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Abstract

This paper discusses how to plan continuous-curvature paths
for car-like wheeled mobile robots. The task is to generate a
trajectory with upper-bounded curvature and curvature deriva-
tive. To solve this problem we use three path planning prim-
itives, namely straight line segments, circular segments, and
continuous-curvature turns (CC turns) in the path planning. We
give a classification of the CC turns and we also describe the
motion along different kinds of CC turns. We focus on giving

computational effective formulae for real-time usage.
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1 Introduction

Path planning and tracking control of car-like mobile robots
become a popular research field during the last decade since a
strong need emerged for fully or partly autonomous vehicles. A
popular application field of the results of such research activities
is represented by the assisted or fully automated parking sys-
tems [[15]] that car manufacturers want to offer to their clients in
the near future (some pioneering systems [1]] have been already
introduced on major markets).

Since most of the maneuvers that are candidate for automated
execution take place at low velocities, the kinematic model of
the mobile robot gives a reliable approximation of the reality.
The characteristics of such models is their nonholonomy and the
possibility to give accurate measurement of their parameters due
to their geometric nature (e.g. wheelbase distance). The models
may slightly differ in the relative degree [9] of the steering in-
put that influences the curvature of the path of the vehicle with
respect to the vehicle position. This means that some models
take as one of the inputs the wheel angle, whereas others take its
first or sometimes second time derivative, the other input being
always the longitudinal velocity of the vehicle.

There are several methods which plan the motion using such
kinematic models (e.g. in a discretized configuration space
with minimal number of maneuvers [2]], polynomial-time al-
gorithm for calculating the shortest path of bounded curvature
(SBC) [10], using the Probabilistic RoadMap algorithm [21])).
These algorithms use straight lines and circular segments usu-
ally with the minimal turning radius to build the path for the
robot. These motions are optimal for robots moving in forward
direction only [5]] and for robots moving both in forward and
backward directions [16]], but the curvature is not continuous
along such trajectories (i.e. the robot has to stop to reorient its
front wheels between straight lines and circular segments) which
is an elementary requirement for automated maneuvering espe-
cially when the velocity should not vanish along the trajectory.
To meet the supplementary requirement of continuous-curvature
paths, the set of curve primitives must be enriched by some ad-
ditional segments (e.g. clothoid arcs [[19] or segments generated
by a special steering method [[13]]). A clothoid is a curve whose
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curvature varies linearly with its arc length, hence the curvature
is continuous along it.

The planning problem becomes even more involved if one
also takes into account that the car-like robot can only reori-
ent its front wheels with a finite turning velocity, hence the
curvature derivative is also upper bounded. In [12] the proper-
ties of the clothoids with bounded curvature derivative are pre-
sented but the authors do not consider the minimal turning radius
constraint. The existing methods (for the forward-only prob-
lem [20]], for robots moving both in forward and backward di-
rections [6]) which solve the problem of path planning with both
upper bounded curvature and curvature derivative use clothoid
arcs in the motion planning. The main problem with the clothoid
arcs is that the displacement is calculated using Fresnel integrals
which are not available in closed form. This impedes the direct
real-time parametrization of the path since the value of the inte-
grals has to be calculated off-line. The solution cited therefore
suppose that the curvatures at the initial and final configurations
are zero which is not always true in real situations.

In this paper we discuss how to generate continuous-curvature
paths for car-like wheeled mobile robots joining arbitrary initial
and final configurations with non-zero initial and final curva-
ture. Our task is to plan a feasible trajectory which satisfies
the equations of the kinematic model and the bounds on the in-
put variables. In order to propose algorithms that can be ex-
ecuted in real-time we work with a set of precomputed Fres-
nel integral values and give an upper bound on the planning
error depending on the resolution of the set on a curvature in-
terval. The path is constructed based on a set of elementary
curves, namely: straight line segments, circular segments, and
continuous-curvature turns (CC turns). (The CC turn is a spe-
cial clothoid arc, where the curvature varies with the allowable
maximal velocity until it reaches the limit on the curvature.) The
calculations are based on the continuous-curvature kinematic
model given in [6]].

A method that allows changing in real-time the time distri-
bution along the path while leaving unchanged its geometry is
also presented. Such a time-scaling method [{8]] is needed if one
wants to execute the path in an open-loop fashion such that the
velocity of the car is no longer an input but generated by an
external source [11]]. Notice that time-scaling can also be used
to transform a system to gain useful properties (e.g. feedback
linearizability [18]]).

The methods presented in the paper for continuous-curvature
path planning are all illustrated by their practical application for
an automated parking system developed for a Ford Focus type
vehicle.

The remaining part of the paper is organized as follows. The
next section presents the kinematic model of the mobile robot
with which we work throughout the paper. Section [3] describes
the path planning method and the time-scaling is detailed in Sec-
tion[d] Section [5] presents an example for parallel parking of a
passenger car. A short summary concludes the work.

2 Kinematic model of the robot

The model used for the continuous-curvature path planning is
a kinematic model introduced in [3]] which differs slightly from
the general kinematic model of car-like robots described for ex-
ample in [[17]]. The general model has three state variables while
we use an additional one, hence in our case the configuration of
the robot is described by four variables.

The reference point of the car-like robot is the center point
of the rear axle denoted by R (see Fig. [I). The configuration
q of the car is described by the coordinates (x, y) of the refer-
ence point R, the orientation of the car, denoted by w, and the
curvature x, which is the converse of the turning radius. The cur-
vature has a sign, which shows the turning direction (left/right).
Using these notations the kinematic equation of the car-like mo-
bile robot reads:

X cos ¥ 0

. y sin 0

g=| " |= olos o (1)
7 K 0
K 0 1

Fig. 1. The parameters of the wheeled mobile robot

The input variables of the robot are the longitudinal velocity
of the reference point v and the time derivative of the curvature,
denoted by o, which is related to the steering velocity of the
front wheels (¢). If b denotes the wheelbase of the vehicle, the
following relationships hold (see Fig. [T):

tan ¢ . @
K= and o0 =« =

b bcos? ¢ @

If a path or a path segment is defined by a set of configurations
in some world coordinate system, one can shift (with (xg, yg) in
the x-y plane) or rotate (with y( around the z axis) it by using a
generalized coordinate-transformation:

x’ cosyg —sinyg 0 0 xg x
Y sinyg  cosyp 0 0 yo y
y' | = 0 0 1 0 wo W (€)]
K 0 0 01 o K
1 0 0 0 0 1 1
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3 Path planning
The goal is to plan a feasible path which satisfies some con-
straints. To solve this problem we use three path primitives

based on the kinematic equation of the robot given in (T).

3.1 Constraints

In a motion planning task the feasibility of a trajectory is gen-
erally described by geometrical path constraints and kinematic
or dynamic constraints [23]. The path constraints define limits
on the path geometry (e.g. minimal turning radius, maximal cur-
vature). Kinematic constraints are given for the velocity and ac-
celeration terms (e.g. nonholonomic constraint [7]). The phys-
ical limits on torques and forces generated by the motors and
the dynamic equations give the dynamic constraints. Since we
use the kinematic model of the robot due to the slow longitudi-
nal velocity we only consider the path and kinematic constraints
and we disregard the dynamic constraints.

There are some constraints for the variables described in (2}
which have to be considered during the motion planning. The
value of the maximal curvature is limited since a minimal turn-
ing radius should be respected. Moreover, the time derivative of
the curvature has also an upper bound since the steering velocity
of the front wheels is also limited.

€] < kmax and  |o| < Omax @

In the path planning algorithm we utilize these limits to get the
fastest solution.

The nonholonomic constraint of wheeled mobile robots arises
from the kinematic model (IJ) by eliminating the inputs:

ycosy —xsiny =0 5)

3.2 Primitives

To plan a feasible path with continuous-curvature we use
three different types of primitives: straight line segments, cir-
cular arcs, and continuous-curvature turns (CC turns). The main
difference between these primitives is their curvature. Moving
along a straight line segment gives zero curvature. Turning with
constant and finite turning radius (i.e. with non-zero constant
curvature) results a circular motion. If the curvature changes
linearly with the arc length during the movement a CC turn is
used.

In this section these primitives are presented and all parame-
ters are given. To avoid involved calculations first we suppose
that the car has a constant velocity during the motion. This con-
stant velocity is denoted by v. (Section [ discusses how this
constant velocity profile can be modified without changing the
geometry of the path.)

3.2.1 Primitives with constant curvature
In a straight line or along a circular segment the curva-
ture does not change. Given is a start configuration gy =

[x0, Yo, W0, xo]”, the end of the straight or circular segment

q1 = [x1,y1, ¥1, x1]7 and the geometry of the whole primi-
tive can be easily calculated if the parameter of the segment is
known (see Table [T). Table [I] presents the properties of these
primitives.

3.2.2 Primitives with linearly varying curvature

The most involved primitives are the CC turns which are made
from clothoid arcs with upper bounded curvature and curvature
derivative. First, the properties of the clothoids are presented
than some simpler special CC turns are detailed. Finally, the
calculation of general CC turns is given. We also discuss a solu-
tion for real-time applications.

A clothoid is a curve whose curvature varies linearly with its
arc length:

k() = as(t) + x(0), (6)

where a is the sharpness of the clothoid and s(¢) denotes the
length of the arc at time ¢ [6].

A basic CC turn is a clothoid, whose curvature varies from
k(0) = 0to x(Tcc) = Kmax,» Where Tee denotes the time re-
quired to finish the basic CC turn. The curvature in the basic
CC turn is the following if the velocity v of the car is constant
and the maximal allowable input (omax) is used:

k(t) = avt + x(0), @)
where the sharpness is
o = Omax (8)
)
This choice ensures that
K(t) = Omax! + K(O) 9
which satisfies the kinematic model (I) since k() = omax.

The time required to finish the basic CC turn can be calculated
from (@) and from the fact that x (Tcc) = kmax for £(0) =0

(10)

We use two different types of CC turns depending on the sign
of Ul o C-in (4X! > 0) and CC-out (4 < 0).

There are two different directions of rotation depending on the
sign of x: positive and negative. During a positive turn (x > 0)
the car rotates counterclockwise while during a negative turn
(x < 0) it rotates clockwise.

Using these properties four different types of CC turns can be
distinguished: positive CC-in, negative CC-in, positive CC-out,
and negative CC-out. (To describe the four different cases of
CC turns we use the following notations: superscript + means a
positive turn while superscript — denotes a negative one. CC-in
is denoted by a subscript in while out shows a CC-out.)

If the change of the curvature is maximal (i.e. Ax = txmax)
we obtain a full CC turn. This means that at the initial config-
uration the curvature is O respectively xmax, While at the end
configuration the curvature is .y respectively O.
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Tab. 1. Parameters and properties of the primitives with constant curvature

Straight line Circular segment
Initial position (xg, yo) arbitrary
Initial orientation arbitrary
Initial curvature x K9 =0 A

Velocity v

Steering input o
Parameter of the segment
End position (x1, y1)

[ - length
function of xg, yo, wo.

arbitrary constant
=0
¢ - turning angle
function of xg, yo, o, k0,

4
End orientation y v = wo vi=wo+oe
End curvature x| k1 =0 K| = Ko
Duration of the segment T = % T, = ﬁhl

First, the equations of the full positive CC-in turn will be
given. The exact calculations cannot be executed in real-time,
since one cannot give the configurations in closed form, hence
we suggest to make some precalculations for the full C Cl.‘;. Af-
ter that we will use elementary and computationally effective
mathematical operations to get the equations of all other (full
and general) CC turns from the beforehand calculated CC; in
closed form.

In the sequel we will suppose that the motion starts from the
q0 = [0,0,0, 017 initial configuration in case of full CC;, turns
or from g9 = [0, 0, 0, +imax]? in case of full CC,,, turns. To
get the CC turns starting from arbitrary initial position and ori-
entation one should use (3).

(x > 0, % = k > 0) The robot
follows a clothoid arc of sharpness o = omax/v with k(0) = 0

Full positive CC-in.

and «(Tcc) = xmax- This case gives the equations for the basic
CC turn and it is also described in [|6].

If the robot moves along such a curve the time functions of
the configuration changes read:

+(+)2
o) = \/Ecp in ) (11)
a Ta
+ 2
Vi) = \/ESF in ) (12)
a o
()2
Vi) = % (13)
k(1) = Oomaxt (14)

where Cr and SF denote the Fresnel integrals:

* T . T
Cr(x) =/ cos (—zz) dt,  Sp(x) =/ sin (—rz) dt
0 2 0 2
15)
The end configuration of a full positive CC-in turn starting

form the g9 = [0, 0, 0, 017 configuration is:

X1 xt (Tee)
+
1 m(Tcc
a=|"|= Yin ) (16)
Wi Yin(Tee)
K1 K;(TCC) = Kmax

where T¢c is defined by (I0).

Since Fresnel integrals are required for the calculations, it
is not possible to carry out them in real-time. Hence we sug-
gest the calculation of the values of the integrals beforehand
for discrete time instants (i.e. for t = nTg, where n € IN and
0 < n < Tcc/Ts). If the constant velocity of the car is the
same for all path planning tasks, the same attributes are required
for (T3)): The parameters of the constraints (kmax, Gmax) are con-
stant and the curvature varies in the same way (x(t) = omax?)
for all CCl.J; turns. Thus the same Fresnel integrals are required
for the calculations of full CC l'; turns.

dlk|

Full negative CC-in. (x < 0, #

sider the motion from ¢¢ = [0, 0, 0, 0]”. The sharpness of the

= —k > 0) We con-

clothoid is —omax/v. During this motion the curvature and its
time derivative vary as:

K,(t) = —Omaxt = —lc;;(t) <0

Kin (1)

a7
(18)

= —Omax = _’.C,;(t)

The evolution of the x and y coordinates are the following in a
negative CC-in:

X, (1) = V7 /aCF (\/K,-;(t)z/(fm)) =

Vm/aCF ( (—x,»*,;(t))z/(m) =x;" (1) (19)

i) == Vafasy (07 ) =
— Vr/aSF ( (—Kiﬁ(t))z/(ﬂa)) =~y (D) (20)
The equation of the orientation is:

K,':,(t)z _ (_Ki—;([))z _ +
2¢  2a = Vi)

) = - e

Notice, that using the equations (I9)-(ZI) we really get
x,.(0) =0, y,.(0) = 0and y,;, (0) = O as initial configura-
tion.
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Full positive CC-out. (x > 0, Il = j < 0) The full posi-
tive CC-out turn starts from gg = [0, 0, O, Kmax]® , and the sharp-
ness of the clothoid is —omax/v. The equations for the positive
CC-out differ also from (II)-(I4). The time function and time

derivative of the curvature are the following:

K;;t (t) = Kmax — Omax! = (22)
omax(Tee — 1) = x;,(Tec — 1) = 0
’.C(_);z(t) = —Omax = _k,'_;(t) (23)

The equations for the x and y coordinates read:

x}f,(t)=—/n/aCF (w/x(;,(t)z/(na)) =

— Vr/aCF (\/K,ﬂ,;(ch - l)z/(ﬁa)) = —x;"(Tcc — 1)
(24)

y;t,,(t) =V m/aSF (\/ KL;(I)Z/(”(X)) =

Vm/aSF (\/K;(ch - 1)2/(7“1)) =y (Tcc —1) (29

The equation of the orientation is:

+ 2 + 2
K, (l‘) K. (TCC - l‘)
Yo (1) = — (uzta =—— 0 = —y; (Tec — 1)
(26)

Constant values could be also added to the Eqs. (24)-25)
without modifying their time derivatives. We select constants
which guarantee x.0 ,(0) = 0 and y;},(0) = 0 for a O start posi-
tion. So we get the following equations for the positive CC-out:

X ) == x}(Tee — 1) + x,(Tee) 27)
Vbt @) =y (Tee — 1) =y (Tee) (28)
Similarly, to get w,,(0) = 0 we also modify (Z6):
w0 = =it (Tee = 1) + v (Teo) (29)
Full negative CC-out. (x < 0, ‘% = —k < 0) The

start configuration is go = [0, 0, 0, —Kmax]”, the sharpness of
the clothoid is omax /v in this case. The curvature and its time
derivative vary in the negative CC-out according to the follow-
ing equations.
Kout (t) = — Kmax + Omaxt = (30)
— omax(Tee — 1) = —k; (Tee — 1) < Ok, (1) =
(31)

Omax = k,'_; (t)

We give again the evolution of the configuration variables.

X, () =— Jr/aCp ( Ko_m(t)z/(na)) =
— Vr/oCF (\/(_’C,‘—;(TCC - f))z/(ﬂa)) = (32)

—x(Tcc — 1)

1

, + ot " " <
. xout(o)__xin(TCC) 3 IRERRRK CC;1
: | A
£ 5 T T {..m.\m‘\\ CCh
= == CCY
b 4 / * out
- CC”
xout(0)=—xi‘n(ch) out
-4t ; ; y 4 ‘ j i 7
-10 -5 0 5 10
x[m]
shift
5[ Vou(@=v(Teo) l 51| x(0)=0 il
X(0)=0 5 yo=0|
E o L £, AN
> A S >
yo)=0| Yo, * w(0)=0
-5 + ot _5 n
wout(o)'_win(TCC) rotate »”
0 5 10 0 5 10

X [m]

Fig. 2. Four different full CC turns in the x-y plane

Vo (6) = — JTTaSF (\/x;,,(m/(m)) -
=— Jr/aSF (\/(—K,-*,}(ch - f))z/(ﬂa)) = (33)

=y (Tec —1)

Kot (1)? _ (=x (Tcc — 1))?

+
e 20 wo (Tcc — 1)

(34)

Wour (1) =

We add again constants to equations (32)-(34) to satisfy
Xou(0) =0, y,,,,(0) =0and y,,,(0) =0

Xou (1) = = x;F (Tee — 1) + x4 (Tec) 35)
Your ) ==y (Tcc — ) + ¥t (Tec) (36)
Wour () = (Tcc — 1) — yit (Tee) (37)

It can be seen from the equations that the configurations of all
full CC turns can be determined in real-time provided that the
evolution of the configuration variables are calculated for the
full CC l: turn. Moreover, the four different CC turns are con-
gruent. Using mirroring, shifting and rotation we can get all the
full CC turns from one (see Fig. 2)).

General CC turn.
from O to the maximal curvature +xm,x or conversely. In the

In all full CC turns the curvature changes

general case the curvature varies continuously from an arbitrary
—Kmax < K0 < Kmax value to an arbitrary —xmax < ¥1 < Kmax
value. We only suppose that kg-x1 > 0, which means that xy and
x1 do not have different signs. (If xo - ©1 < O then the path can
be divided into two CC turns: a CC turn with curvature between
xo and 0 and a second CC turn with curvature varying from O to
K1.)

So the general CC turn moves the robot from the arbi-
trary qo =
[x1, y1, w1, x1]7 end configuration, where —xmax < k1 < Kmax

[X0, Y0, W0, ko]T initial configuration to a ¢ =

is an arbitrary final curvature, with g - k1 > 0.
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AY

general CC turn

max

full CC turn
y()’ T T

Y -

v=

Fig. 3. Calculation of the general CC turn

To calculate the whole geometry or the g; end configuration
of the general CC turn one needs the following parameters:

® X0, Yo, Wo — start position and orientation,
e k(o — curvature at the initial position,
e v — velocity of the car, which is supposed to be constant,

e a parameter describing the length or the duration of the seg-
ment (e.g. Ax = k1 — ko — change in the curvature, Th, =
Ak /omax — duration of the segment).

In order to calculate the general case in real-time we derive it
from the full CC turn. The general turn is a section of the full
CC turn defined by « and x; as depicted in Fig.[3]

Without loss of generality we only consider now the positive
CC-in turn since all the other cases give similar results. This
implies that 0 < xy < %] < Kmax and the sharpness of the
clothoid is & = omax /0.

First we determine the starting point of the correspond-
ing full CC turn.
[x4, Y4, WA, 0]7. Notice that qo is the configuration of this full

This configuration is denoted by g4 =

CC turn where the curvature is xy and this configuration can be
reached in 14 = kp/0max time from g4. Using (E]), the configu-
ration at the point A reads:

2
ko
ya=vyo— o (38)
o
: 2
xa=x0— ,/—CF — | cosya+ 39)
o T
w ([2\
—Sr —— | sinyy
o o
T K2 .
ya=yo— ,/—Cr — | sinya— (40)
o T

COS Y4

The points of the general CC turn are the points of a section of
the full CC turn from the configuration go. If one needs ¢ time
to reach a configuration from g in the general CC turn, it takes
tA+1t = ko/0max + t time to reach the same configuration from

g4 in the full CC turn. (Notice, thatt < Ta, andt4+1 < Tcc.)

xg(t) =xa + \/ECF
o
[04 Tao

Cosya — y,'_;(’f()/amax +1)sinya

T Ko (1)2
ye(t) =ya+ ,/—CF .
a a

T Ko (2)?
—SFr s coswa = ya+
o ' 7a

x,'-; (%0/Omax + 1) sin g + yi—; (%0/Omax + 1) cos w4

Kg (t)2

cosS Wa—

sinya = x4 + xl-—; (r0/Omax + 1)

(41)

sin w4+

(42)
K (1) +
we(t) = ya+ 20 =ya+ ‘//in(KO/O'max +1) (43)
Ko
Kg(t):Umax( +t) = K0 + Omax! =
Omax
e, (k0 /Omax +1) < K1 (44)

Observe that the calculations of the general CC turn use same
Fresnel integrals as in the full positive CC-in turn since 0 <
Kg(t) < Kmax, and Kmax, Omax, 0 have the same values. Hence if
the points of the full positive CC-in turn are calculated before-
hand, than the general positive in turns can also be determined
in real-time. Notice also that the general CC turns sections can
be calculated for other (negative and/or out) CC turns similarly
according to the relationships between the different CC turns.

3.3 Planning the whole path

There are several methods to patch together a trajectory using
the three primitives enumerated in Section [3.2] Probabilistic or
deterministic path planning algorithms can also be used to solve
the task. For example the Probabilistic RoadMap method in [21]]
or the Rapidly Exploring Random Tree algorithm in [[14] can be
applied with these primitives. To carry out special tasks, for
example in the automatic parking case, deterministic methods
can be used. The following patch rules have to be satisfied to
get a continuous-curvature path with upper bounded curvature
and curvature derivative:

R1 If the curvature k equals zero only straight line segment or
CC turn starting from kg = 0 can be used (both full or general
turns).

R2 [f the curvature is a non-zero, say k4, the motion can be
continued along a circular segment with turning radius |1/x 4|
or using a general CC turn starting from kg = k4. The direction
of the rotation is determined by the sign of k 4.

R3 The length of the straight line and circular segments is ar-
bitrary while the length of a CC turn is restricted by the upper-
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bound of the curvature (see (@)) and by the k- k1 > 0 condition
(see Section[3.2.2).

We suggest not to utilize the entire range for x and o given in (@)
for the path planning. These bounds should be reduced during

the motion planning to leave margin for the tracking controller:

/
max

0 < Sy < 1 are design parameters.

K = Sykmax and ¢} ,x = SyOmax, Where 0 < S, < 1 and

3.4 Accuracy

Since real-time calculation is required, the Fresnel integrals
in (T3] are calculated beforehand at discrete time instants (i.e.
fort = nTs wheren € Nand 0 < n < Tcc/Ts). The error of
path planning depends on Ts and on the velocity v.

The upper bound on the path error in a CC turn can be calcu-
lated from (TT)-(T4). This error is the maximum change in the
configuration between time moments 77 < Tcc and T + Ts:

Akmax = max(x (T + Ts) — k(T1)) = omaxTs (45)
Axmax = max(x(Ty + Ts) — x(T1)) < oTs (46)
Aymax = max(y(T1 + Ts) — y(T1)) < vTs (47)
Aymax = max(y (T1 + Ts) — y(T1)) <

(B oy (48)

These results meet our expectations: for larger Ts, v, Gmax and
Kmax values one obtains larger path errors. Using the data of the
Ford Focus, for which we design the automated parking system
we get the following results:
Omax = 0.16(ms) ™!,

v =3ms™!, Ts = 0.01s
AKmax = 0.0016m™",
A Wmax = 0.0072rad

Kmax = 0.24m_1,

AXmax = Aymax = 0.03m,

For a car-like robot and considering the accuracy of other mod-
ules of the parking system (position estimation, distance mea-
surements) these values are small enough.

4 Time-scaling of the reference

We supposed that the velocity v of the car is constant during
the movement. If this velocity varies the geometry of the path
can be modified. Tracking a straight line segment or a circular
path with different velocities does not change the geometry of
the path. If the velocity of the car differs in the different CC turns
the geometry of the path varies. To avoid this, we suggest to use
time-scaling of the reference trajectory.

The reason of the geometrical changes in CC turns is that the
time T¢c, which is required to make a full CC turn, is constant,
it does not depend on the velocity v of the car, since according
to (I0) Tcc is only determined by the car parameters (xmax and
omax)- The length of a CC turn (sc¢) is then determined by this
constant T¢¢ and the v velocity of the car which is also supposed

For different velocities the length of the CC turn changes, thus
the geometry of the whole path also varies.

To overcome this problem time-scaling [4,8]] can be used to
modify the velocity profile of a previously designed path with-
out changing its geometry. In our work we use this method to
change the constant velocity of the planned trajectory to an ar-
bitrary non-vanishing velocity profile.

Several methods in the literature use the same design proce-
dure: first the geometry is calculated than the velocity profile is
determined (e.g. [23]]). The goal of the time-scaling may be to
get optimal input signals [[8]], to improve the closed-loop behav-
ior [[22]] or to control an underactuated robot [|11]].

Suppose that the planned reference trajectory evolves accord-
ing to time 7 and its velocity profile can be modified using
time-scaling such that the resulted reference evolves according
to time 7 (7). Both references satisfy the kinematic equation (T))
of the robot, i.e. for the reference evolving according to time 7

x; () = v, (z) cos y (7) (50)
yi(7) = v, (1) sin y, (1) (51)
yr (1) = v ()rc () (52)
K () = 0, (7) (53)

where x’ = dfl—(r)

—— . From this reference we would like to get a
new reference evolving with time ¢ such that

Xref (1) = Oper (t) COS Wrer (1) (54)
Vref (1) = Vres (1) Sin Yrer () (55)
Yref (1) = Oref (Kref (1) (56)
Kref (1) = Oref (1) (57)

where v,.7(t) describes the arbitrary non-vanishing velocity
profile of the new reference.
To ensure this the time-scaling is used as

Xref (1) = x7(7) (53)
Yref (1) = yz (1) (59
Yref (1) = w(7) (60)
Kref (1) = K7 (7) (61)

and the derivative of the time ¢ according to t should be chosen
such that
_ 0 (7)

dt i vrer(t)
where 1(0) = 0, since the motion should start from the same
initial position. Notice, that v, (t) # 0 and v, (7) # O are both
supposed.

dt 1_

(62)

There is one more condition for v,.¢(¢). To follow a scaled
reference trajectory modified input signals are required. The re-
striction is that the modified input should also satisfy the input
bound limit in @):

. dr. (T ) Vrer(t
to be constant: Oref (1) = Ferey (1) = () _ K/ (1)t = o, (1) ref (1) < Gumax
Kmax dt v:(7)
scc =vTcc = 0 (49) (63)
Omax
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Fig. 4. Path for parallel parking with g; = [x; = 0,y; =0, y; # 0, k7 #
01" and gp =[x # 0, yp #0, yr = 0,kp =0]"

We mention that the time-scaling can be performed on-line
(see [4]), hence the whole path with arbitrary non-vanishing ve-
locity profile can be calculated in real-time.

5 Path planning for parking maneuvers

The goal is to plan a continuous-curvature path for a Ford
Focus type vehicle allowing the realization of a parallel park-
ing maneuver (the solution for the other types of parking ma-
neuvers being similar). The initial configuration of the car is
qr = [x1,yr1, v, k71T and it has to reach the goal position
qr =
initial configuration (x) is O, the path starts with a full positive

[xF, yF, WF, 017 (see Figure E]) If the curvature in the

CC-in turn, otherwise a general CC turn gives the first segment
of the trajectory. Then a circular motion is required with turning
angle ¢1. This is then followed by a positive CC-out turn. The
middle segment of the path is a straight line with length /. A
negative turn finishes the motion, this part contains a negative
CC-in, a circular segment with turning angle ¢, and finally a
negative CC-out turn.

The path has three parameters, namely the turning angles in
the circular segments (@1, ¢2) and the length of the straight line
(I). We have three equations for the end configuration: the de-
sired end position (x, yr) and the desired final orientation ()
determine gr. (The finishing part of the trajectory is a full CC-
out turn, which ensures that the curvature at the final position is
0.) The three equations are given by the geometry of the path
planning primitives using the three path parameters:

XF = [ (Kpyax> Omax> Vs XI» WIs K1, 01, 92, 1) (64)
VF = 8(Khaxs Ormax> Vs YIs Wi, K1, 01, 92, 1) (65)
WF = h(Kpyax> Omaxs s WIs K @1, 92) (66)

From the three equations the parameters ¢, ¢> and [ can be cal-
culated, since they are the only unknown variables in the equa-
tions. If the equations for the full positive CC-in turn (see (TT)-
(T4)) or the Fresnel integrals which are required to solve (LT))-
(T2) are calculated beforehand, the parameters ¢1, ¢, and / and
the geometry of the path can be calculated in real-time.

The parking is not possible if the robot collides with an obsta-
cle while it follows the reference path. To check this one has to

take into account the dimensions of the car, the specified safety
distances and the points of the planned reference path.

For the simulations Matlab with Simulink was used. The
real-time calculations were done by the AutoBox of dSpace.
In the example the car has to start the motion from g; =
[0,0, —z /10, 0.1]7 and the desired goal configuration is gr =
[15,9,0,0]7 where distances are in meters, angles are in radi-
ans and curvatures are in m~!. It has to move backwards with
v = 2ms~! velocity.

Fig. Bh shows the designed path for the midpoint of the
rear axle. The path parameters are the following in this case:
p1 = 0.7136rad, ¢, = 0.3347rad, and [ = 4.227m. The time
functions and the first time derivatives of the configuration along
this path are depicted in Figs. [6a{7pb. The input signals which
are required to follow the path depicted in Fig. [Sh are shown in
Figs. [5b, [7p.

Recall, that once the Fresnel integrals were calculated before-
hand, all the calculations were done in real-time.

The previous path was designed for a constant velocity (see
Fig. 5b). Now we use the time-scaling to modify the veloc-
ity profile of the path without changing its geometry as it is
also detailed in Section 4] Figs. [8p{9b show the results of time-
scaling. The time functions of X,¢f, Yrer and y,.s are depicted
in Figs. [8pOh for the velocity profiles shown in Fig. Dp.

6 Conclusion

This paper deals with path planning for car-like mobile
robots. The primitives which can be used to plan continuous-
curvature trajectories are described; the most involved one, the
CC turn is detailed. The paper shows that after some prelim-
inary calculations the path can be determined using computa-
tionally effective mathematical operations and the time distribu-
tion along it can be modified in real-time without changing its
geometry. An example is presented for the parallel parking of a
passenger car, the results of real-time simulations are also given.
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