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Abstract
This paper describes the modeling and control of a novel

steering system which makes it possible to achieve a steer-by-
wire like operation with the maintenance of the mechanical con-
tact between the steering wheel and the steered wheels. First
the derivation of the dynamical model is given where linear and
nonlinear holonomic constraints are introduced by two elements
of the steering system, namely by a harmonic drive and a univer-
sal joint. The flatness property of the nonlinear model is shown,
but, since the controlled variables are not the linearizing out-
puts, we give another noninteracting control algorithm for the
linearized model and show the tolerance of the closed-loop per-
formance to nonlinearities.
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1 Introduction
Up till now, power steering systems have spread in automo-

tive industry in order to reduce the steering effort by using an
external power source. The traditional power steering systems
are hydraulic systems equipped with an engine-driven pump and
are called hydraulic power assisted steering systems (HPAS).
Newer solutions provide the hydraulic pressure with the help of
a pump that is driven by an electric motor. These systems are
called electro-hydraulic power assisted steering systems (EH-
PAS). The major advantage of EHPAS systems over the con-
ventional hydraulic systems is that the direct influence on the
hydraulic pressure enables a more sophisticated assist strategy.
Obviously, the direct use of an electrical motor coupled to the
rack or to the steering column allows an even more flexible as-
sistance. Another distinct advantage of these so-called electric
power assisted steering systems (EPAS) lies in their fuel effi-
ciency. HPAS and EHPAS systems both have to maintain a
pressure in the hydraulics constantly but EPAS systems consume
energy only during power assistance. On the other hand, EPAS
systems increase the energy demand from the electrical network
of the car and therefore the size of vehicles where they can be
used is limited. The possibilities provided by EPAS systems
enable the implementation of numerous unprecedented features
(such as variable assistance depending on the driving conditions
or choice between different boost curves) that offer even more
comfort, security, and convenience for the driver.

The intense competition in the automobile industry enforces
a continuous expansion of functionalities. Such a demand mo-
tivated the setup presented in this paper. The basic idea is not
new: we introduce an extra degree of freedom to allow the in-
dependent rotation of the steered wheels and the steering wheel.
The result is similar to the steer-by-wire systems but it preserves
the mechanical contact to enable a safer implementation in road
vehicles. The schematic view of the steering system is presented
in Fig. 1. The five rotating shafts are connected by a harmonic
drive, a universal joint, and a spring. We denote in the sequel
the angular position of the flexspline, wave generator, circular
spline, Cardan joint and the rack axes by ϕ f s , ϕwg , ϕcs , ϕcj and
ϕrk , respectively, and the same subscripts will be used for other
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Figure 1: Schematic view of the steering system

of the car and therefore the size of vehicles where they can be used is lim-
ited. The possibilities provided by EPAS systems enable the implementation
of numerous unprecedented features (such as variable assistance depending on
the driving conditions or choice between different boost curves) that offer even
more comfort, security, and convenience for the driver.

The intense competition in the automobile industry enforces a continuous
expansion of functionalities. Such a demand motivated the setup presented in
this paper. The basic idea is not new: we introduce an extra degree of freedom
to allow the independent rotation of the steered wheels and the steering wheel.
The result is similar to the steer-by-wire systems but it preserves the mechanical
contact to enable a safer implementation in road vehicles. The schematic view of
the steering system is presented in Fig. 1. The five rotating shafts are connected
by a harmonic drive, a universal joint, and a spring. We denote in the sequel
the angular position of the flexspline, wave generator, circular spline, Cardan
joint and the rack axes by ϕfs, ϕwg, ϕcs, ϕcj and ϕrk, respectively, and the
same subscripts will be used for other parameters and variables, as well. The
harmonic drive and the universal joint both introduce a holonomic constraint.
The constraint introduced by the harmonic drive unit reads

ϕwg − (i + 1)ϕcs + iϕfs + ϕ0 = 0, (1)

where the constant i is the transmission ratio of the harmonic drive and the
constant ϕ0 can introduce offset to the position variables e.g. in the case of
relative angle measurement devices such as optical encoders. We will suppose
ϕ0 = 0 that can be ensured at the initialization of the sensor devices. The
relationship between the shafts of the universal joint can be described with the
following equation:

tan ϕcj = C tan (ϕcs + ϕcs,0) , (2)

where C = cos β, is the cosine of the angle between the shafts of the universal
joint, which will be supposed to be constant during the operation. The role of
ϕcs,0 is similar to it of ϕ0 and again without the loss of generality it will be
set to zero. For values where the tangent function is not defined, the reciprocal
expression is to be considered:

cot ϕcj =
1

C
cot (ϕcs + ϕcs,0) . (3)
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drive and the constant ϕ0 can introduce offset to the position
variables e.g. in the case of relative angle measurement devices
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where C = cos β, is the cosine of the angle between the shafts
of the universal joint, which will be supposed to be constant
during the operation. The role of ϕcs,0 is similar to it of ϕ0 and
again without the loss of generality it will be set to zero. For
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We will derive the dynamical model of the steering system
with the Lagrangian method. In Lagrangian mechanics, holo-
nomic constraints that do no virtual work may be used to reduce
the number of variables. In our case this means that the number
of variables decreases from 5 to 3 thanks to (1) and (2). The
most natural way to eliminate the redundant variables is to ex-
press them as a function of the other variables. The elimination
procedure will not be used here since the reduced Lagrangian is
algebraically complicated because of (2) or (3). We will intro-
duce the constraints with constraint forces and use the null space
of the constraint matrix in the Pfaffian form for reduction, in the
next section.

In Section 3, we present a noninteracting control that decou-
ples two input-output channels and destroys the cross effects. In
this decoupled system, we implement a position control-loop for
the rack axis and the torque on the flexspline axis will be regu-
lated in open loop. With this structure it is possible to achieve a

steer-by-wire like operation since the flexspline axis is the axis
of the steering wheel. We do not discuss the issue of refer-
ence signals but it is clear that, for a conventional operation,
the rack position (the steering angle) will depend on the angle
of the flexspline shaft where the steering wheel is mounted on.
The torque on the flexspline shaft will realize a ‘force feedback’
for the driver, an additive torque term. The closed-loop perfor-
mance is analyzed with simulations in Section 4 and the results
of the research are summarized in Section 5.

2 Dynamical model
Holonomic constraints are used for the introduction of con-

straint forces. In special cases, with help of these equations with
constraint forces, a minimal set of equations can be obtained for
a reduced set of generalized coordinates. In this section, we will
describe this method and apply it to our system.

2.1 The elimination of constraint forces
The equations of motion of a constrained system read

d
dt

∂L(q, q̇)

∂q̇
−

∂L(q, q̇)

∂q
=

[
∂c(q)

∂q

]T

λ + F(q)τ, (4)

subject to
c(q) = 0, (5)

where q, λ and τ stand for the n-dimensional vector of the gen-
eralized coordinates, the m-dimensional (n > m) vector of the
constraint forces and the p-dimensional (n ≥ p) vector of the
generalized forces, respectively. The n × p dimensional matrix
F(q) is referred to as the input mapping matrix. The coefficient
matrix of the vector of constraint forces is the transpose of the
Jacobian matrix of the m-dimensional vector of (independent)
holonomic constraints (5) with respect to the generalized coor-
dinates (henceforth referred to as J (q)). The Lagrangian L is
defined as the difference between the kinetic and the potential
energy:

L(q, q̇) = K (q, q̇) − V (q). (6)

Let us consider the time derivative of (5):

d
dt

c(q) =
∂c(q)

∂q
q̇ = J (q)q̇ = 0. (7)
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Note that the generalized velocity must lie in the null space
of J (q) to fulfil (7). Let N (q) be an n-by-(n − m) matrix with
columns that are a maximal set of linearly independent vector
fields in this null space. Now we give two identities to be reused
in the sequel:

J (q)N (q) = 0, (8)

q̇ = N (q)v. (9)

Eq. (9) expresses that the generalized velocities can be deter-
mined with a reduced set of variables i.e. the (n − m) coordi-
nates for a basis in the null space of J (q). For further use, let us
derive its time derivative:

q̈ = N (q)v̇ + Ṅ (q)v. (10)

Usually, (4) is written in the following form:

H(q)q̈ + h(q, q̇) = J T λ + F(q)τ. (11)

where H(q) is the n-by-n symmetric and positive definite iner-
tia matrix and h(q, q̇) is the n-dimensional vector of the Coriolis
and centrifugal force terms that are quadratic in velocity, the po-
tential (gravity, spring force) and possibly frictional force terms.
The transpose of (8) implies that the pre-multiplication of (11)
by N T (q) eliminates λ and also reduces the number of equations
by the number of the constraints (i.e. by m = dim λ). After sub-
stitution of the expressions for q̇ and q̈ from (9) and (10) into
(11) and pre-multiplication by N T , we have the reduced set of
equations

Hr (q)v̇ + hr (q, v) = Fr (q)τ, (12)

where

Hr (q) = N T (q)H(q)N (q), (13a)

hr (q, v) = N T (q)H(q)Ṅ T (q)v + N T (q)h(q, N (q)v),

(13b)

Fr (q) = N T (q)F(q). (13c)

Eqs. (12) and (9) are a set of first order ordinary differential
equations (i.e. state equations because of the invertability of
Hr (q)) appropriate to describe the dynamical behaviour of the
constrained system without constraint forces. Nevertheless, the
factors Hr (q), Fr (q) and the term hr (q, v) do not always depend
on the whole set of the generalized coordinates q and if so, we
do not need to take the whole set of (9).

If the time derivatives of the generalized coordinates, which
are the arguments in (12) and (9) can be chosen as a subset of
coordinates in the basis of the null space of J (q), the following
notation can be used:

q̇ = N (qr )q̇r , (14)

where qr stands for the coordinates according to the basis in the
null space. Then the compact set of equations of motion reads

Hc(qr )q̈r + hc(qr , q̇r ) = Fc(qr )τ. (15)

2.2 Dynamical model of the steering system
Consider the steering system depicted in Fig. 1. The kinetic

energy is due to the rotation of the inertial bodies and the poten-
tial energy is stored in the spring. Accordingly, the Lagrangian
of the system without constraints expressed in generalized coor-
dinates q = (ϕ f s, ϕcs, ϕwg, ϕcj , ϕrk)

T reads

L(q, q̇) =
1
2

∑
k

Jk ϕ̇
2
k −

1
2

s
(
ϕcj − ϕrk

)2
, (16)

where k ∈ { f s, cs, wg, cj, rk} and s is the stiffness of the
spring. Consequently, we obtain the left-hand side of (4) in the
following form:

d
dt

∂L(q, q̇)

∂q̇
−

∂L(q, q̇)

∂q
= Hq̈ + Sq, (17)

with

H = diag
(
J f s, Jcs, Jwg, Jcj , Jrk

)
, (18a)

S =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 s −s
0 0 0 −s s

 . (18b)

On the right-hand side of (4), the generalized force term τ will
be decomposed into the terms of the friction and the external
torques. The external torques are supposed to act on the flexs-
pline and wave generator shafts and the rack axis. The friction is
modeled by viscous and Coulomb friction terms. The damping
of the spring (ds) will be considered in the viscous friction term.
Now the vector of the generalized torques reads

τ = Fx T − Dv q̇ − Dc sgn q̇, (19)

where T = (T f s, Twg, Trk)
T and

Fx =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 , (20a)

Dv =


dv, f s 0 0 0 0

0 dv,cs 0 0 0
0 0 dv,wg 0 0
0 0 0 dv,cj + ds −ds

0 0 0 −ds dv,rk + ds

 , (20b)

Dc = diag
(
dc, f s, dc,cs, dc,wg, dc,cj , dc,rk

)
. (20c)

To derive the Jacobian matrix for the constraints (1) and (2) or
(3) we rewrite the latter two in the following forms (ϕcs,0 = 0):

ϕcj − arctan (C tan ϕcs) = 0,

ϕcj − arccot
(

1
C

cot ϕcs

)
= 0. (21)

Noninteracting control of a steering system 472009 53 1-2



For both possible pairs of constraints (1) and (2) or (1) and
(3) the Jacobian matrix has the same form of (22) and is defined
on the whole domain of the variables because 0 < C ≤ 1 is
reasonable (|β| < π/2). The Jacobian depends only on ϕcj :

J (ϕcj ) =

[
i −(i + 1) 1 0 0
0 1 0 −

C
sin2 ϕcj +C2 cos2 ϕcj

0

]
. (22)

Let us express the remaining coefficient terms of (11) since
H , Fx and J (ϕcj ) are already expressed. Observe that H and
Fx are constant. The term h(q, q̇) is the sum of the friction and
spring effects:

h(q, q̇) = Sq + Dv q̇ + Dc sgn q̇. (23)

It is easy to prove that the following vectors build a complete
basis for the nullspace of J (ϕcj ):

n1 =


0
0
0
0
1

 , n2 =


1
0
−i
0
0

 , n3 =



0
C

sin2 ϕcj +C2 cos2 ϕcj
(i+1)C

sin2 ϕcj +C2 cos2 ϕcj

1
0

 .

We define the matrix N (ϕcj ) = [n1, n2, n3]. Its substitution
into (9) implies v = (ϕ̇rk, ϕ̇ f s, ϕ̇cj )

T . Note that all conditions
are satisfied to build the reduced equations of motion in form of
(15). We define the vector of the reduced generalized coordi-
nates as qr = (ϕrk, ϕ f s, ϕcj )

T and q̇r = v. Consequently, the
equations of motion of the steering system read

Hc(qr )q̈r + hc(qr , q̇r ) = Fc(qr )T, (24)

where

Hc(qr ) = N T (ϕcj )H N (ϕcj ), (25a)

hc(qr , q̇r ) = N T (ϕcj )H Ṅ (ϕcj )q̇r + N T (ϕcj )Dv N (ϕcj )q̇r+

+ N T (ϕcj )Dc sgn(N (ϕcj )q̇r ) + N T (ϕcj )S Pqr ,

(25b)

Fc(qr ) = N T (ϕcj )Fx , (25c)

with

P =


0 1 0
0 0 0
0 0 0
0 0 1
1 0 0

 . (26)

For brevity, we will not indicate the variable dependences of
expressions from now on and so the matrix coefficients Hc, Fc

in (24) read

Hc =

Jrk 0 0
0 J f s + i2 Jwg −

C
R i(i + 1)Jwg

0 −
C
R i(i + 1)Jwg Jcj +

C2

R2

(
Jcs + (i + 1)2 Jwg

)
 ,

(27)

Fc =

0 0 1
1 −i 0
0 C

R (i + 1) 0

 , (28)

where
R = sin2(ϕcj ) + C2 cos2(ϕcj ). (29)

The three elements of the vector hc in (24) are as follows:

hc,1 = dv,rk ϕ̇rk +dc,rk sgn ϕ̇rk +ds
(
ϕ̇rk − ϕ̇cj

)
+s

(
ϕrk − ϕcj

)
,

(30a)

hc,2 = −
C(C2

− 1)

R2 sin(2ϕcj )i(i + 1)Jwgϕ̇
2
cj−

−
C
R

i(i + 1)dv,wgϕ̇cj + (dv, f s + i2dv,wg)ϕ̇ f s+

+ dc, f s sgn ϕ̇ f s − idc,wg sgn
(

−i ϕ̇ f s +
C
R

(i + 1)ϕ̇cj

)
,

(30b)

hc,3 =
C2(C2

− 1)

R3 sin(2ϕcj )
(

Jcs + (i + 1)2 Jwg

)
ϕ̇2

cj+

+

(
dv,cj +

C2

R2

(
dv,cs + (i + 1)2dv,wg

))
ϕ̇cj−

−
C
R

i(i + 1)dv,wgϕ̇ f s +

(
dc,cj +

C
R

dc,cs

)
sgn ϕ̇cj+

C
R

(i + 1)dc,wg sgn
(

−i ϕ̇ f s +
C
R

(i + 1)ϕ̇cj

)
+

+ ds
(
ϕ̇cj − ϕ̇rk

)
+ s

(
ϕcj − ϕrk

)
. (30c)

In (30c) we used that for 0 < C ≤ 1 (or equivalently |β| <

π/2): sgn(C
R ϕ̇cj ) = sgn ϕ̇cj .

3 Noninteracting control
We understand by noninteracting control a feedback control

where the closed loop system has the form of a set of dynamical
SISO systems without cross or coupling effects.

Our physical setup is actuated by two motors on the wave
generator (Twg) and on the rack (Trk) axes, respectively. Hence
the input mapping matrix for the control input is built up of the
last two columns of Fc. An outer loop namely the control loop
of the driver actuates on the flexspline axis and accordingly its
input mapping matrix is the first column of Fc. Our control
loop with actuators on the wave generator and the rack axes has
to achieve the control objectives described in Section 1 and the
driver’s loop is practically a position control on the flexspline
axis, i.e. the steering wheel (see Fig. 2).

3.1 Nonlinear control
To show that this nonlinear system admits noninteracting con-

trol, it is sufficient to show its flatness property or, in other terms,
to find outputs with trivial zero dynamics.

Theorem 1 The system defined by (24) is differentially flat with
flat output y = (ϕ f s, ϕcj ).
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Fig. 2. Block diagram of the control structure (x
stands for the state vector of the steering system)
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Figure 2: Block diagram of the control structure (x stands for the state vector
of the steering system)

In (30c) we used that for 0 < C ≤ 1 (or equivalently |β| < π/2): sgn(C
R

ϕ̇cj) =
sgn ϕ̇cj .

3 Noninteracting Control

We understand by noninteracting control a feedback control where the closed
loop system has the form of a set of dynamical SISO systems without cross or
coupling effects.

Our physical setup is actuated by two motors on the wave generator (Twg)
and on the rack (Trk) axes, respectively. Hence the input mapping matrix for
the control input is built up of the last two columns of Fc. An outer loop namely
the control loop of the driver actuates on the flexspline axis and accordingly its
input mapping matrix is the first column of Fc. Our control loop with actuators
on the wave generator and the rack axes has to achieve the control objectives
described in Section 1 and the driver’s loop is practically a position control on
the flexspline axis, i.e. the steering wheel (see Figure 2).

3.1 Nonlinear Control

To show that this nonlinear system admits noninteracting control, it is sufficient
to show its flatness property or, in other terms, to find outputs with trivial zero
dynamics.

Theorem 1. The system defined by (24) is differentially flat with flat output

y = (ϕfs, ϕcj).

Proof. To prove the theorem, one needs to show that all variables, namely ϕrk,
Twg and Trk, can be calculated as functions of ϕfs, ϕcj and finite number of
their time derivatives. The second equation of (24) (with Hc, Fc and hc as in
(27), (28) and (30)) allows to calculate Twg as a function of ϕcj , ϕ̇cj , ϕ̈cj , ϕ̇fs

and ϕ̈fs. Then the last equation of (24) allows to determine ϕrk as a function
of the same arguments as before. The first equation of (24) makes it possible to

express Trk as a function of ϕcj , ϕ̇cj , ϕ̈cj , ϕ
(3)
cj , ϕ

(4)
cj and ϕ̇fs, ϕ̈fs, ϕ

(3)
fs , ϕ

(4)
fs .
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ond equation of (24) (with Hc, Fc and hc as in (27), (28) and
(30)) allows to calculate Twg as a function of ϕcj , ϕ̇cj , ϕ̈cj , ϕ̇ f s

and ϕ̈ f s . Then the last equation of (24) allows to determine ϕrk

as a function of the same arguments as before. The first equation
of (24) makes it possible to express Trk as a function of ϕcj , ϕ̇cj ,
ϕ̈cj , ϕ

(3)
cj , ϕ

(4)
cj and ϕ̇ f s , ϕ̈ f s , ϕ

(3)
f s , ϕ

(4)
f s .

Nevertheless, our aim is to control the motion of the flexspline
and the rack axes but they (ϕrk , ϕ f s) are not the variables in the
flat output. This fact suggests to simplify the model with special
assumptions for the controller synthesis.

3.2 Linear control
The Cardan joint angle β is not known in practice. Usually

it is a relatively small angle and its cosine C is near to 1. Ac-
cordingly, we assume C ≡ 1 that implies R ≡ 1 according to
(29), as well. We also assume negligible Coulomb friction be-
cause of small Coulomb frictional coefficients and so obtain the
following linear model:

Hl q̈r + Dl q̇r + Slqr = Fl T, (31)

where

Hl =

Jrk 0 0
0 J f s + i2 Jwg −i(i + 1)Jwg

0 −i(i + 1)Jwg Jcj + Jcs + (i + 1)2 Jwg

 ,

(32a)

Dl =

dv,rk + ds 0 −ds

0 dv, f s + i2dv,wg −i(i + 1)dv,wg

−ds −i(i + 1)dv,wg dcj,cj

 ,

(32b)

dcj,cj = dv,cs + dv,cj + (i + 1)2dv,wg + ds, (32c)

Sl =

 s 0 −s
0 0 0

−s 0 s

 , Fl =

0 0 1
1 −i 0
0 i + 1 0

 . (32d)

With use of the last two inputs (Twg , Trk) we derive the re-
quired control algorithm. The decoupling control of similar lin-
ear systems are presented in [4,5], which are based on the theory
introduced in [1, 2]. They achieve the noninteracting control of
the rack and the flexspline axes by state feedback but do not
allow an outer control loop with the flexspline torque as an ad-
ditional input. Now we present the control algorithm that can be
applied to the steering system.

The first equation in (31) reads

Jrk ϕ̈rk +
(
dv,rk + ds

)
ϕ̇rk − ds ϕ̇cj + s

(
ϕrk − ϕcj

)
= Trk . (33)

The feedback

Trk = Jrku1 +
(
dv,rk + ds

)
ϕ̇rk − ds ϕ̇cj + s

(
ϕrk − ϕcj

)
(34)

results in the double integrator

ϕ̈rk = u1. (35)

For its (position) control a PID controller seems to be adequate.
For underactuated systems, Spong [6, 7] suggested the use of

a set of equations of motion with number of the degree of un-
deractuation for expressing the second derivatives of the same
number of variables. This gives the clue to express ϕ̈cj from the
last equation in (31):

ϕ̈cj = i(i + 1)
Jwg

J̃cj
ϕ̈ f s +

ds

J̃cj
ϕ̇rk + i(i + 1)

dv,wg

J̃cj
ϕ̇ f s−

−
dcj,cj

J̃cj
ϕ̇cj +

s

J̃cj

(
ϕrk − ϕcj

)
+ (i + 1)

1

J̃cj
Twg, (36)

where
J̃cj = Jcj + Jcs + (i + 1)2 Jwg. (37)

We substitute (36) into the second equation of (31) and after a
long but straightforward calculation we obtain:

J̃ f s ϕ̈ f s+i(i+1)
Jwg

J̃cj
ds ϕ̇rk+

(
dv, f s +

Jcj + Jcs

J̃cj
i2dv,wg

)
ϕ̇ f s+

+i(i+1)

(
Jwg

J̃cj
dcj,cj − dv,wg

)
ϕ̇cj+i(i+1)

Jwg

J̃cj
s
(
ϕcj − ϕrk

)
=

= T f s −
Jcj + Jcs

J̃cj
iTwg, (38)
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with
J̃ f s = J f s +

Jcj + Jcs

J̃cj
i2 Jwg. (39)

We apply to (38) the following feedback:

Twg = −(i + 1)
J̃cj

Jcj + Jcs

{
1

i(i + 1)
u2 +

Jwg

J̃cj
ds ϕ̇rk+

+
1

i(i + 1)

(
dv, f s +

Jcj + Jcs

J̃cj
i2dv,wg

)
ϕ̇ f s+

+

(
Jwg

J̃cj
dcj,cj − dv,wg

)
ϕ̇cj +

Jwg

J̃cj
s
(
ϕcj − ϕrk

) }
(40)

and obtain:
J̃ f s ϕ̈ f s = u2 + T f s . (41)

For the driver’s position control loop, the effective inertia of the
steering wheel is J̃ f s . Notice that the ‘force feedback’ described
in Section 1 as one objective of our control system is realized
with input u2 of the decoupled system. The driver sees this feed-
forward term as a disturbing torque but it always is determined
by us. We can also see u2 as a tool to modify the inertia seen by
the driver when trying to steer the car.

These results can be substituted back into (36) and we obtain:

J̃cj ϕ̈cj + d̃cj,rk ϕ̇rk + d̃cj, f s ϕ̇ f s + d̃cj,cj ϕ̇cj + s̃
(
ϕcj − ϕrk

)
=

f̃2u2 + f̃ f s T f s,

(42)

where
d̃cj,rk = (i + 1)2 Jwg

Jcj + Jcs
ds, (43a)

d̃cj, f s =
i + 1

i

(
J̃cj

Jcj + Jcs
dv, f s + i2dv,wg

)
, (43b)

d̃cj,cj = (i + 1)2 Jwgdcj,cj − J̃cj dv,wg

Jcj + Jcs
, (43c)

s̃ =

(
1 + (i + 1)2 Jwg

Jcj + Jcs

)
s, (43d)

f̃2 = −
i + 1

i
J f s J̃cj

J̃ f s
(
Jcj + Jcs

) , (43e)

f̃ f s = i(i + 1)
Jwg

J̃ f s
. (43f)

By identically zeroing the two outputs ϕrk and ϕ f s one can
calculate the appropriate zeroing inputs using Eqs. (35) and
(41). If those inputs are applied to Eq. (42) we obtain the zero
dynamics of the decoupled system. It does not influence the
input-output behavior (due to the decoupling feedback laws) but
should be stable. To check its stability we give the state equa-
tions of the decoupled system in vector-matrix form. The sub-
scripts ‘ol’ refer to, that this open-loop system will be compen-
sated by an outer position control loop (represented by a driver
model on the flexspline axis).

ẋol = Aol xol + Boluol , (44a)

y = Col xol , (44b)

with state vector xol = (ϕrk, ϕ̇rk, ϕ f s, ϕ̇ f s, ϕcj , ϕ̇cj )
T , input

uol = (u1, u2, T f s)
T and output y = (ϕrk, ϕ f s)

T . The coef-
ficient matrices read

AT
cl =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
s̃

J̃cj
−

d̃cj,rk

J̃cj
0 −

d̃cj, f s

J̃cj
−

s̃
J̃cj

−
d̃cj,cj

J̃cj


, (45a)

Bol =



0 0 0
1 0 0
0 0 0
0 1

J̃ f s

1
J̃ f s

0 0 0

0 f̃2
J̃cj

f̃ f s

J̃cj


, Col =

[
1 0 0 0 0 0
0 0 1 0 0 0

]
.

(45b)
To conclude about the stability of (44) one has to check

whether for all eigenvalues Re{λi (Aol)} < 0 hold true. Of
course, this open-loop system is not stable because of the de-
coupled double integrators but we calculate the eigenvalues to
see the poles of the zero dynamics:

λ1,2 = λ3,4 = 0, λ5,6 = −
d̃cj,cj

2 J̃cj
±

√√√√( d̃cj,cj

2 J̃cj

)2

−
s̃

J̃cj
.

(46)
The invariant zeros of the system are located where the last con-
jugate pair of poles (λ5,6) are, consequently they are the poles
of the zero dynamics that correspond to damped oscillations for
all physically reasonable set of parameters.

Let us implement a PID control law on the rack axis for the
reference ϕd

rk :

u1 = krk,P

(
ϕd

rk − ϕrk

)
+ krk,I

t∫
0

(
ϕd

rk − ϕrk

)
dτ − krk,Dϕ̇rk .

(47)
We assume a similar driver model on the flexspline axis:

T f s = k f s,P

(
ϕd

f s − ϕ f s

)
+k f s,I

t∫
0

(
ϕd

f s − ϕ f s

)
dτ−k f s,Dϕ̇ f s .

(48)
The state-space model of the closed-loop system is given be-
low. The state vector is extended with the integrator states:
xcl = (xT

ol , xrk,I , x f s,I )
T . The input is the vector of the con-

trol references (desired axis angles and force-feedback torque)
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ucl = (ϕd
rk, T f f , ϕ

d
f s)

T and the output is the same as before.

ẋcl = Acl xcl + Bclucl , (49a)

y = Ccl xcl , (49b)

The coeffitient matrices are given as

AT
cl =

0 −krk,P 0 0 0 s̃
J̃cj

−1 0

1 −krk,D 0 0 0 −
d̃cj,rk

J̃cj
0 0

0 0 0 −
k f s,P

J̃ f s
0 −

f̃ f s k f s,P

J̃cj
0 −1

0 0 1 −
k f s,D

J̃ f s
0 −

d̃cj, f s+ f̃ f s k f s,D

J̃cj
0 0

0 0 0 0 0 −
s̃

J̃cj
0 0

0 0 0 0 1 −
d̃cj,cj

J̃cj
0 0

0 krk,I 0 0 0 0 0 0

0 0 0 k f s,I

J̃ f s
0 −

f̃ f s k f s,I

J̃cj
0 0



,

(50a)

Bcl =

0 0 0
krk,P 0 0

0 0 0
0 1

J̃ f s

k f s,P

J̃ f s

0 0 0

0 f̃2
J̃cj

f̃s k f s,P

J̃cj

1 0 0
0 0 1


, Ccl =

[
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]
.

(50b)

To analyze the stability of the closed-loop system we give the
characteristic polynomial of Acl :

Dcl(λ) =

(
J̃cjλ

2
+ d̃cj,cjλ + s̃

)
·

·

(
λ3

+ krk,Dλ2
+ krk,Pλ + krk,I

)
(

J̃ f sλ
3
+ k f s,Dλ2

+ k f s,Pλ + k f s,I

)
. (51)

The invariant zeros are the roots of the following polynomial:

Dz(λ) =

(
J̃cjλ

2
+ d̃cj,cjλ + s̃

)
(
krk,Pλ + krk,I

) (
k f s,Pλ + k f s,I

)
. (52)

Note that, as expected, the poles, which determine the input-
output behavior can be placed arbitrarily with help of the con-
troller parameters and the poles of the zero dynamics are not
affected by the PID feedback.

4 Simulation study
The control algorithm that was described in the last section is

designed for the linearized model of the steering system. In this

Tab. 1. Simulation Parameters

J f s = 5 · 10−2 dv, f s = 1 · 10−1 dc, f s = 2 · 10−1

Jcs = 1 · 10−4 dv,cs = 5 · 10−4 dc,cs = 1 · 10−4

Jwg = 5 · 10−5 dv,wg = 5 · 10−4 dc,wg = 5 · 10−4

Jcj = 1 · 10−5 dv,cj = 1 · 10−4 dc,cj = 1 · 10−4

Jrk = 5 · 10−2 dv,rk = 1 · 10−2 dc,rk = 1 · 10−2

i = 5 · 101 krk,P = 225 k f s,P = 5

s = 1 · 102 krk,I = 50 k f s,I = 1

ds = 2 · 10−2 krk,D = 21 k f s,D = 2

section, we will perform a simulation study to see the closed-
loop performance where the control law is applied to the non-
linear model of Subsection 2.2. The values of the model and
control parameters that will be used for the simulation study are
listed in Table 1. The order of magnitude of these values are
based on previous identification results [3]. The units of the
parameters are according to the SI unit system. The control pa-
rameters are tuned so that one of the poles is close to the only
zero of the corresponding closed-loop transfer function and to-
gether with the remaining conjugate complex pair of poles the
step response of the system is reasonably fast with small over-
shoot (approx. 5%).

The simulation is performed with the following values of the
universal joint parameter (β): 0◦, 10◦, 20◦, 30◦. For all these
values the simulation is made with the following sequence:

1 Start of simulation (0 s) with zero states and input values.

2 At 1 s stepwise change of the rack axis position reference to
π (control loop).

3 At 3 s stepwise change of the flexspline axis position refer-
ence to π (driver’s loop).

4 At 5 s stepwise change of the ‘force feedback’ torque refer-
ence to 1 (control loop).

5 At 7 s stepwise change of the disturbance torque on the rack
axis to 10.

The evolution of the angle of the rack axis is shown in Fig. 3
for all values of the universal joint angles (β). It hardly changes
for different Cardan joint angles. The same can be said about the
evolution of the angle of the Cardan joint axis (ϕcj ) that repre-
sents the zero dynamics (Fig. 6). It is different in the cases of the
flexspline shaft angle (Fig. 4) and the driver torque (Fig. 5). The
main difference can be observed after the change of the feed-
forward term at 5 s. The decoupling performance is acceptable
because we cannot observe any effect on the rack axis angle and
the cross-term transient seen by the driver model lies in the or-
der of magnitude of the friction, as one can see in Fig. 5 (the fast
transient at 1 s). For small β, the steady-state error in the torque
feed-forward is mainly caused by the Coulomb friction that is
an adequate performance but for β > 20◦ it is growing apace.
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ϕrk coincide)
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Fig. 4. Flexspline axis angle and reference
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Figure 5: Driver torque and torque feed-forward (force feedback for the driver)
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Fig. 5. Driver torque and torque feed-forward (force feedback for the driver)
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Fig. 6. Cardan joint angle (ϕcj )
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Figure 7: Actuator signals for β = 0◦
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Fig. 7. Actuator signals for β = 0◦
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(a) Motor torque on rack axis for β = 30◦
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(b) Motor torque on wave generator axis for β = 30◦

Figure 8: Actuator signals for β = 30◦
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Fig. 8. Actuator signals for β = 30◦

The actuator signals are shown for universal joint angles
β = 0◦ (Fig. 7) and β = 30◦ (Fig. 8). Note that the curves for
β = 30◦ are barely distinguishable from the curves for β = 0◦.
Again, the most critical transient is after the change of the feed-
forward torque at 5 s. Especially, the actuator on the wave
generator shaft answers with a high but fast transient. It orig-
inates from the well-damped oscillation of the universal joint
axis with a small starting amplitude of about 1◦. It is a small an-
gle but recall the high stiffness of the spring (s = 100 Nm/rad).
This small angular displacement on the spring corresponds to a
torque of about 1.8 Nm and because of the high gear ratio of the
harmonic drive we obtain a high factor in the last term in (40)
that is to cancel it. Accordingly, the saturation of this torque
would not destroy the performance but perhaps the driver could
perceive a short vibration. Nevertheless the stepwise change of
this torque is unrealistic and with realistic feed-forward refer-
ences the damping of the system components excludes the pos-
sibility of such effects. The same oscillation can be observed in

the torque of the rack axis motor, as well, but with much smaller
gain and so it does not play such a critical role. The highest tran-
sient occurs with the stepwise change of reference, consequently
during real operation this signal is also reasonably bounded.

5 Conclusion
We derived the nonlinear model of a novel steering system

with a universal joint and a harmonic drive. We stated that the
outputs to be controlled are not differentially flat therefore we
derived the noninteracting control for the linearized model. The
simulation study has shown that for small universal joint angles
(β < 20◦) the given linear control algorithm can be applied to
the steering system in order to control the position of the rack
axis and develop a feed-forward torque to the steering wheel on
the flexspline axis. This scheme achieves a steer-by-wire like
operation with the maintenance of the mechanical contact that
is an important safety aspect. A hardware implementation may
be possible on the setups of an industrial partner and accordingly
the decision about the application of the presented method to the
control of real EPAS systems depends on several aspects.
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