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Abstract
The paper proposes a measure of robust performance based

on frequency domain experimental data that allows non-
conservative modeling of uncertainty. Given the nominal model
of the plant and closed-loop performance specifications the iter-
ative control design and remodeling of model uncertainty based
on that measure leads to a controller with improved robust per-
formance. The structured dynamic uncertainty is allowed to
act on the nominal model in a linear fractional transformation
(LFT) form. The proposed method is a modification of the struc-
tured singular value with implicit constraints on model consis-
tency. The usefulness of the method is demonstrated on a vehicle
control simulation example.
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1 Introduction
In robust control theory the model uncertainty in system dy-

namics is treated as a model set. In the H∞/µ framework this
set is described by linear fractional transformation (LFT) of the
nominal model by structured (block-diagonal), norm-bounded
perturbations, 1, which is otherwise unspecified. Robust sta-
bility (stability of each system in the model set) is analyzed by
the structured singular valueµ. For the analysis of robust perfor-
mance the nominal plant is augmented by outputs z – that should
be small – measuring performance and normalized inputs. Some
of these inputs denoted by r are known (for example reference
signal) while others, denoted by d , model disturbances on the
system and belong to an unknown but norm-bounded signal set.
It is known that robust performance is equivalent to a robust
stability problem where the performance output is fed back to
these inputs through a fictive perturbation block1p. The uncer-
tain closed-loop system is represented in the so called 1-P-K
structure depicted in Fig. 1(a). See [1] and [31] for more details
on robust control theory.

In the robust control framework much effort has been taken
in order to decrease conservatism of uncertainty set descrip-
tions of physical systems. More and more sophisticated struc-
tures of perturbations including dynamic, time-varying, and real
parametric uncertainty have been developed and analyzed [5,8],
however it bears the price of increased computational complex-
ity. Hence only lower and upper bounds of the structured sin-
gular value are calculated [9, 10, 20, 30], that are not necessarily
tight [8].

This paper follows a different direction of decreasing conser-
vatism instead of further detailing the uncertainty model or try-
ing to tighten the upper bound of µ. We exploit that the different
kinds of sources of uncertainty in the real usually cover only a
subset of a unit ball of a signal (disturbances) or system (per-
turbations) space and may have hidden relations, interactions
between them. This means that the effects of the uncertainty
sources like neglected dynamical components and disturbance

1This paper revises and extends the results of the paper ’Uncertainty remod-
eling for robust control of linear time-invariant plants’ presented in the Mediter-
ranean Control Conference, 2008, Ajaccio, Corsica.
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sources may be counteracting. The steady inclusive counterac-
tions allow us to decrease the assumed sizes of the individual
uncertainties, albeit they are larger in the real. On the other
hand the several sources of uncertainty might be interchanged.
For example every modeling error can be described as effects of
disturbances resulting in the classical H∞ problem. Thus this
paper focuses a modified 1-P-K structure of Fig. 1(b), where
weighting functions of perturbations and disturbances are pulled
out from P to emphasize the variable part of the uncertainty
model. Then P0 is fixed in our problem.

These thoughts lead us to the fields of model (in)validation
and uncertainty modeling. The goal of invalidation is to check
the consistency of the model set with the available input-output
(IO) measurement data. The uncertain model is said to be
consistent if there exist elements of the allowed perturbation
set and disturbance signal set that satisfy the assumed norm
bounds and could have produced the data. In this paper we
focus on frequency domain methods, so the problem reduces
to separate constant matrix problems over finite set of frequen-
cies what relaxes the computational complexity. The invalida-
tion test in general corresponds to a search with equality and
inequality constraints. In many papers the equality constraint
with the IO data is included in the generalized plant and a mod-
ified (or skewed) µ calculation gives conditions on consistency
[7, 16, 23, 27]. The frequency domain results are based on prov-
ing the existence of a stable, causal and bounded perturbation
1 satisfying the constraints by tangential Nevanlinna-Pick in-
terpolation [4, 6, 29]. Model validation problems no longer as-
sume physical meaning of the uncertainty. The uncertain model
is a mathematical tool to describe the deviation of data from
nominal model. Therefore model validation is strongly related
to uncertainty modeling where for a given nominal model and
fixed structure of uncertainty consistent uncertainty model set is
created by determining norm-bounds of disturbance signals and
perturbations. The resulted sets are normalized usually by fre-
quency dependent weighting functions. It is no problem to find
one consistent model set allowing appropriately large bounds for
example on an additive disturbance; the main question is how
to chose between all consistent model sets and how to deter-
mine the trade-off between perturbation- and disturbance chan-
nels. For example in [21] and [18] the trade-off is fixed based on
some a priori information and the norm-bounds are minimized
simultaneously; in [14, 19] additive unstructured uncertainty is
minimized by identification of the nominal model; the size of
disturbance is fixed in [12] and the ν-metric of a co-prime factor
uncertainty is minimized by identifying the nominal model; in
[2] the disturbance have predefined statistical properties and the
resulted bounds for the perturbation have some statistical con-
fidence. Other references in stochastic or time domain frame-
works are [3, 11, 15, 17, 24, 25, 28].

The contribution of present paper in uncertainty modeling is
that the uncertainty model structure is the general LFT form with
structured dynamic perturbations and the criterion of optimiz-

ing in all consistent models is the robust performance level (µ) -
precisely the same criterion as for the control design. This crite-
rion including consistency constraints and new variables defines
a new measure of robust performance. In this context the uncer-
tainty model is purely mathematical without physical meaning.
One criticism against this approach can be its exaggerated opti-
mism when data is not enough informative. In practical applica-
tions, when not enough experiments can be taken or they are too
expensive, lower limits of the uncertainty norm-bounds can be
given based on a priori physical knowledge. Since the general
problem leads to bilinear matrix inequalities (BMIs), which are
NP-hard to solve, also the application of the method for struc-
tured, additive uncertainties is presented. In this case the prob-
lem is still one of BMIs, but can efficiently be solved by a series
of convex programs.

The goals of the paper are formulated in section 3. The main
results are presented in section 4 and the usefulness of the pro-
posed measure is demonstrated in section 5.

2 Notations
The dimension of a vector x is denoted by nx . Let xT stand

for transpose and x∗ for conjugate transpose of x . Ix = Inx and
I denote identity matrices, the subscript x implies correspondent
dimension with vector x .

A bounded-energy signal d belongs to the set L2 , {d :
‖d‖

2
2 =

∫
∞

0 d(t)T d(t)dt < ∞} in the continuous time-domain.
A subset of this with unity norm is denoted by BL2. The set
of all proper and real rational stable transfer matrices is denoted
by RH∞. A bounded set of this is BH∞ , {1 ∈ RH∞ :
‖1‖∞ = supω σ̄ (1( jω)) < 1}.

Upper and lower linear fractional transformations of two sys-
tems, say A and B, are denoted by FU (A, B) and FL(A, B),
respectively.

In this paper the perturbation set S1 is defined as

S1 = {1 ∈ RHnξ×nξ
∞ : 1 = diag{11, . . . ,1τ },

1i ( jω) ∈ Cnξi ×nξi , i = 1, ..., τ }

The normalized subset of this is BS1, where 1 ∈ BH∞ is also
satisfied. The signals ξ = [ξ T

1 , ..., ξ
T
τ ]T and η = [ηT

1 , ..., η
T
τ ]T

are partitioned according to the block structure of 1 in Fig. 1.
For a signal or system x in the subscripting xlki l stands for

indexing experiments, k for frequency ωk in a grid and i for
the i th element of the signal vector x or i th block of the block-
diagonal system matrix x , respectively. Some of the indexes
may miss. If index k is present then x is a frequency domain
operator or signal. The I m{M} and ker{M} denote the image
space and kernel space, respectively, of the matrix M .

3 Problem formulation
The problem of identification of a consistent uncertainty

model that minimizes robust performance level µ for a given
closed-loop system can be divided into two subproblems: A)
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Figure 1: (a) ∆-P -K: the closed loop uncertain system in robust control. The unmodeled
dynamics ∆ (block-diagonal) and the disturbance/noise d represent the model uncertainty, r
stands for known signals (e.g. reference), z for error signals that should be small. P is the
generalized plant and K denotes the controller. (b) two weighting functions associated with
uncertainty are pulled out from P .

not enough experiments can be taken or they are too expensive, lower limits of the uncertainty
norm-bounds can be given based on a priori physical knowledge. Since the general problem
leads to bilinear matrix inequalities (BMIs), which are NP-hard to solve, also the application
of the method for structured, additive uncertainties is presented. In this case the problem is
still one of BMIs, but can efficiently solved by a series of convex programs.

The goals of the paper are formulated in section 3. The main results are presented in
section 4 and the usefulness of the proposed measure is demonstrated in section 5.

2 Notations

The dimension of a vector x is denoted by nx. Let xT stand for transpose and x∗ for conjugate
transpose of x. Ix = Inx and I denote identity matrices, the subscript x implies correspondent
dimension with vector x.

A bounded-energy signal d belongs to the set L2 , {d : ‖d‖2
2 =

∫ ∞
0 d(t)T d(t)dt < ∞} in

the continuous time-domain. A subset of this with unity norm is denoted by BL2. The set
of all proper and real rational stable transfer matrices is denoted by RH∞. A bounded set of
this is BH∞ , {∆ ∈ RH∞ : ‖∆‖∞ = supω σ̄(∆(jω)) < 1}.

Upper and lower linear fractional transformations of two systems, say A and B, are denoted
by FU (A, B) and FL(A, B), respectively.

In this paper the perturbation set S∆ is defined as

S∆ = {∆ ∈ RHnξ×nξ
∞ : ∆ = diag{∆1, . . . ,∆τ},

∆i(jω) ∈ C
nξi

×nξi , i = 1, ..., τ}

The normalized subset of this is BS∆, where ∆ ∈ BH∞ is also satisfied. The signals ξ =
[ξT

1 , ..., ξT
τ ]T and η = [ηT

1 , ..., ηT
τ ]T are partitioned according to the block structure of ∆ in Fig.

1.
For a signal or system x in the subscripting xlki l stands for indexing experiments, k for

frequency ωk in a grid and i for the ith element of the signal vector x or ith block of the
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Fig. 1. (a) 1-P-K : the closed loop uncertain system in robust control. The
unmodeled dynamics 1 (block-diagonal) and the disturbance/noise d represent
the model uncertainty, r stands for known signals (e.g. reference), z for error

signals that should be small. P is the generalized plant and K denotes the con-
troller. (b) two weighting functions associated with uncertainty are pulled out
from P .

characterizing all consistent uncertainty models by parametriza-
tion and B) optimization in the parameter space defined in A).

3.1 Uncertainty characterization problem
For the sake of simplifying notations a part of 1-P-K struc-

ture of Fig. 1(b) relevant to the model validation problem is
emphasized in Fig. 2. Without loss in generality u denotes any
measured or known signal containing uK and possibly r , and y
denotes the measurable output signals (not necessarily the same
as yK ). System G defines the LFT structure of the uncertainty
model. Note G23 is the nominal model of the system. In this in-
terconnection G is fixed in advance and we look for appropriate
weighting functions W1 and Wd solving Problems 1 and 2.
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Figure 2: Uncertain system in the model validation problem. The LTI system G is part of P0

in Fig. 1(b). y and u are known or measurable signals.

block-diagonal system matrix x, respectively. Some of the indexes may miss. If index k is
present then x is a frequency domain operator or signal. The Im{M} and ker{M} denote
the image space and kernel space, respectively, of the matrix M .

3 Problem formulation

The problem of identification of a consistent uncertainty model that minimizes robust per-
formance level µ for a given closed-loop system can be divided into two subproblems: A.)
characterizing all consistent uncertainty models by parametrization and B.) optimization in
the parameter space defined in A.).

3.1 Uncertainty characterization problem

For the sake of simplifying notations a part of ∆-P -K structure of Fig. 1(b) relevant to
the model validation problem is emphasized in Fig. 2. Without loss in generality u denotes
any measured or known signal containing uK and possibly r, and y denotes the measurable
output signals (not necessarily the same as yK). System G defines the LFT structure of the
uncertainty model. Note G23 is the nominal model of the system. In this interconnection
G is fixed in advance and we look for appropriate weighting functions W∆ and Wd solving
Problems 1 and 2.

Problem 1 Assume there are open- and closed-loop input-output measurements in L2 avail-
able in the frequency domain. The data set is denoted as Syu = {(ylk, ulk) : ylk ∈ C

ny , ulk ∈
C

nu , l = 1, ..., N, k = 1, ..., nω}, where nω is the number of frequency samples and N de-
notes the number of experiments. Characterize all the diagonal weighting functions W∆ =
diag{w∆1

Iξ1 , . . . , w∆τ Iξτ
} ∈ RHnξ×nξ

∞ and Wd = diag{w1, . . . , wnd
} ∈ RHnd×nd

∞ of Fig. 2
such that there exist for every experiments l = 1, ..., N a perturbation ∆l ∈ BS∆ and a dis-
turbance dl ∈ BLnd

2 that satisfy

ylk = FU (Gk, ∆lkW∆,k)

[

Wd,kdlk

ulk

]

(1)

for k = 1, ..., nω, l = 1, ..., N . Note the index k refers to the complex matrix or vector at
frequency ωk.
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Fig. 2. Uncertain system in the model validation problem. The LTI system
G is part of P0 in Fig. 1(b). y and u are known or measurable signals.

Problem 1 Assume there are open- and closed-loop input-
output measurements in L2 available in the frequency domain.
The data set is denoted as Syu = {(ylk, ulk) : ylk ∈ Cny , ulk ∈

Cnu , l = 1, ..., N , k = 1, ..., nω}, where nω is the num-
ber of frequency samples and N denotes the number of ex-
periments. Characterize all the diagonal weighting functions
W1 = diag{w11 Iξ1 , . . . , w1τ Iξτ } ∈ RHnξ×nξ

∞ and Wd =

diag{w1, . . . , wnd } ∈ RHnd×nd
∞ of Fig. 2 such that there ex-

ist for every experiments l = 1, ..., N a perturbation 1l ∈ BS1

and a disturbance dl ∈ BLnd
2 that satisfy

ylk = FU (Gk,1lk W1,k)

[
Wd,kdlk

ulk

]
(1)

for k = 1, ..., nω, l = 1, ..., N . Note the index k refers to the
complex matrix or vector at frequency ωk .

3.2 Optimization problem: search for the uncertainty model
In standardH∞/µ control [31] the robust performance level

µ1a (M) =
1

max1a {σ̄ (1a) : det(I − M1a) = 0}

is defined as the reciprocal of the H∞-norm of the minimum
destabilizing structured perturbation 1a = diag{1,1p}, where
1p is the fictive perturbation on the performance channel z 7→

[dT , r T ]T . Let M = FL(P, K ). Then for all 1 ∈ S1 with
‖1‖∞ < 1

β the loop FU (M,1) is well-posed, internally stable
and ‖FU (M,1)‖∞ ≤ β if and only if µ1a (M) ≤ β [31, Theo-
rem 11.9]. The goal with structuring perturbations instead of us-
ing unstructured perturbations was decreasing conservatism of
the uncertainty description, since µ1a (M) ≤ ‖M‖∞. The goal
in this paper is the same: decreasing conservatism by tuning of
the weighting functions based on measurement data. Therefore
a modified robust performance criterion is given as follows.

Let W = diag{W1,Wd}, WI = diag{W1,Wd , Ir } and intro-
duce the notation W (2) symbolizing all solutions W for Prob-
lem 1. The free parameter 2 is symbolic at this moment and
refers to the space of all consistent uncertainty models. Let
M0 = FL(P0, K ), so M = M0WI . The new measure is de-
fined as

µ1a ,2(M0) = inf
2
µ1a (M0WI (2)) (2)

Clearly µ1a ,2(M0) ≤ µ1a (M) if the uncertainty model in M is
consistent.

Problem 2 Given a controller K and data set Syu . Find weight-
ing functions that solve Problem 1 and the minimization in (2).
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4 Main results
4.1 Parametrization of uncertainty models
The signal parametrization result of [27] is borrowed here.

The uncertain model is consistent with data if and only if there
exist ξ0 and d0 solving

el = yl − G22ul =

[
G21 G23

] [
ξ0l

d0l

]
.

For solvability assume that elk ∈ Im{[G21,k G23,k]} for all k
and to avoid trivial solutions assume dim(ker[G21,k G23,k]) > 0
for all k. In this case let a particular solution for [ξ T

0 , dT
0 ]T be

denoted by a0 = [aT
ξ , aT

d ]T , then all solutions can be formalized

as

[
ξ0lk

d0lk

]
=

[
aξ,lk
ad,lk

]
+

[
Bξ,k
Bd,k

]
θlk , where

[
Bξ,k
Bd,k

]
is a

basis for the kernel of
[

G21,k G23,k

]
and θlk ∈ Cnξ+nd−ny

is any free parameter at frequency ωk for the experiment l. Note
that ξ0lk , d0lk and ηlk are all affine functions of θlk .

The parametrization of weighting functions in W (2) can be
given indirectly through the θlk parameters and some inequality
constraints as follows.

Theorem 1 Given stable and stable invertible weighting func-
tions W1 and Wd and given the set Syu of measurement data,
then for every experiment l = 1, ..., N there exists a perturba-
tion 1l ∈ BS1 and a disturbance dl ∈ BLnd

2 that satisfy (1)
for all k and l, if and only if there exist θlk k = 1, ..., nω and
l = 1, ..., N such that

|w1,i ( jωk)| ≥
|ξ0lk,i (θlk)|

|ηlk,i (θlk)|
, i = 1, . . . , τ (3)

|wd,i ( jωk)| ≥ |d0lk,i (θlk)| i = 1, . . . , nd , (4)

for all l and k.

Proof. The proof is very straightforward in the frequency do-
main for the constant matrix case. To prove the existence of a
causal stable and bounded transfer function matrix 1l( jω) that
matches some matrices 1̄lk on a frequency grid the tangential
Nevanlinna-Pick interpolation theorem can be applied [4], [6].

The whole solution space W (2) of Problem 1 is characterized
by the set {θlk ∈ Cnξ+nd−ny , l = 1, ..., N , k = 1, ..., nω} and
the constraints (3) and (4).

4.2 Solution of the optimization problem
The computation of the standard µ1a (M) is NP-hard in gen-

eral, therefore one used to calculate lower and upper bounds
which are tight for practical systems in case of only complex
blocks. In order to guarantee robust performance we are in-
terested in the upper bound which is calculated by convex op-
timization. To this end a scaling matrix D ∈ RH∞ is intro-
duced with 1D = D1, then µ1a (M) ≤ infD σ̄ (DM D−1),
where square M was assumed for notational brevity. One ap-
proach to find the infimum is to consider constant matrix prob-
lems on a frequency grid with real D variables at each fre-
quenciy and then fit minimum phase transfer functions on the

solutions. Accordingly the scaling matrix D ∈ SD is de-
fined with SD = {D = diag(x1 Iξ1 , ..., xτ Iξτ ), 0 < x j ∈ R}

and the standard µ upper-bound calculation reveals µ1a (M) ≤

maxω infDω∈SD σ̄ (DωM( jω)D−1
ω ).

This constant matrix approach fits well to the frequency do-
main modeling problem. The upper bound of (2) can be written
as

max
ω

inf
2

inf
Dω∈SD

σ̄ (DωM0( jω)WI (2, jω)D−1
ω )

where the minimization in 2 is subject to (3) and (4). For gen-
eral system G (3) and (4) define nonlinear, non-convex con-
straints. However in the frequently used special case, when the
perturbation and disturbance are additive to the nominal model,
the optimization in 2 can be solved using linear matrix in-
equalities (LMI) for which efficient numerical algorithm exists
[22]. Additive perturbation and disturbance involve that η is in-
dependent of θ and can be calculated in advance from u, i.e.
G11 = 0,G12 = 0. This case includes input/output multiplica-
tive perturbations as well.

In the following (3) and (4) is rewritten in a
compact LMI form. Define real diagonal matrices
Vk = diag{|W1( jωk)|

2, |Wd( jωk)|
2
} ∈ Rnξ+nd×nξ+nd ,

VI,k = diag{Vk, Ir }; diagonal of complex vectors

Alk = diag
{

aξ,lk,1
|ηlk,1|

, ...,
aξ,lk,τ
|ηlk,τ |

, ad,lk,1, ..., ad,lk,nd

}
∈

Cnξ+nd×nξ+nd ; and diagonal of complex matrices
Blk = diag

{
Bξ,k,1
|ηlk,1|

, ...,
Bξ,k,τ
|ηlk,τ |

, Bd,k,1, ..., Bd,k,nd

}
∈

Cnξ+nd×nθ (τ+nd ); and let the complex column vector
2lk = columnvec{θlk, ..., θlk} ∈ Cnθ (τ+nd ). Then (3) and
(4) reappear as[

Vk (Alk + Blk2lk)
∗

Alk + Blk2lk Iξ+nd

]
≥ 0 (5)

Define DR,k = diag{D2
k , Ind+nr } and DL ,k = diag{D2

k , Iz}. The
following main result that solves Problem 2 can be proved by
simple algebra.

Theorem 2 Let G11 = 0,G12 = 0. The uncertain system
of Fig. 1(b) is not invalidated by the data set Syu and robust
H∞- performance is satisfied at level γ , i.e. ‖1‖∞ ≤ γ−1

and ‖FU (M,1)‖∞ < γ if there exist Dk , Vk and θlk for all
k = 1, ..., nω, l = 1, ..., N that solve[

γ 2 DL ,k DL ,k M0,k VI,k

VI,k M∗

0,k DL ,k VI,k DR,k

]
> 0 (6)

and (5).

Proof. Using Schur complement (5) is equivalent to |w1i |
2

−

|aξ,lk,i +Bξ,k,i θlk |
2

|ηlk,i |2
≥ 0, i = 1, ..., τ and |wdi |

2
− |ad,lk,i +

Bd,k,iθlk |
2

≥ 0, i = 1, ..., nd which are the consistency con-
ditions by Theorem 1. Equivalently to [31, Theorem 11.9] it
can be stated that ‖1‖∞ ≤ γ−1 and ‖FU (M,1)‖∞ < γ

if and only if µ1a (M) < γ . This is satisfied if there exist
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Figure 3: Simulink block structure of the vehicle model. The input signals to the model are
the followings: brake pressures to the four wheels (P_dem, zero for the rear wheels), driver
torque to the steering wheel (Tdriver=0), driving moments to the four wheels (Tdrive, velocity
feedback controller to keep constant speed), pitch (pitch_R=0) and roll (roll_R) angles of
the road, vertical road disturbances (w_road=0), suspension actuators (u_susp=0).
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Figure 4: Example for the roll angle ϕR of the road

yaw, roll, pitch, heave motions, steering systems, wheel and brake actuator dynamics and a
road model. The road model pretends effects of lateral road slope as well.

The goal of the control is to track a yaw-rate reference signal defined by some higher level
control algorithm. The controller uses yaw-rate ψ̇ and steering wheel angle δm measurements
and acts on the brake-pressures of the front wheels. Good performance means small yaw-rate
tracking error and control energy.

The nominal model, denoted by Gn and used for control design, assumes a flat vehicle
model neglecting all vertical dynamics and wheel dynamics. It simplifies yaw dynamics and
the steering system. Furthermore the system is linearized. The forward vehicle speed is
12m/s. The nominal model Gn in the state-space looks like ẋ = Ax + Bu, y = Cx + Du,
where x = [ψ̇, δ, δ̇]T , u = ∆p, where ψ̇ denotes yaw-rate, δ denotes steering angle and ∆p is

8

Fig. 3. Simulink block structure of the vehicle model. The input signals to
the model are the followings: brake pressures to the four wheels (P_dem, zero
for the rear wheels), driver torque to the steering wheel (Tdriver=0), driving

moments to the four wheels (Tdrive, velocity feedback controller to keep con-
stant speed), pitch (pitch_R=0) and roll (roll_R) angles of the road, vertical road
disturbances (w_road=0), suspension actuators (u_susp=0).

Dk ∈ SD such that γ 2
− D

1
2
L M D

−
1
2

R

(
D

1
2
L M D

−
1
2

R

)∗

> 0 or

equivalently γ 2 DL − DL M D−1
R M∗ DL > 0. Using Schur com-

plement

[
γ 2 DL DL M
M∗ DL DR

]
> 0. Note that M can be written

as M = M0V
1
2

I 8, where 8 is a diagonal matrix of repeated
scalar frequency functions with unit amplitudes and with the an-
gles of the w1i and wd,i weighting functions. Apply a congru-
ent transformation for the last inequality by the diagonal matrix

diag{1, V
1
2

I 8
−1

} to get (6) on each frequency ωk Thus the proof
is complete.

The γ must be minimized subject to the matrix inequality con-
straints. Then weighting functions W1 and Wd of Problem 2
are constructed by over-bounding the elements of

√
Vk , k =

1, ..., nω in magnitude via the method of [26]. The minimiza-
tion subject to the inequalities (5) and (6) can be performed sep-
arately for each k via LMIs if alternately Dk or Vk are fixed.

Note that in frequency domain model validation problems
in [27], [4], [6] and in this paper stable perturbation was as-
sumed, however this condition can be relaxed as Gu has shown
in [13]. A certain winding number condition must be checked
[13, Lemma 3] before applying the method in this paper.

5 Application example
The lateral dynamics of a heavy truck is to control in emer-

gency situations using front-wheel brakes. Without any inter-
vention of the driver the vehicle can be steered by applying

brakes to either the left or the right side front wheel. A 17-
degree of freedom nonlinear Matlab/Simulink simulation model
(see Fig. 3) serves as the real plant for acquiring identifica-
tion data and testing closed loop performance. This simulation
model contains the dynamics of suspension, yaw, roll, pitch,
heave motions, steering systems, wheel and brake actuator dy-
namics and a road model. The road model pretends effects of
lateral road slope as well.

Figure 3: Simulink block structure of the vehicle model. The input signals to the model are
the followings: brake pressures to the four wheels (P_dem, zero for the rear wheels), driver
torque to the steering wheel (Tdriver=0), driving moments to the four wheels (Tdrive, velocity
feedback controller to keep constant speed), pitch (pitch_R=0) and roll (roll_R) angles of
the road, vertical road disturbances (w_road=0), suspension actuators (u_susp=0).
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Figure 4: Example for the roll angle ϕR of the road

yaw, roll, pitch, heave motions, steering systems, wheel and brake actuator dynamics and a
road model. The road model pretends effects of lateral road slope as well.

The goal of the control is to track a yaw-rate reference signal defined by some higher level
control algorithm. The controller uses yaw-rate ψ̇ and steering wheel angle δm measurements
and acts on the brake-pressures of the front wheels. Good performance means small yaw-rate
tracking error and control energy.

The nominal model, denoted by Gn and used for control design, assumes a flat vehicle
model neglecting all vertical dynamics and wheel dynamics. It simplifies yaw dynamics and
the steering system. Furthermore the system is linearized. The forward vehicle speed is
12m/s. The nominal model Gn in the state-space looks like ẋ = Ax + Bu, y = Cx + Du,
where x = [ψ̇, δ, δ̇]T , u = ∆p, where ψ̇ denotes yaw-rate, δ denotes steering angle and ∆p is
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Fig. 4. Example for the roll angle ϕR of the road

The goal of the control is to track a yaw-rate reference signal
defined by some higher level control algorithm. The controller
uses yaw-rate ψ̇ and steering wheel angle δm measurements and
acts on the brake-pressures of the front wheels. Good perfor-
mance means small yaw-rate tracking error and control energy.

The nominal model, denoted by Gn and used for control de-
sign, assumes a flat vehicle model neglecting all vertical dy-
namics and wheel dynamics. It simplifies yaw dynamics and
the steering system. Furthermore the system is linearized. The
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forward vehicle speed is 12m/s. The nominal model Gn in the
state-space looks like ẋ = Ax + Bu, y = Cx + Du, where
x = [ψ̇, δ, δ̇]T , u = 1p, where ψ̇ denotes yaw-rate, δ denotes
steering angle and1p is the brake pressure difference applied to
the front wheels and [

A B

C D

]
=

−10.5589 22.92 0 0
0 0 1 0

22.7567 −66.43 −3.255 −0.3603

1 0 0 0
0 1 0 0


The model uncertainty comes from the neglected dynamics

and outer disturbance. During the experiments the roll angle
ϕR of the road varies (an example of ϕR is plotted in Fig. 4)
causing the vehicle to skid sidewards and turn round the verti-
cal axis. The reason for this cornering is the acting of different
side-forces at the front and rear owing to the different wheel
loads. The evolving yaw moment also turns the steering sys-
tem, thus amplifying the cornering. This disturbing effect in-
creases with steering angle and decreases with velocity. All the
uncertainty effects are modeled by an input-multiplicative per-
turbation and additive disturbances on y. The closed-loop sys-
tem with performance outputs are shown in Fig. 5 (compare
with Fig. 1). The uncertain model structure G of Fig. 2 is

G =

[
0 0 1

Gn I2 Gn

]
.

the brake pressure difference applied to the front wheels and

[

A B
C D

]

=











−10.5589 22.92 0 0
0 0 1 0

22.7567 −66.43 −3.255 −0.3603
1 0 0 0
0 1 0 0











The model uncertainty comes from the neglected dynamics and outer disturbance. During
the experiments the roll angle ϕR of the road varies (an example of ϕR is plotted in Fig. 4)
causing the vehicle to skid sidewards and turn round the vertical axis. The reason for this
cornering is the acting of different side-forces at the front and rear owing to the different
wheel loads. The evolving yaw moment also turns the steering system, thus amplifying the
cornering. This disturbing effect increases with steering angle and decreases with velocity.
All the uncertainty effects are modeled by an input-multiplicative perturbation and additive
disturbances on y. The closed-loop system with performance outputs are shown in Fig. 5

(compare with Fig. 1). The uncertain model structure G of Fig. 2 is G =

[

0 0 1
Gn I2 Gn

]
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Figure 5: The ∆-P -K structure. Gn is the nominal plant, yc the yaw-rate reference, yc1 the
normalized yaw-rate reference, n denotes sensor noise, z1, z2 performance signals, WC , Wu,
Wt, W∆, Wd and Wn are weighting functions, K is the controller

In order to illustrate the results of the paper a robust controller is designed by µ-synthesis
based on engineering judgement on weighting function selection. Engineering judgement says:
”Since a large dynamics is neglected and the effect of lateral road slope (which is less then
3 degree) is related to the control input, pick up W∆ and Wd so that the nominal model
error y − Gnu be mainly covered by input-multiplicative perturbation. Additive disturbance
is assumed to a minimal extent required to have consistent uncertainty model”. The weighting
functions W∆ and Wd can be seen in Fig. 7 plotted by dashed lines. For good tracking in

steady state, a high gain of Wt is required on low frequency, therefore Wt = 0.25 (s+1)2

(s+50)2
.

The control input is penalized by Wu = 0.0008 (s+50)2

(s+0.2)2
beyond 1 rad/s in order to avoid high-

frequency dynamics of the controller. Further judgements on performance weighting functions
are beyond question in this paper.

The generalized plant P is defined by the mapping
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Fig. 5. The 1-P-K structure. Gn is the nominal plant, yc the yaw-rate ref-
erence, yc1 the normalized yaw-rate reference, n denotes sensor noise, z1, z2

performance signals, WC , Wu , Wt , W1, Wd and Wn are weighting functions,
K is the controller

In order to illustrate the results of the paper a robust con-
troller is designed by µ-synthesis based on engineering judge-
ment on weighting function selection. Engineering judgement
says: ”Since a large dynamics is neglected and the effect of lat-
eral road slope (which is less then 3 degree) is related to the con-
trol input, pick up W1 and Wd so that the nominal model error
y−Gnu be mainly covered by input-multiplicative perturbation.
Additive disturbance is assumed to a minimal extent required to
have consistent uncertainty model”. The weighting functions
W1 and Wd can be seen in Fig. 7 plotted by dashed lines. For
good tracking in steady state, a high gain of Wt is required on
low frequency, therefore Wt = 0.25 (s+1)2

(s+50)2 . The control input

is penalized by Wu = 0.0008 (s+50)2

(s+0.2)2 beyond 1 rad/s in order to

avoid high-frequency dynamics of the controller. Further judge-
ments on performance weighting functions are beyond question
in this paper.

The generalized plant P is defined by the mapping η

z
yK
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−Wt Gn,r −Wt Wd,r 0 WC −Wt Gn,r
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0 0 0 WC 0
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where Gn,r denotes the nominal transfer function to the yaw
rate. Having specified the 1-P-K structure the controller is de-
signed by µ-synthesis. A peak µ value of 2.049 is achieved
which means robust performance is not fulfilled. In this case
the following questions arise. Should the nominal model be re-
identified with higher order? Should the uncertainty model be
refined with more perturbation blocks with the price of increas-
ing controller order? Should the performance requirements be
weakened?

In simulation environment the effect of road slope (distur-
bance) and unmodeled dynamics can be separated. We found
that the effect of disturbance is much larger than that of ne-
glected dynamics, see Fig. 6, where disturbance and perturba-
tion contributions in the nominal model are compared. Con-
siderable perturbation is present at low frequencies below 0.6
rad/s.

where Gn,r denotes the nominal transfer function to the yaw rate. Having specified the ∆-
P -K structure the controller is designed by µ-synthesis. A peak µ value of 2.049 is achieved
which means robust performance is not fulfilled. In this case the following questions arise.
Should the nominal model be re-identified with higher order? Should the uncertainty model
be refined with more perturbation blocks with the price of increasing controller order? Should
the performance requirements be weakened?

In simulation environment the effect of road slope (disturbance) and unmodeled dynamics
can be separated. We found that the effect of disturbance is much larger than that of neglected
dynamics, see Fig. 6, where disturbance and perturbation contributions in the nominal model
are compared. Considerable perturbation is present at low frequencies below 0.6 rad/s.
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Figure 6: Perturbation (dotted) and disturbance (solid) contributions in the nominal model
error. For yaw-rate (top) and steering angle (bottom)

The engineering hypothesis was false. But in the real we usually cannot make such an
analysis. The method proposed in the previous sections is applied to remodel the uncertainty.
The controller is given, the data used for identifying the nominal model is given, Theorem
2 can be applied. After over-bounding

√
Vk magnitude points by W∆ and Wd functions and

fitting a D(jω) scaling matrix on the Dk magnitude points a new controller is designed by
simple H∞ method (only the K-step in D-K iteration of the µ-synthesis). The proposed
uncertainty remodeling method and controller design is repeated a few times as shown in
Fig. 7, where the initial weights are plotted with dashed lines, the final with solid lines and
the

√
Vk points in the intermediate iteration steps with dots. It can be seen that weights of

disturbances increase and the weight of perturbation decreases. The achieved peak µ value is
0.843, so the robust performance is achieved. We can trust in the resulted controller provided
the data was well informative i.e. no future experiment with the controller will invalidate the
model. If it is invalidated, the new data must be added to the set Syu and redesign of the
model and controller is needed.

One might think that we got back the real distribution of the uncertainty. It is emphasized
that the information of the real distribution is not contained in the data. The resulting weight
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Fig. 6. Perturbation (dotted) and disturbance (solid) contributions in the
nominal model error. For yaw-rate (top) and steering angle (bottom)

The engineering hypothesis was false. But in the real we usu-
ally cannot make such an analysis. The method proposed in the
previous sections is applied to remodel the uncertainty. The con-
troller is given, the data used for identifying the nominal model
is given, Theorem 2 can be applied. After over-bounding

√
Vk
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(a) Weight for the additive disturbances
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(b) Weight for the input-multiplicative per-
turbation

Figure 7: Weight functions of the two additive disturbances and the input-multiplicative
perturbation. The initial (dashed), the result after tuning of the model (solid).

functions fit the robust performance criterion and the data set is only a constraint for having
an unfalsified uncertainty model, which have questionable physical meaning.

The initial and resulted controllers are compared. The speed is kept 12m/s in the nonlinear
simulator model by PID control of driving torque on the rear axles. The road slope is varying.
No extra sensor noise is defined. In Fig. 8 from top to down the control input in a transient,
the yaw-rate reference tracking in a transient and the yaw-rate reference tracking in steady
state can be seen. It is shown that control input became moderated and yaw-rate tracking
improved in both steady state and transient.

6 Conclusions

A new robust performance measure is defined which implicitly contains model consistency
conditions. The proposed measure answers the following question. Given a controller, is
robust performance satisfied for any model set consistent with the available measurements? If
no (the measure is greater than one), the controller is falsified. If the answer is yes, then does
this fact gives confidence in the controller? It depends on the data whether it represents well
the model uncertainty. Therefore the measure is applied in controller synthesis problem with
iterative redesign of the controller (just like µ). To increase our confidence at any iteration
step new measurement data performed by the new controller can be added. The usefulness
of the iteration is proved through a vehicle control problem.
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Fig. 7. Weight functions of the two additive disturbances and the input-
multiplicative perturbation. The initial (dashed), the result after tuning of the

model (solid).

magnitude points by W1 and Wd functions and fitting a D( jω)
scaling matrix on the Dk magnitude points a new controller is
designed by simple H∞ method (only the K-step in D-K itera-
tion of the µ-synthesis). The proposed uncertainty remodeling
method and controller design is repeated a few times as shown
in Fig. 7, where the initial weights are plotted with dashed lines,
the final with solid lines and the

√
Vk points in the intermediate

iteration steps with dots. It can be seen that weights of distur-
bances increase and the weight of perturbation decreases. The
achieved peak µ value is 0.843, so the robust performance is
achieved. We can trust in the resulted controller provided the
data were well informative i.e. no future experiment with the
controller will invalidate the model. If it is invalidated, the new
data must be added to the set Syu and redesign of the model and
controller is needed.

One might think that we got back the real distribution of the
uncertainty. It is emphasized that the information of the real
distribution is not contained in the data. The resulting weight
functions fit the robust performance criterion and the data set
is only a constraint for having an unfalsified uncertainty model,
which have questionable physical meaning.

The initial and resulted controllers are compared. The speed
is kept 12m/s in the nonlinear simulator model by PID control
of driving torque on the rear axles. The road slope is varying.
No extra sensor noise is defined. In Fig. 8 from top to down the
control input in a transient, the yaw-rate reference tracking in a
transient and the yaw-rate reference tracking in steady state can
be seen. It is shown that control input became moderated and
yaw-rate tracking improved in both steady state and transient.

6 Conclusions
A new robust performance measure is defined which implic-

itly contains model consistency conditions. The proposed mea-
sure answers the following question. Given a controller, is ro-
bust performance satisfied for any model set consistent with the

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0
pr

es
su

re
 d

iff
er

en
ce

 [b
ar

]

time [s]

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

ya
w

−
ra

te
 [r

ad
/s

]

time [s]

6 8 10 12 14 16
0.196

0.198

0.2

0.202

ya
w

−
ra

te
 [r

ad
/s

]

time [s]

Figure 8: Closed-loop simulation at v = 12m/s. Solid line: yaw-rate reference rref , dashed:
initial, dotted: tuned.
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available measurements? If no (the measure is greater than one),
the controller is falsified. If the answer is yes, then does this
fact gives confidence in the controller? It depends on the data
whether it represents well the model uncertainty. Therefore the
measure is applied in controller synthesis problem with iterative
redesign of the controller (just like µ). To increase our confi-
dence at any iteration step new measurement data performed by
the new controller can be added. The usefulness of the iteration
is proved through a vehicle control problem.
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