
Ŕ periodica polytechnica

Electrical Engineering
53/1-2 (2009) 31–36

doi: 10.3311/pp.ee.2009-1-2.04
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2009

RESEARCH ARTICLE

A joint coding concept for runlength
and charge–limited channels
Péter Vámos

Received 2010-05-22

Abstract
By making the conventional (d, k) constraint time dependent

as a function of the channel process, the wide sense RLL channel
has been defined. With the help of the new concept several ex-
isting constraints can be described alternatively and many new
ones can be constructed. A bit stuff algorithm is suggested for
coding wide sense RLL channels. We determine the rate of the
bit stuff algorithm as the function of the stuffing probability. We
present a few examples for calculating the rate of different con-
strained codes complying with the newly introduced constraint.

Keywords
Runlength limited codes · constrained codes

Péter Vámos

Department of Telecommunications and Media Informatics, BME, H-1521 Bu-
dapest, Hungary
e-mail: vamos@tmit.bme.hu

1 Introduction
The sequence of independent identically distributed (i.i.d.) al-

ternatives as coin tossing has been subject of scientific study
since Jacob Bernoulli [1], and it has earned a special importance
along with the development of digital communications and com-
puter science where binary streams are ubiquitous. A binary se-
quence can be taken as consecutive strings of identical symbols,
referred to as runs, and can be described by the sequence of their
length:

Definition A run is a substring of identical symbols. Let us
define the transition times of the discrete process X as

ti = min{ j > ti−1|X j , X j−1} and t0 = 0.

Then the runlengths are given as the differences Ti = ti − ti−1,
and the process T (X) is called as the runlength process associ-
ated with X .

In order of reliable data recovery the runlength is limited in the
most channels. The upper bound, called k constraint, is set to
ensure the reliable clock recovery [2]. It maximizes the number
of consecutive identical symbols in k + 1:

Ti ≤ Tmax = k + 1.

The lower bound is called d constraint. It minimizes the number
of consecutive identical symbols in d + 1:

Ti ≥ Tmin = d + 1.

The d constraint diminishes the intersymbol interference by en-
larging the distances between the transitions [3]. It works as
if the signalling rate were dropped by d , but for the transitions
only, so it less reduces the capacity. The channels with input
constraints above and the sequences complying with them are
called runlength limited (RLL).

The queer definitions of d and k constraints have historical
roots. It stems from that initially they limited only the length of
‘zero’ runs of the source sequence X : X i ∈{0, 1}, and then by a
transformation using mod2 addition (exor) they formed the RLL
channel sequence Y as

Yi = X i ⊕ Yi−1.

A joint coding concept for runlength and charge–limited channels 312009 53 1-2

http://www.pp.bme.hu/ee

One can see that the above transformation called precoding [12]
turns the ‘zero’ runs of length n of X into ‘zero’ and ‘one’
runs of length n + 1 of Y alternately. The precoding bal-
ances the frequency of binary symbols in the channel sequence:
Pr(Y = 0) = Pr(Y = 1) = 1/2 even when the source sequence
is biased, i.e. Pr(X = 0) , Pr(X = 1). However, the channel
sequence becomes correlated for any biased sources. Using the
symbols {+1, −1} rather than {0, 1}, the channel sequence will
have no discrete component at dc, that is why I will use that for-
mer convention. With X i , Yi ∈ {+1, −1} the precoding can be
defined as simple algebraic multiplication:

Yi = X i Yi−1. (1)

Besides the runlength, there is frequently set constraint for the
accumulated charge [4, 5], or for some of its transforms [6, 7].
For the binary channel Y : Yi ∈ {−1, +1} such constraints can
be described as∣∣∣∣∣

∞∑
i=0

hi Yn−i

∣∣∣∣∣ < c for any n ∈ Z, (2)

where hi ∈ R are given constants. The constraints comply-
ing with (2) is referred to as generalized charge constraint, and
those are set to satisfy some spectral requirement [8]. E.g. with
hi ≡ 1 we get the conventional charge constraint, which is the
necessary and sufficient condition for the vanishing spectrum at
dc [9].

In this paper we introduce the wide-sense RLL channel, a
generalization of RLL constrained channel. It will be pointed
out that many kinds of generalized charge constraints can be
translated into the new concept, which makes possible the uni-
form handling of these constraints. We give a bit stuff algorithm
for coding wide-sense RLL channels, and prove a theorem to
compute the rate and estimate the channel capacity. Finally we
present some examples of application.

2 The wide-sense RLL channel
Let us consider the conventional charge constraint when the

accumulated charge is limited in the channel:

Qn =

∞∑
i=0

Yn−i and |Qn| ≤ c for any n ∈ Z. (3)

The amount Qn is known as running digital sum (RDS) as well.
Since Qn takes only integer values, it will not confine the gener-
ality, if we limit the range of c in (3) for the positive integers. If
the charge is Qn at a run’s end, the next run should not be longer
than c + Qn , if the current run is positive, and c − Qn , if it is
negative:

Tmax = Yn Qn + c, if Yn+1 , Yn ,

so the conventional charge constraint also limits the runlength.
This limit varies in time, but depends on the history of the chan-
nel only. Using c−1 instead of c in (3), the definition of charge

constraint will comply with (2). However, it is more convenient
to allow equality in (3), since it is easier to express Tmax, and
bound c itself makes the charge threshold of the bitstuff encoder.
The (3) is the usual form of the charge (c) constraint [5]. The
amount Yn Qn we will refer to as rectified running digital sum
(RRDS).

Alike Tmax, the lower bound Tmin can be considered
time dependent as well. E.g. window-charge constraint∣∣∣∑w−1

i=0 Yn−i

∣∣∣ ≤ c sometimes forces to repeat the last input bit,
imposing a temporary lower bound on the runlength [7, section
3.5 of 15].

With these properties several different channels can be con-
structed. In the following part we will consider the runlength
limited channel in this wider sense:

Definition A channel is RLL in the wide sense if the maximum
and the minimum value of the runlength depends on the his-
tory of the channel: Tmax = k(Y) + 1 and Tmin = d(Y) + 1 .
(k(Y)>d(Y) is always required)

Since during a run the source sends identical bits, so the chan-
nel’s state is predictable. Consequently, the upper and lower
bound of the current run is always determined at the begin-
ning of that run, i.e. by the output runlength process T m−1

=

(T1, T2, . . . , Tm−1) and they should remain constant during a
run:

Tm −1 ≤ k(Y n)=k(Y n+1)= . . .=k(Y n+Tm−1)=k(T m−1)

and

Tm −1 ≥ d(Y n)=d(Y n+1)= . . .=d(Y n+Tm−1)=d(T m−1).

3 Coding wide-sense RLL channels
Due to the dependence on the channel history, coding for a

wide-sense RLL channel can be easily performed by a bit stuff
algorithm [10, 11]. To set the coding rule let us define the func-
tion run(Y n), which keeps trace of the momentary length of the
current output run:

run(Y n) =


0, if Yn , Yn−1;

run(Y n−1)+1, if Yn = Yn−1.

Then the coding rule for the X : X i ∈{−1, +1} input sequence
reads as

Yn+1 =



−Yn, if run(Y n) = k(Y n);

Yn, if run(Y n) < d(Y n);

Xm+1 Yn, (no stuffing) otherwise.

(4)

The indices of the input (X) and output (Y) sequences are dif-
ferent because of the previously stuffed bits: n = m + sn , where
sn stands for the number of stuffed bits till Yn . The coder al-
ways closes the current run by inserting a bit with opposite sign

Per. Pol. Elec. Eng.32 Péter Vámos

whenever the length of the current run can exceed the limit set
by the RLL constraint in the next step if the run were continued.
And similarly, the coder will insert d(Y n) bits at the beginning
of each run ensuring the minimum runlength. The coding rule
Yn+1 = Xm+1 Yn applied for the no stuffing case performs a
precoding defined by (1). It ensures that the output will not have
discrete component at dc in case of biased input when the prob-
ability of “–1” and “+1” bits are not equal.

The decoding can be performed in two steps. First we invert
precoding by

X ′

n+1 = Yn+1 Yn,

resulting in a stream which contains the original sequence X
padded with stuff bits. To recover the original sequence, we
should remove the stuffed bits from X ′:

– if run(Y n)=k(Y n), remove X ′

n+1;

– if run(Y n)=0 (Yn ,Yn−1), remove X ′

n+1 . . . X ′

n+d(Y n).

The decoding process is demonstrated in Fig. 1 with constant
parameters d =1 and k =3.

Y : …+1+1+1−1−1−1−1+1+1+1−1−1+1+1+1+1−1…

X’: …+1+1−1+1+1+1−1+1+1−1+1−1+1+1+1−1…

X : …+1+1+1−1+1−1+1+1−1…

Fig. 1. The decoding process for (d, k) = (1, 3). The underlined bits form
the original sequence, while italic denotes the stuffed bits. The bolded bits are
stuffed to start a new run to satisfy the k constraint. The indexing grows from
right to left.

Many kinds of generalized charge constraint can be imple-
mented with similar bit stuff algorithm [8], so for those there ex-
ists a corresponding (d(Y), k(Y)) wide-sense RLL constraint
which imposes the same channel constraint. The reverse state-
ment does not hold: e.g. for d constraint there is no correspond-
ing generalized charge constraint.

About the input process we suppose that it is i.i.d. with
Pr(X = +1) = p and Pr(X =−1) = 1 − p = q. Hence –
taking the precoding into the account – we are coding an i.i.d.
runlength process with geometric distribution.

Theorem The rate of a bit stuff encoder coding an i.i.d. source
for a wide-sense RLL channel is

R =
1 − s

1 + qE[d(T)] − ps
, (5)

where s is the probability of that a run is closed by stuffing.

Proof: Initially we are going to prove the theorem for the case
when d(T) ≡ 0. Since runlengths are one at least, and we have
no information whether that first bit is stuffed or not, so we are
considering the runs one bit shifted, excluding the first bit and
including the closing bit which starts a new run with opposite

Tout

input:….…+1…………+1 -1 ……

output: …-1 +1 +1…………+1 -1 -1…

Tin

Fig. 2. The runs at the coder’s input and output.

sign (Fig. 2). Accordingly, let Tin denote the remaining length
of the current “+1” run with the closing “−1” at the input when
a new output run has started. Using that Tin and Tmax are inde-
pendent, for the stuffing probability we can write:

s =

∞∑
i=1

Pr(Tin = i) Pr(Tmax ≤ i)

=

∞∑
i=1

Pr(Tin = i)[1 − Pr(Tmax > i)]

= 1 −

∞∑
i=1

Pr(Tin = i) Pr(Tmax > i).

Which also gives the average number of stuffed bits during an
output run, since d(T) = 0: N stuff = s. While the average
number of input bits during an output run reads as

N in=

∞∑
i=1

i[Pr(Tin = i)Pr(Tmax> i) + Pr(Tin> i)Pr(Tmax= i +1)].

Using that

Pr(Tin=i) = Pr(Tin ≥ i) − Pr(Tin ≥ i +1)

and

Pr(Tmax = i) = Pr(Tmax > i −1) − Pr(Tmax > i),

we have

N in =

∞∑
i=1

i [Pr(Tin ≥ i) − Pr(Tin ≥ i +1)] Pr(Tmax > i)

+

∞∑
i=1

i [Pr(Tmax > i)−Pr(Tmax > i +1)] Pr(Tin ≥ i +1)

=

∞∑
i=1

i Pr(Tin ≥ i) Pr(Tmax > i)

−

∞∑
i=1

i Pr(Tin ≥ i +1) Pr(Tmax > i +1)

=

∞∑
i=1

Pr(Tin ≥ i) Pr(Tmax > i).

Since the input sequence is i.i.d. Pr(Tin = i) = q Pr(Tin ≥ i),
so N in can be expressed with the stuffing probability:

N in = (1 − s)/q. (6)

A joint coding concept for runlength and charge–limited channels 332009 53 1-2

Then the rate reads as

R =
N in

N out
=

N in

N in + N stuff
=

1 − s
1 − ps

. (7)

When d(T) . 0 each run is padded with d(T) bits, so the
average number of stuffed bits will be

N stuff = E[d(T)] + s. (8)

Let us remove these padding bits from the output sequence.
Then the maximal runlength will be Tmax = k(T) − d(T) + 1,
which is also independent from Tin, so (6) still remains valid.
Substituting (8) into (7) we get (5).

Applying the above theorem we can give a good esti-
mation for the channel capacity. Let R(p) and s(p) de-
note the rate and the stuffing probability as a function
of the input distribution, and h(p) the entropy function
h(p) = −p log p − (1 − p) log(1 − p). With these notations
we can constitute a lower bound for the channel capacity:

C ≥ max
p

h(p)R(p) ≥ h(1
2) R(1

2) =
2 [1 − s(1

2)]

2 + E[d(T)] − s(1
2)

.

In general, when E[d(T)] � 1 the bit stuff encoder performs a
very dense mapping resulting in a high coding efficiency, i.e. the
channel capacity can be estimated with R(1

2) [13].

4 Some examples for application of the theorem
In this section we present a few examples for calculating

the rate of different constrained codes complying with the wide
sense RLL channel criteria.

4.1 Conventional (d, k) constrained channel
Coding conventional (d, k) constrained channel the bit stuff

encoder makes stuffings when the input run is longer than k−d ,
so the stuffing probability is s = Pr(Tin > k −d) = pk−d , while
d(T) is constant: E[d(T)] = d . Then the rate reads as

R =
1 − pk−d

1 + qd − pk−d+1 .

4.2 Simultaneously RLL and charge constrained channel
In these channels not only the runlength, but the accumulated

charge is limited as well. To monitor the accumulated charge,
we are using the rectified running digital sum (RRDS):

Cn = Yn

∞∑
i=0

Yn−i ≤ c (9)

It is convenient since the RRDS is always increasing during a
run, so it is enough to bind upward its value, and it makes easier
to trace the maximal runlength Tmax as well. If the RRDS is C
at a run’s end, then for the next run

Tmax = min(C + c, k + 1)

The bit stuff algorithm coding simultaneously (d, k, c) con-
strained channel has been studied by Bender and Wolf in [10].
They gave the coder’s state transition probability matrix Q :

0 0 · · · 0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 · · · 0 0 · · · q p
...

...
...

...
...

...
...

...

0 0 · · · 0 0 · · · 0 q · · · pk−d−1q pk−d

0 0 · · · 0 0 · · · q pq · · · pk−d 0
...

...
...

...
...

...
...

...

0 q · · · pk−d−1q pk−d
· · · 0 0 · · · 0 0

q pq · · · pk−d 0 · · · 0 0 · · · 0 0


The states correspond to the rectified RDS at the runs’ end de-
fined by (9): C ∈{−c+d+1, −c+d+2, . . . , c}, while each tran-
sition corresponds to an output run. Consequently, the compo-
nents of the stationary distribution vector π =πQ give the prob-
abilities of the run’s end charge state: Pr(C = −c+d + i) = πi .
Stuffing is performed whenever either the accumulated charge
reaches the threshold c, or the input run is longer than k−d , so
the stuffing probability is given as

s = Pr(C = c) + pk−d

[
1 −

k−d+1∑
i=1

Pr(C = −c + d + i)

]
,

while d(T) is constant again. The rate calculated by (5) exactly
corresponds with the one given in [10].

4.3 Average runlength constrained (ARC) channel
The ARC channel has been introduced by Heegard et al. in

[14]. Beside the conventional (d, k) constraint they set an upper
bound for the average of the runlength process T :

1
n

n∑
i=1

Ti ≤ a, (d + 1 < a < k + 1).

It is carried out by limiting upward the accumulated deviation
of the runlength along any cycle of the channel’s state transition
graph: ∑

(Ti − a) ≤ b. (10)

To satisfy the above constraint, we should keep trace the accu-
mulated deviation of runlengths, but only in positive direction.
For this purpose, let us define the process D as

D0 = 0 and Di = max(0, Di−1+Ti −a).

If process D is limited as Di ≤ b, (i = 1, 2, . . .), the constraint
(10) is satisfied:

n∑
m+1

(Ti − a) ≤ Dn − Dm ≤ b.

The bound on D limits the runlength as well:

Ti ≤ a + Di − Di−1 ≤ a + b − Di−1 ,

Per. Pol. Elec. Eng.34 Péter Vámos

so, together with k constraint, for Tmax we have:

Tmax = min(a + b + D, k + 1).

The adjacency matrix of the ARC channel is given in [14].
Taking into account that the bit stuff algorithm coding for ARC
channel pads each run with d bits, and it should start a new
run whenever either the accumulated deviation reaches b or the
input run is longer than k −d , it is not too difficult to construct
the coder’s state transition probability matrix from the adjacency
matrix: 

a−d−1∑
i=0

pi q pa−dq · · · pk−d 0 · · · 0 0 · · · o · · · 0 0

a−d−2∑
i=0

pi q pa−d−1q · · · pk−d−1q pk−d
· · · 0 0 · · · o · · · 0 0

...
...

...
... o

...
...

q pq · · · · · · · · · · · · pk−d 0 · · · o · · · 0 0
0 q · · · · · · · · · · · · pk−d−1q pk−d

· · · o · · · 0 0
...

... ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
...

...

0 0 · · · o · · · q pq · · · · · · · · · · · · pk−d 0
0 0 · · · o · · · 0 p · · · · · · · · · · · · pk−d−1q pk−d

...
... o

...
...

...
...

0 0 · · · o · · · 0 0 · · · q pq · · · pa−d−1q pa−d

0 0 · · · o · · · 0 0 · · · 0 q · · · pa−d−2q pa−d−1


The states correspond to the accumulated deviation D =

0, 1, 2, . . . , b; while each transition corresponds to an output
run. The stuffing probability can be expressed with the help
of the components of the stationary distribution πi = Pr(D =

i − 1):

s = Pr(D = b) + pk−d
a+b−k−2∑

i=0

Pr(D = i),

while d is constant in the case.

4.4 Simultaneously RLL and α-charge constrained channel
The α-charge constraint is a kind of generalized charge con-

straint when the channel sequence is bound on the output of the
IIR low-pass filter H(z) = 1/(1 − αz−1) :

Wn = Yn

∞∑
i=0

αi Yn−i < c,

(0<α<1 and 1+2α
1+α < c < 1

1−α).

(11)

The amount W we refer to as rectified weighted running dig-
ital sum (RWRDS). Since the applied filter enhances the low
frequency components of the channel sequence, keeping the
RWRDS low it will mostly affect those components, resulting in
a code spectrum with a suppression at low frequencies [8, 15].

The α-charge constraint limits the runlength in itself. If the
RWRDS is W at a run’s end, then according to (11), for the next
runlength T we can write:

(1 + αT)/(1 − α) − WαT < c.

Expressing T we have

T <
1

log α

[
log(1 − c + αc) − log(1 + W − αW)

]
.

That is, taking the explicit k constraint into account:

Tmax = min
{

k + 1,

⌈
1

log α
log

1 − (1 − α)c
1 + (1 − α)W

− 1
⌉}

.

The process W has a continuous distribution for most α, so
it can be described as a Markov process rather than a Markov

chain. The whole constrained system and the corresponding
bit stuff encoder structure is studied in chapter 4 of [15]. The
applied bit stuff algorithm inserts extra bits whenever either the
RWRDS reaches or exceeds the threshold c0 = (c − 1)/α or the
input run is longer than k−d.

Let G(x) = Pr(Wn < x | Yn , Yn+1), i.e. the distribution of
RWRDS at the end of the runs. Then for G(x) we can write the
following functional equation:

G(x)=



0, if x ≤ xm;

1−

k∑
i=d+1

qpi−(d+1) G
(
−α−i x −

1−α−i

1−α

)
−

−pk−d G
(
−α−(k+1)x −

1−α−(k+1)

1−α

)
, if xm< x ≤c0;

1−

k+1∑
i=d+1

pi−(d+1) G
(
−α−i x −

1−α−i

1−α

)
+

+

k∑
i=d+1

pi−d G
(
−α−i c0 −

1−α−i

1−α

)
, if c0< x ≤c;

1, if x > c;

where xm = (1 − αd+1)/(1 − α) − αd+1c, the lowest possible
value of the RWRDS at the end of a run. With the help of the

A joint coding concept for runlength and charge–limited channels 352009 53 1-2

distribution function we can give the stuffing probability of the
bit stuffing algorithm:

s = 1 − G(c0) + pk−d
[
1 − G

(
−α−(k+1)c0 −

1−α−(k+1)

1−α

)]
.

Then the rate can be calculated by (5).

References
1 Bernoulli J, Ars Conjectandi. Basel, 1713.
2 Kautz W H, Fibonacci codes for synchronization control, IEEE

Trans. Inform. Theory, IT-11, (April, 1965), 284–292, DOI
10.1109/TIT.1965.1053772.

3 Tang D T, Bahl L R, Block codes for a class of constrained noiseless

channels, Inform. and Control, 17, (1970), 436–461, DOI 10.1016/S0019-
9958(70)90369-4.

4 Chien T M, Upper bound on the efficiency of dc-constrained codes, Bell Syst.
Tech. J. 49, (Dec. 1970), 2267–2287.

5 Patel AM, Zero-modulation encoding in magnetic recording, IBM J. Res.
Develop. 19, (July 1975), 366–378, DOI 10.1147/rd.194.0366.

6 Marcus B, Siegel P, On codes with spectral nulls at rational submultiples

of the symbol frequency, IEEE Trans. Inform. Theory, IT-33, (July 1987),
557–568, DOI 10.1109/TIT.1987.1057334.

7 Waldman H, Pingarilho C, Spectral shaping codes, Proc. IEEE
Symp. on Inform. Theory, Trondheim, Norway, June, 1994, 209, DOI
10.1109/ISIT.1994.394759, (to appear in print).

8 Vámos P, Osváth L, Telek M, A new method for spectral shaping coding,
Proc. IEEE Winter 1998 Inform. Theory Workshop, San Diego, Calif. Feb.
1998.

9 Pierobon G L, Codes for zero spectral density at zero frequency,
IEEE Trans. Inform. Theory, IT-30, (March, 1984), 435–439, DOI
10.1109/TIT.1984.1056858.

10 Bender P E, Wolf J K, A universal algorithm for generating optimal

and nearly optimal run-length-limited charge-constrained binary sequences,
Proc. IEEE Symp. on Inform. Theory, San Antonio, Texas, Jan. 1993, 6, DOI
10.1109/ISIT.1993.748321, (to appear in print).

11 Aviran s, Sigel P H, Wolf J K, An improvement to the bit suffing algorithm,
IEEE Trans. Inform. Theory, IT-51, (Aug, 2005), 2885–2891.

12 Immink K, Coding Techniques for Digital Recorders, London: Prentice Hall,
1991.

13 Vámos P, On the distribution of waiting time for runs of given length, Proc.
IEEE Symp. on Inform. Theory, Trondheim, Norway, June, 1994, 183, DOI
10.1109/ISIT.1994.394789, (to appear in print).

14 Heegard C D, Marcus B H, Siegel P H, Variable-length state splitting

with application to average runlength-constrained (ARC) codes, IEEE Trans.
Inform. Theory, IT-37, (May, 1991), 759–777, DOI 10.1109/18.79946.

15 Vámos P, Adaptive constrained coding, Budapest University of Technology
and Economics, 2002, available at http://alpha.tmit.bme.hu/~vamos/
Thesis.pdf. PhD thesis.

Per. Pol. Elec. Eng.36 Péter Vámos

http://alpha.tmit.bme.hu/~vamos/Thesis.pdf
http://alpha.tmit.bme.hu/~vamos/Thesis.pdf

	Introduction
	The wide-sense RLL channel
	Coding wide-sense RLL channels
	Some examples for application of the theorem
	Conventional (d,k) constrained channel
	Simultaneously RLL and charge constrained channel
	Average runlength constrained (ARC) channel
	Simultaneously RLL and -charge constrained channel

