describe executable high-level views
of information sources. In this sense a DL concept is actually a
syntactic variant of a SILan query or a SILan class populated by
an abstraction.

Note that this also implies that we use the Closed World As-
sumption (CWA) in DL query execution. We argue that this is
appropriate because of the following three reasons. First, CWA
automatically ensures that our DL constructs are semantically
compatible with other constructs in the SINTAGMA system.
Second, we argue that the Open World Assumption (OWA) is
applicable when we have only partial knowledge and would like
to determine the consequences of this knowledge, true in every
universe in which the axioms of this partial knowledge hold. In
contrast with this, in the context of information integration, our
users would like to consider a single universe, in which a base
concept or a role denotes exactly those individuals (or pairs of
individuals) which are present in the corresponding database. To
illustrate this issue, let us consider the following example: the
concept of novice painter is defined to contain painters having

Combining Description Logics and object oriented models 232009 53 1-2

at most 5 paintings (for example, being a novice painter may be
a precondition for a government grant). To model this situation,
the integration expert creates the DL axiom shown below.

NovicePainter ≡ Painteru
(6 5 hasPainting)

However, querying this concept, using OWA, will provide no
results in general, as an open world reasoner would return an
individual only if it is provable that it has no more than 5 paint-
ings. Practically, this is not what the information expert wants.

The third reason why we decided to use the Closed World
Assumption is the fact that we envisage handling huge amounts
of data in the underlying databases. Traditional, tableau based
DL reasoners do not cope well with large ABoxes [15]. Resolu-
tion based DL proving techniques [18] do much better, but they
are either still not fast or not expressive enough [24]. By using
CWA we can implement DL queries using the well researched,
efficient database technology.

4.3 Modeling methodology and tasks of the integration ex-
pert
The integration expert is responsible for creating the DL ax-

ioms. Although these are represented in SILan within the SIN-
TAGMA system, the expert can use any available OWL editor
to create OWL descriptions. These descriptions then can be
loaded by the OWL importer of the SINTAGMA system that
basically realises an OWL-SILan translation (cf. the “Model Im-
port/Export” box in Fig. 1).

It is the task of the expert to map the names of the base sym-
bols onto corresponding SINTAGMA classes and associations.
This is often done in two steps: first the integration expert cre-
ates concept definition axioms using the widely accepted ter-
minology of the domain, not paying attention to the names of
the model elements in the Model Warehouse. Next, the expert
provides additional definition axioms for each base symbol con-
necting it with the proper model element. For example, we could
use names A and B instead of Writer and Painter in (??), pro-
vided that we also encode in SILan the equivalents of the fol-
lowing DL axioms:

A ≡ Writer

B ≡ Painter

A further crucial issue is to decide how to identify the in-
stances of the base concepts, e.g. the instances of the class
Writer and class Painter. Without this, it is not possible to
determine the instances of class WriterAndPainter.

In a traditional DL ABox, an instance has a name which
unambiguously identifies it. In SINTAGMA, similarly to
databases, an instance is identified by the subset of its attribute
values. For example, two writers could be considered to be the
same if their names match, assuming that name is a key in class
Writer.

The problem is that such keys are fairly useless when we com-
pare instances of different data sources. This is because, in gen-

eral, we cannot draw any direct conclusion from the relation of
the keys belonging to instances from different classes. For ex-
ample, databases containing employees often use numeric IDs
as keys. Having two employees from different companies with
the same ID does not mean that we are talking about the same
person. Similarly, if the IDs of the employees do not match, they
are not necessarily different persons.

What we need is some kind of shared key that uniquely identi-
fies the instances of the classes participating in DL concept def-
initions. Luckily, the object-oriented paradigm we use in SIN-
TAGMA provides a nice way to have such identifiers.

We have mentioned earlier that in SINTAGMA the notion of
DL concept is a syntactic variant of SINTAGMA class. This
also means that the result of a DL query is an ordinary instance
which has to belong to some class(es). For example, when we
are looking for the instances that are elements of both classes
Writer and Painter we are actually interested in an artist in-
stance belonging to these classes simultaneously. This is true in
general: whatever DL concept constructs we use to describe a
DL concept the result must belong to some class that is a com-
mon ancestor (in terms of inheritance) of the classes involved.

Instead of asking the integration expert to define such com-
mon ancestor classes in an ad hoc way, we introduce the built-in
class DLAny. This class corresponds to the DL concept top (>)
and it has only one attribute called DL_ID, which is a key. We
require that all the classes participating in DL concept defini-
tions are the descendants of DLAny6 (cf. lines 2 and 8 of Fig. 2).
Because of the properties of inheritance, attribute DL_ID will be
a key in all of the descendant classes, i.e. it will exactly serve as
the global identifier we were looking for.

Now, the task of the integration expert is to assign appropriate
values to the DL_ID attributes: he needs to extend the existing
abstractions populating the base symbols (classes) by consider-
ing also the attribute DL_ID. By appropriate values we mean that
the DL_IDs of two instances should match if these instances are
the same, and should differ otherwise. An example for this can
be seen in Fig. 5 populating the class Writer, which is part of a
bigger integration scenario to be shown later in Section 6.

1 abstraction ap (m0: Interface::Member ->

2 m1: Unified::Writer) {

3

4 constraint let n = m0.fname.concat(" ").concat(m0.lname) in

5 m1.name = n and

6 m1.birthDate = m0.date and

7 m1.member_id = m0.iwa_id and

8 m1.style = m0.style and

9 m1.DL_ID = n;

10 };

Fig. 5. Populating the DL_ID attribute of a base concept

This abstraction populates the class Writer from an inter-
6Note that this is a necessary condition. As for any concept C , C v > holds,

any DL instance has to belong to the class corresponding to >, i.e. to DLAny.

Per. Pol. Elec. Eng.24 Gergely Lukácsy / Péter Szeredi

face class called Member (lines 1–2), which represents a mem-
bership database of an imaginary “International Writer Associa-
tion” (IWA). Let us assume that the members of this association
have some kind of a unique identifier, such as the membership
number, present in the underlying database. It may be worth
bringing this key to the class Writer (line 7) as it makes possi-
ble to find writers efficiently if they happen to be IWA members.
However, the unique identifier from the DL point of view has to
be different: in fact it is the concatenation of the first and last
name of the writer, with a space in between (lines 4 and 9).

This is because the class Writer can also be populated from
other sources (e.g. Person, see Fig. 8) where the IWA number
makes no sense and so the member_id attribute is set to "n/a".
Furthermore, we may want class Writer to be a descendant of
class Artist (cf. Fig. 8), together with some other classes, such
as Painter. This requires a key that can be computed from all
the underlying sources, such as the name of the artist7.

To summarise, the integration expert has to perform the fol-
lowing tasks when DL modeling is used during the integration
process:

1 declare DL classes and for each provide corresponding defi-
nition axioms;

2 ensure that each base concept appearing in the definition ax-
ioms is:

(a) inherited from class DLAny,
(b) populated properly, i.e. its DL_ID attribute is filled appro-

priately.

5 Querying DL models in SINTAGMA
Now we turn our attention to querying DL concepts in SIN-

TAGMA. As described in Section 3.3, our task is to create a
query goal and a set of mediator rules. When we query a DL
class, mediator rules are only generated for the base symbols.
As these are ordinary classes and associations, this process is
exactly the same as the one we use for cases without any DL
construct involved. This means that we can now focus on the
construction of the query goal.

Recall that a SINTAGMA instance is characterised by three
properties, as exemplified by (2) on page 21: its dynamic type
DT, its static attributes SAs and its dynamic attributes DAs. Be-
low we will use the variable name As to denote the full attribute
list of an instance, i.e. the concatenation of the static and dy-
namic attribute values, with the exclusion of DL_ID.

A DL class has only a single static attribute, the DL_ID key.
However, in contrast with an object oriented query, a DL query
may return an answer that has multiple dynamic types. For ex-
ample, when we enumerate the class WriterAndPainter we
get instances that belong to both classes Writer and Painter
(something which is not possible in the standard UML mod-
eling). Accordingly, an answer to a DL query takes the form

7This is also a simplification. More realistically, the key could be the name
together with the birth date.

of a pair (ID, DTA), where ID is the DL_ID8 containing the
unique name of the DL instance (see Section 4.3), while DTA is
a Prolog structure containing the dynamic types of the answer,
each paired with the corresponding full attribute list. The DTA
structure is thus either a single DT-As pair, or recursively, two
DTA structures joined using the standard Prolog comma opera-
tor: (DTA1, DTA2).

Fig. 6 describes the mapping from an arbitrary DL concept
expression to the corresponding query goal. Here we define a
function 8C which, given an arbitrary concept expression C ,
returns the corresponding query goal with two arguments, ID
and DTA. We define this function by considering the DL concept
constructors, as listed in Table 1.

Let us consider the cases one by one. If we have a base class,
we simply create a query term representing the instances of the
class, similar to the one in goal (2) and then convert the attributes
retrieved to the required form (DTA). Here the operator ⊕ de-
notes the compile time concatenation of lists9, while AN stands
for the predicate name corresponding to concept A. For exam-
ple, WorkN

= ’Work:class:220’, cf. (2) on page 21. Note
that in the second argument of the query goal AN we make use
of the fact that the DL_ID attributes are always placed first in the
static attribute list of an instance.

If we have the intersection of two concepts C and D, we re-
cursively transform concepts C and D and put them in a Prolog
conjunction. The DTA structure is built from the structures ob-
tained from the execution of the transformations of concepts C
and D. Note that the resulting structure may contain duplicates,
i.e. the same DT-As pair may be found in the DTA more than
once. These duplicates are only removed at the top level, i.e.
when the final result of a query is presented. The transforma-
tion of union concepts is similar to the intersection: we create a
Prolog disjunction.

Negation ¬C is implemented by using the Prolog negation-
as-failure. This translation is only capable of checking whether
a given instance with ID belongs to concept C or not. As usual
in the database context, we restrict the use of negation to cases
where negated queries appear only in conjunction with at least
one non-negated query. In terms of DL concept expressions this
means that negated concepts have to appear either in the scope
of a quantifier, or in an intersection together with at least one
non-negated concept. It is the task of the Mediator to find an
appropriate order in the final query plan where negation appears
in a place where ID is instantiated [4]. The Mediator refuses to
execute the query if such an order does not exist.

The next two cases involve associations. On the right hand
side of these formulae RN denotes the predicate name corre-
sponding to the association itself. RD (RR) denotes the base

8We use the name ID instead of DL_ID for conciseness.
9The ⊕ operator is used only with a static attribute list (SAs). For any given

base class, the length of the corresponding SAs is fixed (the number of static
attributes excluding the DL_ID). Therefore, the concatenation SAs ⊕ DAs can
be calculated at compile time.

Combining Description Logics and object oriented models 252009 53 1-2

Fig. 6. Transforming DL constructs into query
goals

8A(ID, DTA) = AN (DT, [ID|SAs], DAs), DTA = DT-(SAs ⊕ DAs)

8CuD(ID, DTA) = 8C(ID, DTA1), 8D(ID, DTA2), DTA = (DTA1, DTA2)

8CtD(ID, DTA) = (8C(ID, DTA) ; 8D(ID, DTA))

8¬C(ID, _) = \+ 8C(ID, _)

8∃R.C(ID, DTA) = RN (RN
D(DT, [ID|SAs], DAs), RN

R (_, [ID2|_], _)),

8C(ID2, _), DTA = DT-(SAs ⊕ DAs)

8∀R.C(ID, DTA) = 8RD(ID, DTA),

\+ (RN (RN
D(_, [ID|_], _), RN

R (_, [ID2|_], _)),

8¬C(ID2, _))

8Zn R(ID, DTA) = bagof(Y, RN (X, Y), Ys),length(Ys, S),conditionZ(n, S),

X = RN
D(DT, [ID|SAs], DAs), DTA = DT-(SAs ⊕ DAs)

8>(_, _) = true

8⊥(_, _) = false

class which is the domain (range) of association R. Correspond-
ingly, RN

D and RN
R stand for the predicate names of the classes

RD and RR , respectively10. Recall that a binary association is
represented by a binary relation with ternary structures as argu-
ments, as in (3).

The existential restriction ∃R.C is simply transformed to a
query of the association R and the concept C .

The goal corresponding to a value restriction ∀R.C first enu-
merates the domain of R and then uses double negation to ensure
that the given instance has no R-values which do not belong to
C . Note that 8¬C(ID2, _) is invoked only when ID2 is already
instantiated.

A number restriction (Z n R) is transformed into a goal which
uses the Prolog built-in predicate bagof (cf. Section 2.2, page
19) to enumerate the instances in the domain of R together with
the number of R-values connected to them, and then simply ap-
plies the appropriate arithmetic comparison.

The last two lines of Fig. 6 define the transformation of the
top and bottom concepts. > is mapped into true, while ⊥ into
false. Querying these concepts on their own does not make
sense, but these mappings are useful when transforming DL con-
cepts such as ∃R.> or ∀R.⊥.

Having described the transformation of DL concepts to query
goals, we now deal with the only remaining construct: the con-
crete restriction. A concrete restriction involving a base concept
A and an OCL constraint O is transformed in a straightforward
way into the query goal as shown below11:

8A(ID, DTA), DTA = DT-AT, 9O(ID, AT)

10For example, if R =hasWork, cf. Fig. 2, then
RN

=’hasWork:association:227’, RN
D =’Artist:class:218’

and RN
R =’Work:class:220’

119O(ID, AT) denotes the Prolog translation of the OCL constraint O . This
is a feature which has already been present in earlier versions of SINTAGMA,
before the introduction of the DL extensions, see [3].

To illustrate the general algorithm, two example transforma-
tions are presented in Fig. 7. The first one shows the transla-
tion of the WriterAndPainter class described in (??) on page
??. The query goal is a conjunction consisting of three goals.
The first two goals enumerate the instances of classes Writer
and Painter with a condition that their ID attributes match. At
this point we have identified those instances who are writers and
painters at the same time. The last goal constructs the struc-
ture DTA, describing the dynamic types and the corresponding
attribute values of the given instances.

In the second example we look for a writer who has at least
one piece of modern work. This DL concept involves the as-
sociation hasWork and a class Modern (representing, say, con-
temporary pieces of art). The query goal becomes a bit more
complex than in the first example: now it consists of four goals.
The first goal enumerates the instances of class Writer. The
second and the third goals ensure that the writer in question is
also an artist, who does have some modern works. Here we use
the facts that the domain of hasWork is the class Artist and the
range is the class Work (cf. Fig. 2). Finally, the last goal builds
the structure DTA.

Note that if a writer has more than one piece of modern work,
the transformation in Fig. 7 enumerates the writer several times.
This is because the second goal can succeed more than once,
leaving a choice point [26]. In the present version of SIN-
TAGMA these duplicates are removed at the top level only, be-
fore the query results are presented to the user. In future, we
will consider a more efficient solution, utilising the Prolog prun-
ing operators (conditionals or cuts) to eliminate the unnecessary
choices.

Also note that in our example scenario attributes Name1,
Name2 and Birth1, Birth2will be instantiated to the same val-
ues, i.e. to the name and birth date of the modern writer. This
is the consequence of the data representation we use in SIN-
TAGMA, i.e. if an instance has multiple dynamic types, for each

Per. Pol. Elec. Eng.26 Gergely Lukácsy / Péter Szeredi

Fig. 7. Transformation examples
Class to query: WriterAndPainter
DL definition: Writer u Painter

Query goal: ’Writer:class:234’(DT1,[ID,Name1,Birth1,IWA,Style],DA1),

’Painter:class:236’(DT2,[ID,Name2,Birth2,Colour],DA2),

DTA = (DT1-[Name1,Birth1,IWA,Style|DA1],

DT2-[Name2,Birth2,Colour|DA2])

Class to query: ModernWriter
DL definition: Writer u ∃hasWork.Modern

Query goal: ’Writer:class:234’(DT1,[ID,Name1,Birth1,IWA,Style],DA1),

’hasWork:association:227’(

’Artist:class:218’(DT2,[ID,Name2,Birth2],DA2),

’Work:class:220(_,[ID2|_],_)),

’Modern:class:237’(_,[ID2|_],_),

DTA = (DT1-[Name1,Birth1,IWA,Style|DA1],

DT2-[Name2,Birth2|DA2])

of them we supply all the attribute values.

6 A case study: artists
In this section we present a simple use case, where we focus

on illustrating the DL extension of SINTAGMA. More complex
traditional integration problems solved using SINTAGMA are
discussed in other papers, for example in [21].

Fig. 8 shows the content of our example Model Warehouse.
Here we have four models on different abstraction levels.

The lowest one, Interface, contains classes directly corre-
sponding to the information sources we aim to integrate. Class
Member corresponds to some database table containing infor-
mation about writers (members of a certain writers association),
Person is the model of an XML source describing people (some
of whom are possibly writers). Class Exhibitor contains peo-
ple some of whom are painters, class Product contains products
including art works, and class Description provides some in-
formation on products. These models are constructed automati-
cally by different wrappers of the SINTAGMA system.

The next, more abstract model, called Unified, contains
two classes Writer and Painter, their SILan descriptions are
shown in Fig. 9 (referring to class Artist introduced in Fig. 2
on page 19). These classes provide a unified view of writers and
painters over our heterogeneous information sources, i.e. query-
ing Writer and Painter gives us all the known writers and
painters respectively. These classes are populated by SILan ab-
stractions: Writer by two, while Painter by only one. We can
later extend our Model Warehouse to include more information
sources on painters. This way Painterwould also be populated
by several abstractions. Please note how flexible this approach
is: whenever we would like to add a new information source, all
we have to do is to provide a new abstraction. This is funda-
mentally different from the way views are created in traditional
database systems.

The third model, Art, describes an even higher view of the
underlying information sources. It contains two classes con-

model Unified {

class Writer: Art::Artist {

attribute Integer member_id;

attribute String style;

};

class Painter: Art::Artist {

attribute String favourite_colour;

};

};

Fig. 9. SILan description of classes Writer and Painter

nected by an association. Class Artist is declared to be the
generalisation of classes Writer and Painter, i.e. Artist is
a common “parent” of Writer and Painter, in terms of in-
heritance. Accordingly, it contains the union of the instances
of these classes. Class Work incorporates works (books and
paintings). In the example, class Work is populated by only one
abstraction. Association hasWork connects instances in class
Artist with those in class Work, i.e. it allows us to navigate
from an artist to her works. This association is populated by an
abstraction (not shown in Fig. 8) by creating virtual pairs from
those instances of classes Artist and Work where the author of
the work matches the name of the artist.

Note that there is one more association in the Model Ware-
house, called hasPainting. This association connects painters
with their paintings and goes between different models. Sim-
ilarly to hasWork, this association is also populated by an ab-
straction, not shown here. Association hasPainting is used in
the definition of PainterWriter (see below).

Up until now we have used the traditional features of SIN-
TAGMA: classes, associations, generalisations, abstractions.
Now we turn to the most abstract model, named Conceptual,
which provides an even higher-level view of the information

Combining Description Logics and object oriented models 272009 53 1-2

of the modern writer. This is the onsequene of the data representation we usein SINTAGMA, i.e. if an instane has multiple dynami types, for eah of themwe supply all the attribute values.6 A ase study: artistsIn this setion we present a simple use ase, where we fous on illustratingthe DL extension of SINTAGMA. More omplex traditional integration problemssolved using SINTAGMA are disussed in other papers, for example in [21℄.Figure 8 shows the ontent of our example Model Warehouse. Here we havefour models on di�erent abstration levels.PSfrag replaements

Member Person
. . .
. . . Exhibitor Produt Desription

MySQL XML PostgreSQL Orale

abstrationabstrationabstration abstration
generalisationgeneral.Writer Painter

Artist WorkhasWork hasPainting
Interfae
Unified
Art
ConeptualDesription Logi lassesPainterWriter NovelNoviePainter ...

Fig. 8. Content of the Model Warehouse20Fig. 8. Content of the Model Warehouse

than the previous model.
The model Conceptual represents the knowledge of our spe-

cific example domain, in the form of DL concept definition ax-
ioms. These axioms form a simple ontology, a part of which
is shown in Fig. 10. This ontology talks about special types
of artists, painters and writers. It states that a novice painter is
a painter who has only painted no more than 5 paintings (ax-
iom 1). Somebody is mostly writer if he is an artist who has
produced at least 3 works, but has at most one painting (axiom
2). A productive writer has created at least 10 works (axiom
3). Somebody is painter-writer if he is a writer who has some
paintings (axiom 4). Finally, a novelist is somebody who is only
writing novels (axiom 5).

In practice, such an ontology can be created by the informa-
tion expert manually or can be imported from an existing on-
tology using the OWL importer component of the SINTAGMA
system. In SINTAGMA this ontology is represented by a model
containing classes with no attributes, together with the corre-
sponding SILan constraints as shown below:

model Conceptual {

class NovicePainter {};

class MostlyWriter {};

class ProductiveWriter {};

class PainterWriter {};

class Novelist {};

...

constraint equivalent {

NovicePainter,

Painter and

{slot constraint hasPainting cardinality 0..5}

};

...

};

Let us consider the base concepts used in our concept definitions
in Fig. 10. Most of these (i.e. Painter, Writer and Artist)
appear in the underlying UML models. However, there is the
concept of Novel, which has no direct UML counterpart. This
concept can be defined using a concrete restriction of SILan, as
shown below.

Per. Pol. Elec. Eng.28 Gergely Lukácsy / Péter Szeredi

constraint equivalent {

Novel,

{class constraint

Art::Work satisfies self.type="novel"}

};

NovicePainter ≡ Painter u (6 5 hasPainting.) (1)

MostlyWriter ≡ Artist u (> 3 hasWork.) u (6 1 hasPainting.) (2)

ProductiveWriter ≡ MostlyWriter u (> 10 hasWork.) (3)

PainterWriter ≡ Writer u (∃hasPainting.) (4)

Novelist ≡ ∀hasWork.Novel (5)

. . . ≡ . . .

Fig. 10. An ontology describing artists, painters and writers

This concludes the description of our example models. Having
encoded our DL axioms in terms of SILan constraints, we can
now execute DL queries. For example, we can ask SINTAGMA
to enumerate the instances of class ProductiveWriter. This
query will produce instances similar to the following:

1 (’Lisa James’,

2 [

3 ’Writer’-[’Lisa James’, 1965, 42, ’fantasy’],

4 ’Painter’-[’Lisa James’, 1965, ’red’]

5]

6)

Here, the string ’Lisa James’, appearing in line 1, corre-
sponds to the ID of Fig. 6, i.e. the shared DL identifier. Lines
3–4 contain the list of the dynamic types and corresponding at-
tributes of the instance. This specific instance has two dynamic
types: she is a writer and a painter at the same time (lines 3 and
4). As a writer, she has a name, birth date, her membership ID
and a style attribute. As a painter we also know her favourite
colour.

7 Related work
The two main approaches in information integration are the

Local as View (LAV) and the Global as View (GAV) [6]. In
the former, sources are defined in terms of the global schema,
while in the latter, the global schema is defined in terms of the
sources (similarly to the classical views in database systems).
Information Manifold [20] is a good example for a LAV sys-
tem. Examples for the GAV approach include the Stanford-IBM
integration system TSIMMIS [8], and the DL based integration
system called Observer [23].

In SINTAGMA we apply a hybrid approach, i.e. we use both
LAV and GAV. When using abstractions to populate high-level
classes we employ the LAV principle, while in case of DL class
definitions we use the GAV approach.

There are several completed and ongoing research projects in
the area of using description logic-based approaches for both

Enterprise Application Integration (EAI) and Enterprise Infor-
mation Integration (EII).

The generic EAI research stresses the importance of the Ser-
vice Oriented Architecture, and the provision of new capabilities
within the framework of Semantic Web Services. Examples for
such research projects include DIP [16] and INFRAWEBS [13].
These projects aim at the semantic integration of Web Services,
in most cases using Description Logic based ontologies and Se-
mantic Web technologies. Here, however, DL is used mostly for
service discovery and design-time workflow validation, but not
during query execution.

On the other hand, several logic-based EII tools use DL and
take a similar approach as we did in SINTAGMA. That is, they
create a DL model as a view over the information sources to be
integrated. The basic framework of this solution is described e.g.
in [5, 7]. The fundamental difference with our approach is that
these applications deal with the classical Open World Assump-
tion, as already discussed in Section 4.2. We argue that existing
DL reasoners are not usable when large amounts of data and
complex DL queries are involved [15, 18, 24].

On the theoretical side an interesting description logic is the
ALCK [11] which adds a non-monotonic K operator to the
ALC language to provide the ability to use both the CWA and
the OWA, when needed. ALCK has several implementation, the
Pellet reasoner [27], for example, supports this logic. However,
ALCK lacks the ability to express cardinality constraints, which
is a feature frequently used in information integration scenarios.

Finally, we mention that the Description Logic Programming
(DLP) approach, first introduced in [14], also employs the idea
of translating DL axioms into Prolog goals (cf. the approach
summarised in Table 6). In contrast with our approach DLP
uses the Open World Assumption and does not deal with nega-
tion and cardinality restrictions.

8 Conclusions
In this paper we have presented the DL extension of the in-

formation integration system SINTAGMA. This extension al-
lows the information expert to use Description Logic based on-
tologies in the development of high abstraction level conceptual
models. Querying these models is performed using the Closed
World Assumption over the underlying information sources.

We have presented the main components of the SINTAGMA
system: the Model Manager which is responsible for main-
taining the Model Warehouse repository, the Wrapper, which
provides a uniform view over the heterogeneous information
sources and the Mediator, which decomposes complex high-
level queries into primitive ones answerable by the individual
information sources.

Next, we have described the newly introduced DL modeling
elements the integration expert can use when building concep-
tual models and we have also discussed the modeling method-
ology he has to follow. We have defined a transformation of
DL queries to Prolog goals, used in the SINTAGMA system for

Combining Description Logics and object oriented models 292009 53 1-2

DL query execution. We have also illustrated our approach by
providing a use case about artists and their works.

We believe that because Description Logics are not expressive
enough to be used alone for solving complex modeling prob-
lems, some kind of hybrid techniques are necessary. We argue
that our solution for combining DL and UML modeling in a
unified integration framework provides a viable alternative to
existing systems. The usage of DL constructs in building high-
level conceptual models has substantial benefits, both in terms
of modeling efficiency and maintenance.

References
1 Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P F

(eds.), The Description Logic handbook: Theory, implementation and ap-

plications, Cambridge University Press, 2003, citeseer.csail.mit.edu/
baader03basic.html.

2 Badea L, Tilivea D, Query Planning for Intelligent Information Integration

using Constraint Handling Rules, 2001. IJCAI-2001 Workshop on Modeling
and Solving Problems with Constraints.

3 Benkő T, Krauth P, Szeredi P, A logic based system for application inte-

gration, Proceedings of the 18th International Conference on Logic Program-
ming, ICLP 2002, 2002.

4 Békés A G, Szeredi P, Optimizing Queries in a Logic-based Information

Integration System, Proceedings of the 17th Workshop on Logic-based meth-
ods in Programming Environments (WLPE 2007), 2007, pp. 1–15.

5 Borgida A, Lenzerini M, Rosati R, Description Logics for databases, De-
scription Logic Handbook, 2003, pp. 462–484.

6 Calvanese D, Lembo D, Lenerini M, Survey on methods for query rewrit-

ing and query answering using views. Tech. report, University of Rome, April
2001.

7 Calvanese D, Giacomo G De, Lenzerini M, Nardi D, Rosati R, Descrip-

tion Logic framework for information integration, Principles of knowledge
representation and reasoning, 1998, pp. 2–13, citeseer.ist.psu.edu/
article/calvanese98description.html.

8 Chawathe S, Garcia-Molina H, Hammer J, Ireland K, Papakonstanti-

nou Y, Ullman J, Widom J, The TSIMMIS project: Integration of hetero-

geneous information sources, 16th meeting of the Information Processing
Society of Japan, 1994, pp. 7–18.

9 Clark T, Warmer J (eds.), Object modeling with the OCL: The rationale

behind the object constraint language, LNCS, vol. 2263, Springer, 2002.
10 Clocksin W F, Mellish C S, Programming in Prolog, Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1994.
11 Donini F M, Lenzerini M, Nardi D, Nutt W, Schaerf A, An epistemic op-

erator for Description Logics, Artif. Intell. 100 (1998), no. 1-2, 225–274.
12 Fowler M, Scott K, UML distilled: Applying the standard object modeling

language, Addison-Wesley, 1997.
13 Grigorova V, Semantic description of web services and possibilities of

BPEL4WS, Information Theories and Applications 13 (2006), no. 2, 183–
187.

14 Grosof B N, Horrocks I, Volz R, Decker S, Description Logic Programs:

Combining Logic Programs with Description Logic, Proc. of the twelfth In-
ternational World Wide Web Conference (WWW 2003), 2003, pp. 48–57,
download/2003/p117-grosof.pdf.

15 Haarslev V, Möller R, Optimization techniques for retrieving resources de-

scribed in OWL/RDF documents: First results, Ninth International Confer-
ence on the Principles of Knowledge Representation and Reasoning, KR
2004, Whistler, BC, Canada, June 2-5, 2004, pp. 163–173.

16 Hepp M, Leymann F, Domingue J, Wahler A, Fensel D, Semantic busi-

ness process management: A vision towards using semantic web services for

business process management, 2005.

17 Horrocks I, Reasoning with expressive Description Logics: Theory and

practice, Proc. of the 18th Int. Conf. on Automated Deduction (CADE 2002),
2002, pp. 1–15, download/2002/cade02.pdf.

18 Hustadt U, Motik B, Sattler U, Reasoning for Description Logics around

SHIQ in a resolution framework, 3-8-04/04, 2004.
19 Interface Definition Language. ISO International Standard, number 14750.
20 Kirk T, Levy A Y, Sagiv Y, Srivastava D, The Information Manifold,

AAAI Spring Symposium on Information Gathering from Heterogeneous,
Distributed Environments, 1995.

21 Lukácsy G, Benkő T, Szeredi P, Towards automatic semantic integration,
Enterprise interoperability II, New Challenges and Approaches, Proceedings
of the I-ESA 2007, 2007, pp. 795–806.

22 Lukácsy G, Szeredi P, Ontology based information integration using Logic

Programming, Proceedings of the 2nd International Workshop on Applica-
tions of Logic Programming to the Web, Semantic Web and Semantic Web
Services (ALPSWS2007), 2007, pp. 39–54.

23 Mena E, Kashyap V, Sheth A P, Illarramendi A, OBSERVER: An ap-

proach for query processing in global information systems based on in-

teroperation across pre-existing ontologies, Conference on cooperative in-
formation systems, 1996, pp. 14–25, citeseer.ist.psu.edu/article/
mena00observer.html.

24 Nagy Zs, Lukácsy G, Szeredi P, Translating Description Logic queries to

Prolog., Proc. of PADL, Springer LNCS 3819, 2006, pp. 168–182.
25 Nguyen L A, A fixpoint semantics and an SLD-resolution calculus for modal

logic programs, Fundam. Inf. 55 (2003), no. 1, 63–100.
26 ISO Prolog standard, 1995. ISO/IEC 13211-1.
27 Sirin E, Parsia B, Grau B C, Kalyanpur A, Katz Y, Pellet: A practical

OWL-DL reasoner, Web Semant. 5 (2007), no. 2, 51–53.
28 Sterling L, Shapiro E, The art of Prolog: advanced programming tech-

niques, MIT Press, Cambridge, MA, USA, 1986.

Per. Pol. Elec. Eng.30 Gergely Lukácsy / Péter Szeredi

citeseer.csail.mit.edu/baader03basic.html
citeseer.csail.mit.edu/baader03basic.html
citeseer.ist.psu.edu/article/calvanese98description.html
citeseer.ist.psu.edu/article/calvanese98description.html
download/2003/p117-grosof.pdf
download/2002/cade02.pdf
citeseer.ist.psu.edu/article/mena00observer.html
citeseer.ist.psu.edu/article/mena00observer.html

	Introduction
	Background
	Description Logics
	Logic programming and Prolog

	SINTAGMA System Architecture
	The Model Manager
	Semantics of SILan models
	Abstractions

	The wrappers
	The Mediator

	DL modeling in SINTAGMA
	An introductory example
	DL elements in SILan
	Modeling methodology and tasks of the integration expert

	Querying DL models in SINTAGMA
	A case study: artists
	Related work
	Conclusions

