
Ŕ periodica polytechnica

Electrical Engineering
53/3-4 (2009) 123–138

doi: 10.3311/pp.ee.2009-3-4.05
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2009

RESEARCH ARTICLE

SOA based web service adaptation in
enterprise application integration
Péter Martinek / Béla Szikora

Received 2009-05-03

Abstract
Enterprise Application Integration (EAI) is a permanent need

since various information systems are employed at companies.
Numerous standard systems must be aligned to new business
processes. There are participant systems older than 10 years,
and others developed only 1-2 years ago. This implicates a
wide technological variance making the integration problem a
real challenging issue. The widespread of the Service Oriented
Architecture (SOA) seems to be one of the most promising ap-
proaches in EAI. Although this is already supported by solid
technology and tools, deploying executable processes, predict-
ing and optimizing their non-functional performance is still an
open issue. In this paper we propose a technological solution for
the adaptation of standard enterprise services into SOA integra-
tion scenarios providing support for applying data transforma-
tion to bridge data incompatibilities. To evaluate our approach
three other possible solutions are designed and implemented.
An in detailed analytic and experimental comparison of the ap-
proaches is also presented.

Keywords
SOA · run-time performance · web service adaptation · data

transformation

Péter Martinek

Béla Szikora

Department of Electronics Technology, BME, H-1111 Budapest, Goldmann Gy.
tér 3. building V2, Hungary

Introduction
Organizations today are hard to imagine without complex in-

formation systems. Software applications are applied for man-
aging customer orders, timing the procurement and production,
supervising shipping and billing, performing the financial book-
ing, maintaining employee data etc. [9]. Adapting to the always
changing (or growing) needs of customers, newer products and
newer

services enforce the creation of new business processes and
services. Unfortunately these do not conform to the boundaries
of the different applications at the organization. Requested in-
formation and capabilities can come from many different infor-
mation systems of the company or even from other organiza-
tions. This implicates the need for integrating our systems and
realizing business processes over multiple enterprise applica-
tions. Based on the boundaries of integration we can talk about
intra- and inter-organizational enterprise application integration.

The Service Oriented Architecture has appeared 4-5 years
ago. It envisions an architecture where provided capability is
offered by service providers and applied by service consumers.
The services can be characterized by their short descriptions
which are stored in service registries. Using the registry avail-
able services are easy to browse, search and find [11]. For ex-
ample one can have a service offering booking at hotels. The
characterizing description of this service should contain infor-
mation about its capabilities e.g. the service is able to find an
available hotel at a given place for a given time interval, and to
perform or cancel booking. The complex capability of this ser-
vice is divided into operations like check availability, perform
booking and cancelling. The requested input and output data of
each operation is also required in the description. Furthermore
some technical details like the definition of service endpoints
are needed in order to invoke the service. Having this descrip-
tion one is able to adopt the service and communicate with it
properly.

SOA provides not only the possibility of simple one-to-one,
request-answer communication. Whole business processes can
be defined upon services. A combination that integrates the in-
vocation of two or more services into a complex process is called

SOA based web service adaptation in enterprise application integration 1232009 53 3-4

http://www.pp.bme.hu/ee

orchestration [23]. An orchestration makes it possible to create
new, more complex services. For example, if there is a service
capable of booking flights, combining it with the previous ho-
tel booking service a new complex service can be created. This
will be already able to organize the whole trip – both journey
and accommodation. The complex orchestration process should
describe the right order of operation invokes while paying at-
tention to given constraints for example the flight dates and the
hotel booking dates should be the same, or if there is no avail-
able flight for a given time period the hotel cannot be booked
(must be cancelled).

Organizations have early recognized the applicability of SOA
methodology and technologies for solving integration issues
[9, 25, 34]. Orchestrated processes can be directly aligned to
business processes – the goal of the orchestration is to create
the requested new business functionality – and participating ser-
vices are interfaces of enterprise application systems. However
there are several difficulties and preconditions in designing and
applying such an integration solution in a business environment.

Different systems and their services provide heterogeneous
data semantics. The provided data can differ in simple nam-
ing conventions e.g. name of a person entity can be depicted
as “guest” by the hotel booking service and “customer” by the
flight booking service. It is obvious that both services cannot
be invoked by the same entity naming convention. This means,
that we can not choose a “standard” representation for this entity
for the whole trip organizing service – instead of using the same
entity (name of a customer) the request data must be different in-
voking the two services. There can also be other differences be-
tween provided data semantics e.g. differences in data structure
or messaging protocol. These must be handled by several trans-
formations, see [14, 15]. However applying transformations can
slow down the designing issues and strongly influences the non-
functional capabilities of the new complex services (processes).

In this paper we present a methodology and technical solu-
tions for creating the necessary transformations and present an
approach which conserves the applicability of solid and standard
SOA technologies and tools while the run-time performance of
the system remains still predictable. The focus of the paper is
on the proposed run-time framework and on the prediction of
non-functional capabilities.

The remainder of the paper is the following. In the next sec-
tion we introduce related researches and work comparing them
with our results. A SOA integration methodology and the cre-
ation of semantic aligned services and requested transformations
are presented in Section 2. Section 3 compares our proposed
run-time architecture with 3 other proposals. Moreover the per-
formance of the different approaches is analyzed detailed. In
Section 4 we introduce some experiments and results and finally
section 5 draws conclusions and suggests future areas of work
and study.

1 Related work
There are numerous researches in literature about pre-

dicting non-functional QoS parameters of composite services
[2, 3, 6, 7, 16, 18, 38]. Some of them are based on the usage of
intelligent agents to evaluate and increase the reliability and per-
formance of orchestrated processes, for example see [16, 38].
Another current topic is the dynamic resource management in
grid systems to optimize resource allocation in service oriented
architectures [22, 35]. Unfortunately most of these approaches
pass by the existence of interoperability problems.

The theoretical approach of the data heterogeneity problem is
called schema matching in the literature. Unfortunately most of
these works are rather academic. They propose improved ana-
lytical methods and algorithms to build common global schemas
or to match different data structures without designing and im-
plementing tools and technologies to realize it [5, 8, 13, 17].

On the other hand numerous researches are dealing with
data heterogeneities during enterprise application integration.
To overcome the problem the meaning of entities is examined
and compared instead of the name of the concepts. These
approaches add semantic description to operations and ser-
vices based on specific semantic taxonomies. For example see
[10, 12, 19, 33, 37].

The authors of [24] use a stochastic model to analyze the
performance and reliability bottleneck of composite processes.
A continuous-time Markov chain formulation including failure
states is developed to compute both performance and bottle-
necks. However this approach is based on the run-time monitor-
ing of participating services and consumes a lot of resources for
dynamic prediction of overall performance and modification of
the orchestration at run-time. Because our integration approach
focuses on the integration of enterprise applications, unreliable
and instable services from the internet are not involved in pro-
cesses and resource requirements of services and processes can
be predicted directly upon documentation about system specifi-
cation, features and development. Furthermore if a given func-
tion of a given enterprise application is required at a given point
of the orchestrated process replacing it is simply out of the ques-
tion since there is no other available service performing the same
functionality in the same system.

Cardoso [7] states that high complex composite services tend
to be less flexible and cause decreased performance compared to
optimized and carefully designed processes. The paper analyzes
the control flow complexity of processes and proposes several
methods for simplification. Thus this approach can extend our
work by the structural analysis of composite services and help
us predict the resource consumptions of complex process con-
structions. On the other hand, data heterogeneities should be
considered and resolved as proposed in this paper.

The vieDAME framework presented in [18] provides a com-
plete solution for performance optimization and for overcoming
interoperability problems. The robust architecture contains sev-

Per. Pol. Elec. Eng.124 Péter Martinek / Béla Szikora

eral components for intercepting service invokes, for monitor-
ing operation performance, for storing and executing transfor-
mations, for communicating with the run-time engine etc. How-
ever overall performance of a configuration can not be predicted
and bottlenecks remain hidden from system operators.

2 SOA integration methodology and architecture
Vendors of enterprise applications are already prepared for

SOA. Information systems offer their capabilities in the form of
services. The service interfaces are mostly matched to world-
wide standards which results in easy to use services in a techni-
cal sense.

Unfortunately this is not enough for creating real, working
processes because services of different application systems of-
fer their capabilities in heterogeneous data semantics [15]. This
means that the output data provided by a participating service
can not be fed directly into another service as an input. Data
transformation must be applied within the chain of services to
adjust input and output data of different services to each other.

There are many ways to adopt the required transformations
into a composite process. The simplest solution is the following:

1 Create the process ignoring data heterogeneity problems. Par-
ticipating services are composed by defining their relations
e.g. invoke order, logical expressions for branches etc.

2 Search for incompatibilities caused by data heterogeneity.
Design and apply transformation at every service invoke
where entity mismatches appear.

Although this approach is easy to understand and can help
with every kind of data heterogeneity, it offers a non-optimal
solution. The unique transformations applied before service in-
vokes are totally customized for a given environment. Hence
they can not be adopted to another process or not even for an-
other invoke of the same service within the same process. This
implies that by updating the process or by creating a new one,
the possibility of transformation re-using is excluded.

Instead of creating custom transformations by process orches-
tration applying a global data schema can ensure data compat-
ibility on the process level. The global data schema can define
every related entity of a given business domain regularizing the
proper usage of given business concepts. For example in the
global schema we can define the usage of term guest for the
tourism domain excluding the usage of synonyms like client,
customer, etc. in the domain. Thus applying regularizations
defined by global schemas can prevent data mismatches on the
process level. One application methodology for this scenario
can be the following:

1 Define global schema for the domain – determine the struc-
tural and linguistic terms for every possible entity of a given
domain.

2 Define transformations to every participating service. The
transformation(s) are strictly connected to the service, which

results in an encapsulated service behaving the same way as
the original but communicates using the right concepts and
terms of the global schema.

3 Design composite service (process) defining the relationships
among participating services.

This solution already makes possible to re-use the defined
transformations. The encapsulated services containing the nec-
essary transformations are applied in new processes or in newer
version of the same process. The next chapter presents the steps
detailed above.

Note that the main advantage of this approach is that the
transformations must be created to each participating service to
each domain only once. The encapsulated service containing
the transformations and the original service can be created on
demand (right before we need it at a given point of the orches-
tration for the first time) or all participating services of given
enterprise applications can be encapsulated before starting SOA
based integration. If large enterprise software vendors agree on
given global schemas the creation of encapsulated services can
already be handled globally by them preventing any kind of data
heterogeneity by service orchestration at companies. Moreover
software vendors have the necessary experience and developer
team to easily come over the task of transformation creation
and fitting service schemas even to more widely used global
schemas. The most applied global schemas in the field of on-
line business are [21, 36].

2.1 Preparing for orchestration
The aim of this step is to align the service input and output

to the global schema. In other words we would like to create
a service that behaves in the same way as the original service
but communicates with the concepts of the global schema to-
wards the outside world. More precisely, the applied interfaces
should conform to the global schema but the original service of
the given application should be invoked in the background.

For example our flight reservation service requires the name
of the client in a complex data structure containing two fields:
firstname and lastname. In contrast to this the hotel booking ser-
vice requires one field containing the full name (firstname and
lastname separated with a space) called guestname. The process
(composite service) communicates with the global schema con-
cept and the corresponding global schema tourism standardizes
the person entity in the separated firstname, lastname form. In
the case of the flight service the process invoke data can simply
be forwarded to the service call. However, invoking the hotel
booking service requires a transformation to be glued to the ser-
vice input which concatenates the firstname and lastname fields.
After the transformation, the hotel booking service receives the
required input in the right form and is able to serve the request.

Another direction of transformation may also be necessary.
For example after a successful booking the flight reservation
service responds with a confirmation message containing a field

SOA based web service adaptation in enterprise application integration 1252009 53 3-4

called smoking restrictions. However our global schema con-
tains the same entity called smoking regulations. Hence the
given concept of the service output should be renamed to en-
sure later reusability and common understanding at the process
level. To perform this, a transformation is glued to the output of
the flight reservation service.

Upon these there are 2 types of transformations:

– Down-cast transformations transform the concepts of the
global schema into the required form of a given service in-
put before invoking the service and

– Up-cast transformations transform the concepts of the service
output into the corresponding form of the global schema right
after the service response.

There are numerous proposals to detect data incompatibil-
ities, design and attach transformations in current researches
[4, 19, 23, 25, 27]. Unfortunately most of them lack the tasks
of composite service deployment and run-time architecture. In
the next chapter we present our proposed architecture.

2.2 Executing encapsulated services
Designing and attaching transformation rules to services does

not results that our composed service is ready to run after the
orchestration. The complex service should be deployed into a
run-time environment. The run-time engine is responsible for
accepting service invokes, create a process instance and perform
the tasks of the given instance. These tasks are invoking partic-
ipating services, evaluating logical expressions and performing
any business logic defined on the process level.

There are lots of solid process run-time environments avail-
able. However they are based on standards and are not prepared
for executing transformations glued to participating services. To
overcome this problem our proposed architecture ensures a stan-
dard service interface for the encapsulated services. This means,
that the run-time engine can interact with the services in the
standard way without knowing anything about its inner architec-
ture and glued transformations. The standard service interface
is provided by a special proxy service. The proxy service inter-
cepts the service invoke, determines which service is willing to
be invoked, relays the service request and response to the given
service and performs required transformations on the service in-
put and output. So the proxy service acts as a single service
towards the outside world. It represents the original services
of enterprise applications, behaves the same way as them but
communicates with the concepts of the global schema towards
the process instance (e.g. towards the process run-time engine).
The strict matching of transformations and service inputs and
outputs are managed also by the proxy architecture.

This approach also implies, that there is no need to modify the
standard services and endpoints of enterprise applications: all
data incompatibilities can be handled and prevented with align-
ing services to the global schema by designing and attaching up-

E
n
te

rp
ris

e

A
p
p
lic

a
tio

n

Standard
Service

Down -cast

Transformation

Up -cast

Transformation

Encapsulated
Service

O
rc

h
e
s
tra

te
d

 P
ro

c
e
s
s

Global
Request

Global
Response

Local
Response

Local
Request

There are lots of solid process run-time environments available. However they are based on

standards and are not prepared for executing transformations glued to participating services.

To overcome this problem our proposed architecture ensures a standard service interface for

the encapsulated services. This means, that the run-time engine can interact with the services

in the standard way without knowing anything about its inner architecture and glued

transformations. The standard service interface is provided by a special proxy service. The

proxy service intercepts the service invoke, determines which service is willing to be invoked,

relays the service request and response to the given service and performs required

transformations on the service input and output. So the proxy service acts as a single service

towards the outside world. It represents the original services of enterprise applications,

behaves the same way as them but communicates with the concepts of the global schema

towards the process instance (e.g. towards the process run-time engine). The strict matching

of transformations and service inputs and outputs are managed also by the proxy architecture.

This approach also implies, that there is no need to modify the standard services and

endpoints of enterprise applications: all data incompatibilities can be handled and prevented

with aligning services to the global schema by designing and attaching up- and down-cast

transformations. Furthermore this architecture is able to hide real services from the business

partners, which makes it possible to create an additional private layer in the collaborative

business process. Figure 1 shows one encapsulated service answering a service call.

The next chapter briefly presents some technical details of our solution.

Figure 1. –Encapsulated service invoke

2.3 Applied standards and technology

To be compatible with standard process run-time engines our solution follows current open

standards.

The de facto standard to design executable business processes is the Business Process

Execution Language (BPEL) [20]. Thus the focus was set to design processes in BPEL and

apply solid BPEL run-time engines.

The main building elements of a SOA are usually web services communicating mostly with

Simple Object Access Protocol (SOAP) [30]. Created services of enterprise applications are

also equipped with web service interfaces. Thus our proxy implementation provides standard

web service interfaces towards the process run-time engine and is prepared for invoking

standard web services of enterprise information systems. The standard web service invocation

is for sure an available and widely used option for interacting with collaborative business

partners in BPEL processes.

Standard web services are described by the Web Service Description Language (WSDL)

standard [31]. This defines one or more operations to the service containing requested input

and output data structure per each operation. Hence our transformations must be connected to

Fig. 1. Encapsulated service invoke

and down-cast transformations. Furthermore this architecture
is able to hide real services from the business partners, which
makes it possible to create an additional private layer in the col-
laborative business process. Fig. 1 shows one encapsulated ser-
vice answering a service call.

The next chapter briefly presents some technical details of our
solution.

2.3 Applied standards and technology
To be compatible with standard process run-time engines our

solution follows current open standards.
The de facto standard to design executable business processes

is the Business Process Execution Language (BPEL) [20]. Thus
the focus was set to design processes in BPEL and apply solid
BPEL run-time engines.

The main building elements of a SOA are usually web ser-
vices communicating mostly with Simple Object Access Proto-
col (SOAP) [30]. Created services of enterprise applications are
also equipped with web service interfaces. Thus our proxy im-
plementation provides standard web service interfaces towards
the process run-time engine and is prepared for invoking stan-
dard web services of enterprise information systems. The stan-
dard web service invocation is for sure an available and widely
used option for interacting with collaborative business partners
in BPEL processes.

Standard web services are described by the Web Service De-
scription Language (WSDL) standard [31]. This defines one or
more operations to the service containing requested input and
output data structure per each operation. Hence our transfor-
mations must be connected to the operations. The number of
attached transformations is equal to the number of operations
multiplied by 2 at maximum (1 up-cast transformation to the
output and 1 down-cast transformation to the input can be de-
fined to each operation). Every data incompatibility between
the global schema and a given service input or output is cov-
ered with one complex transformation. In other words, simple
transformation rules eliminating one given data mismatch of one
given data concept are collected by one complex transformation.

To align to widely used standards the XSL Transformation
standard was selected to realize transformations [32]. The ex-

Per. Pol. Elec. Eng.126 Péter Martinek / Béla Szikora

pression power of the XSL transformation language is NP full,
which implicates that it is able to cover every kind of incompat-
ibilities. Furthermore there are lots of solid XSLT designer ap-
plications and run-time engines available which can be applied
in our architecture.

The creation of the proxy service interface to each service
makes it possible to extend the WSDL description of standard
enterprise application services with additional semantic infor-
mation. This makes service discovery and selection easier which
can be a great help for the service orchestration. See [21,36] for
further details.

It is obvious that our solution provides some additional func-
tionality by solving data incompatibility problems. But what
cost should we pay for that? Apart from the additional de-
sign cost of transformations, proxy services must be created and
transformations must be performed during the process run-time.
Because the creation of proxy services is done in design time it
does not really influences the performance of the running sys-
tem. But what additional cost do we have for handling web
service invokes, relaying them to and from the web services of
enterprise applications and executing transformations? The next
chapter provides some analysis about the prediction of run-time
overhead of our architecture. Moreover some configuration and
installation issues are also presented.

2.4 Performance prediction and configuration analysis
Current researches often deal with QoS parameters of com-

plex services. There are two types of QoS parameters:

– Functional parameters describe service capabilities. In other
words, they present what and how the service does. For ex-
ample for our flight reservation service these parameters con-
tain the fact that there are 3 operations search for flight, book
flight, cancel booking and the search for flight operation re-
quests departure, destination, and date of journey input pa-
rameters and provides a confirmation as output containing the
number of reservation, number of flight, departure time, ar-
rival time, etc.

– Non-functional parameters describe all kinds of non-technical
information about the service. These are availability, average
response time, error-rate etc.

In this paper the focus is set to the prediction and optimiza-
tion of non-functional parameters. Description of the functional
parameters of our encapsulated services can be found in [15].

There are working methods and algorithms to predict system
parameters – like response time and throughput – of composite
processes [16, 38]. Most of them are based on the idea of divid-
ing the process into components whose performances can be di-
rectly evaluated and calculating the parameters of the whole sys-
tem based on the defined connections (e.g. sequences, branches
with logical conditions of predictable likelihoods, parallel run-
time threads, etc.) among these components. Because the basic

building blocks of processes are services they are the smallest
undividable parts which actually determine the system perfor-
mance. Thus we focus on performance analysis of our encapsu-
lated service in the paper.

The questions to be answered are the followings: How does
the usage of transformations influence the response time of com-
posite processes? What is the maximum throughput of our ar-
chitecture compared to other approaches? Is this the optimal
solution for handling interoperability problems at process com-
position from the point of view of overall performance?

Response time and throughput are determined by resources
of system hardware components. More precisely services and
processes require a given amount of resources and performance
depends on the ratio of resource requirements to available re-
sources. Extension of available hardware resources can result in
faster response times and higher throughput while application
of non-optimal solutions in process compositions may lead to
significant decreasing of these parameters. Thus prediction of
expected resource consumption is critical when designing com-
posite processes.

There are numerous resources needed by a process at run-
time. Central processing unit (CPU), memory, input/output op-
erations (I/O) and network bandwidth are some of them. Never-
theless there is always one resource which is critical in a given
environment determining the actual values of response time and
throughput. This is called the bottleneck. Strengthening or in-
creasing of bottleneck resource yields better performance while
expansion of other resources may be ineffective. After consum-
ing all of the bottleneck resource the response time of the system
is decreasing by serving further requests or this can even lead to
malfunctions like refusing of requests or other errors sent in the
response. This means that an optimal efficiency (minimal re-
sponse time) can be achieved only if the load of the bottleneck
resource is lower than the available level of the resource. On the
other hand system throughput reaches its maximal value (max-
imal number of performed transactions per a given time unit) if
the consumption of the bottleneck resource is maximized. Upon
these in the rest of the paper performance is analyzed through
these two different (conflicting) performance parameters con-
sidering the actual usage rate of the bottleneck.

The next chapter analyzes our proposal comparing its effi-
ciency with other possible approaches.

3 Analysis and comparison of our approach
Our approach is based on the encapsulation of the standard

services of enterprise applications. One upcast and onedowncast
transformation may be glued to every operation of every service.
In the rest of the paper we assume that there are always both up-
and downcast transformation required to be attached. Because
this is the worst case from the point of view of added overhead in
resource requirement, the efficiency of our solution will surely
not be overestimated.

The resource requirement of a given enterprise application

SOA based web service adaptation in enterprise application integration 1272009 53 3-4

service (operation) is determined by the application itself. Since
it can not be changed during the process composition and it will
determine the future performance of the composite process, its
resource requirement and non-functional parameters in the given
environment can serve as reference values for our tests.

Consider that a given operation (e.g. the book flight operation
of our service) requires Rservice unit of the bottleneck resource.
The optimal (minimum) response time of the system for that
is Tservice unit of time. There is a certain amount of available
bottleneck resource denoted by Ravail.

Service request may come from more clients (or from more
process instances) at the same time. Thus total resource require-
ment comes to

∑
n_conc

Rservice where n_conc is the number of

concurrent service requests. The response time can be calcu-
lated as follows:

Tresponse = Tservice if
∑

n_conc

Rservice ≤ Ravail and

Tresponse = Tservice ·

∑
n_conc

Rservice

Ravail
if
∑

n_conc

Rservice > Ravail.

(1)

After the resources and response times are determined for all
participating operations the performance of the whole pro-
cess can be predicted. The requested resource of the process
(Rprocess) consists of two separable components:

– the calculated cost of the orchestrated service (Rorchest) built
of encapsulated services which depends on the given orches-
tration e.g. structure and business logic of the process [16],
[38] and

– the constant cost of process management (Rconstructs), which
includes process instance, variable creation and process main-
tenance.

Our experiments show that at reasonable process complex-
ity and available resources (<50 participating service, 5-10
branches and logical expressions, etc.) the calculated orches-
trated service cost (Rorchest) is almost equal to the cost of in-
voked participating services. Thus the overhead of applying
a process is almost equal to the cost of process management
(Rconstructs). Moreover Rconstructs seems to be not dependent on
the given instance of processes and remains to be a constant
value in a given hardware environment even for different type
of processes.

Eq. (2) shows the calculation of the amount of requested re-
source of the process.

Rprocess = Rconstructs + Rorchest = Rconstructs +

∑
m_conc

Rservice

(2)
where m is the number of service invokes during the execution
of a process.

By substituting Eq. (2) into Eq. (1) the response time of a
process instance can be calculated as follows:

Tresponse =

∑
path

Tservice + Tconstructs if
∑

m_conc

Rprocess ≤ Ravail

and

Tresponse =

∑
path

Tservice + Tconstructs

 ·

∑
m_conc

Rprocess

Ravail
if (3)

∑
m_conc

Rprocess > Ravail

where the response times of the services participating in the
given execution path of the process must be summarized(∑

path
Tservice

)
. Because Rconstructs is constant, the response time

overhead Tconstructs caused by it is a constant value as well.
In our interpretation the throughput is the number of served

operation invoked in a given time unit. This can be an invoked
operation of a simple or a complex service (T pservice,T pprocess

respectively). After having used up the entire bottleneck re-
source (in other words the bottleneck is fully loaded) the
throughput reaches its maximal value, denoted by T pservice_ max.
So the maximal throughput for a given service invoke de-
scribes the pure efficiency of a given hardware-software envi-
ronment. Such hardware-software environments consisting of
several computers connected into a network are called configu-
rations in the rest of the paper.

The throughput of a configuration for a given service (pro-
cess) can be predicted as follows:

T pservice = T pservice_ max ·

∑
n_conc

Rservice

Ravail
if∑

n_conc

Rservice ≤ Ravail,

T pservice = T pservice_ max if∑
n_conc

Rservice > Ravail and

T pprocess = T pprocess_ max ·

∑
m_conc

Rprocess

Ravail
if∑

m_conc

Rprocess ≤ Ravail,

T pprocess = T pprocess_ max if∑
m_conc

Rprocess > Ravail (4)

Furthermore there is a trivial connection between the maxi-
mal throughput and response time at a status where increasing
the exploitation of the bottleneck resource has just reached the
100% limit. If we also assume that the concurrent requests all
came from the same type of service (or process) the maximal
throughput can be predicted as follows:

Per. Pol. Elec. Eng.128 Péter Martinek / Béla Szikora

T pservice_ max =
n

Tresponse
, where

∑
n_conc

Rservice = Ravail

and

T pprocess_ max =
m

Tresponse
, where

∑
m_conc

Rprocess = Ravail (5)

Now we have the necessary formalism to analyze the perfor-
mance of complete configurations of given approaches.

3.1 Evaluation of proposals
Four different approaches are compared on the same config-

uration in the paper. Because the configurations are the same,
the efficiency of the approaches can be directly compared. Fur-
thermore other parameters of these proposals (like component
re-usability, modularity, transparency etc.) are also evaluated.
The following sub-chapters contain the detailed analysis of each
proposal.

3.1.1 Proposal XSLT
Our already presented proposal is evaluated first. To imple-

ment our approach on the same configuration (see later) the
transformations are stored and executed on the same computer
(or grid of computers) as the enterprise services are executed on.
The proxy service is also installed here, so invocation of an en-
capsulated service can be served without adding new resources
(computers) to the existing configuration of the enterprise appli-
cation system. This proposal is called as proposal_XSLT (be-
cause of the applied XSL transformations) in the rest of the
paper. The configuration and typical process execution can be
viewed in Fig. 2.

The two transformations (up- and downcast) require Rtrans f

resource from the bottleneck resource (the worst case scenario is
assumed again) and the work of the standard web service inter-
face requires Rws_inter f . So the additional resource consump-
tion of an encapsulated service is:

Radd = Rws_inter f + Rtransf (6)

Assuming the worst case scenario, the bottleneck resource of
these operations is the same as the bottleneck of the original
operation. In this case the invocation of the encapsulated service
costs:

Rencaps = Rservice + Radd (7)

By substituting Eq. (7) into Eq. (1) the response time can be
calculated as follows:

Tresponse = Tservice + Tadd if
∑

n_conc

Rencaps ≤ Ravail and

Tresponse = (Tservice + Tadd) ·

∑
n_conc

Rencaps

Ravail
if∑

n_conc

Rencaps > Ravail (8)

where Tadd is the additional response time compared to the
stand-alone enterprise service.

Accordingly to Eq. (5) the maximum throughput can be cal-
culated as follows:

T pencaps_ max =
n

Tresponse
, where

∑
n_conc

Rencaps = Ravail (9)

During an orchestration our encapsulated services are built in
into a complex service (process). However the process run-
time engine is placed separated from the enterprise applica-
tion server(s). This determines the distribution of process run-
time costs i.e. resource requirements of process management
(Rconstructs) and orchestrated process (Rorchest) between enter-
prise application and process management server. As already
mentioned Rorchest is almost equal to the resource requirement
of invoked participating services in a certain environment. Thus
Rorchest is mainly processed by the application server(s). On the
other hand process management requirements (Rconstructs) are
served by the process management server(s). The two run-time
components are connected with network which is responsible
for the communication during the execution of the composite
process. While the network connection may influence the re-
sponse time, it barely modifies the throughput of the system be-
cause it is unlikely to be the bottleneck resource in any systems
applied for process execution today. Hence dedicating separated
resources for enterprise services and process run-time is reason-
able and it results greater performance than applying the enter-
prise service environment also for process management.

Eqs. (6)-(9) described the resource requirements, expected
response times and throughput at the enterprise application
server(s). Eq. (2) must be separated due to the separated re-
source allocation for enterprise services and process manage-
ment. Furthermore Eq. 4 should also be modified because of the
two possible bottleneck points i.e. the bottleneck of the whole
system can be either the enterprise or the process server. Based
on Eqs. (2) and (4) the expected response time of the configu-
ration loaded by a given process is the following:

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs

if
∑

n_conc

Rorchest ≤ Ravail_enterprise and∑
n_conc

Rconstructs ≤ Ravail_process,

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc

Rorchest ≤ Ravail_enterprise and∑
n_conc

Rconstructs > Ravail_process,

SOA based web service adaptation in enterprise application integration 1292009 53 3-4

3.1.1 Proposal XSLT

Our already presented proposal is evaluated first. To implement our approach on the same

configuration (see later) the transformations are stored and executed on the same computer (or

grid of computers) as the enterprise services are executed on. The proxy service is also

installed here, so invocation of an encapsulated service can be served without adding new

resources (computers) to the existing configuration of the enterprise application system. This

proposal is called as proposal_XSLT (because of the applied XSL transformations) in the rest

of the paper. The configuration and typical process execution can be viewed in figure 2.

Figure 2. – Execution of a process request at proposal XSLT

The two transformations (up- and downcast) require transfR resource from the bottleneck

resource (the worst case scenario is assumed again) and the work of the standard web service

interface requires erfwsR int_ . So the additional resource consumption of an encapsulated

service is:

transferfwsadd RRR += int_ (Exp. 6.)

Assuming the worst case scenario, the bottleneck resource of these operations is the same as

the bottleneck of the original operation. In this case the invocation of the encapsulated service

costs:

addserviceencaps RRR += (Exp. 7.)

By substituting expression 7 into expression 1 the response time can be calculated as

follows:

addserviceresponse TTT += if avail

conc_n

encaps RR ≤∑ and

()
avail

conc_n

encaps

addserviceresponse
R

R

TTT

∑
∗+= if avail

conc_n

encaps RR >∑

where addT is the additional response time compared to the stand-alone enterprise service.

Accordingly to expression 5 the maximum throughput can be calculated as follows:

Standard
Service

Process
Invoke Downcast

Transformation

Orchestrated Process (BPEL)
(BPEL)

Service
Invoke

…

Encapsulated Service

Upcast
Transformation …

Service
Response

(XSLT) (XSLT)

Process
Response

… …

(Exp. 8.)

Fig. 2. Execution of a process request at proposal XSLT

Summarizing this proposal loads the process server by constructsR at each process invoke.

Moreover the enterprise server is loaded with an extra addR by each participating service in a

process execution path by each process invoke. Note that based on our experiments this

additional cost is negligible compared to the cost of the original enterprise services. Thus one

may focus on calculating the resource requirements constructsR and predicted performance of the

process server.

Remember that the encapsulated services are re-useable in subsequent process orchestration

scenarios. Furthermore applying encapsulated services modularity can be achieved and it

hides possible business interests within the non-transparent encapsulated service.

3.1.2 Proposal Direct

Another proposal for dealing with data heterogeneity in integration consists of the following

steps:

1. Create the composite process ignoring data heterogeneities

2. Design and add necessary transformation at the process level.

As already mentioned besides defining relationships among participating services and

setting run-time branches by logical expressions it is possible to define some business logic at

the process level. (For example the BPEL standard offers the usage of XPath and XQuery

standards for defining copy rules in data assignments [20, 28, 29].) Thus both up- and

downcast transformations can be designed and added at the process level. One upcast

transformation is added before each operation (service) request and one downcast

transformation is added after each operation response in worst case. This proposal is called as

proposal_Direct (because data heterogeneities are bridged directly at the process level during

the orchestration) in the rest of the paper. The configuration and typical process execution can

be viewed in figure 3.

Figure 3. – Execution of a process request at proposal Direct

The resource consumption is increased by the needs of transformation at the process server

but requested resource remains intact at the enterprise server. The extra cost added to each

operation (service) invoke is:

transfDirectadd RR =_ (Exp. 11.)

Standard
Service

Process
Invoke

Assign
activity

Orchestrated Process (BPEL)

Service
Invoke

…
Assign
activity …

Service
Response

(XPath)

(XQuery) (XQuery)

(XPath)

 … …

Process
Response

Fig. 3. Execution of a process request at proposal Direct

Tresponse =

∑
path

Tservice +

∑
path

Tadd

 ·

∑
n_conc

Rorchest

Ravail_enterprise
+ Tconstructs

if
∑

n_conc

Rorchest > Ravail_enterprise and∑
n_conc

Rconstructs ≤ Ravail_process,

Tresponse =

∑
path

Tservice +

∑
path

Tadd

 ·

∑
n_conc

Rorchest

Ravail_enterprise

+ Tconstructs ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc

Rorchest > Ravail_enterprise and∑
n_conc

Rconstructs > Ravail_process. (10)

The proper calculation of actual and maximal throughput (based
on Eqs. (4) and (5)) are left for the reader.

Summarizing this proposal loads the process server by
Rconstructs at each process invoke. Moreover the enterprise server
is loaded with an extra Radd by each participating service in a
process execution path by each process invoke. Note that based
on our experiments this additional cost is negligible compared
to the cost of the original enterprise services. Thus one may fo-
cus on calculating the resource requirements Rconstructs and pre-
dicted performance of the process server.

Remember that the encapsulated services are re-useable in

subsequent process orchestration scenarios. Furthermore ap-
plying encapsulated services modularity can be achieved and it
hides possible business interests within the non-transparent en-
capsulated service.

3.1.2 Proposal Direct
Another proposal for dealing with data heterogeneity in inte-

gration consists of the following steps:

1 Create the composite process ignoring data heterogeneities

2 Design and add necessary transformation at the process level.

As already mentioned besides defining relationships among
participating services and setting run-time branches by logical
equations it is possible to define some business logic at the pro-
cess level. (For example the BPEL standard offers the usage
of XPath and XQuery standards for defining copy rules in data
assignments [20, 28, 29].) Thus both up- and downcast transfor-
mations can be designed and added at the process level. One
upcast transformation is added before each operation (service)
request and one downcast transformation is added after each op-
eration response in worst case. This proposal is called as pro-
posal_Direct (because data heterogeneities are bridged directly
at the process level during the orchestration) in the rest of the
paper. The configuration and typical process execution can be
viewed in Fig. 3.

The resource consumption is increased by the needs of trans-
formation at the process server but requested resource remains
intact at the enterprise server. The extra cost added to each op-

Per. Pol. Elec. Eng.130 Péter Martinek / Béla Szikora

eration (service) invoke is:

Radd_Direct = Rtransf (11)

Our experiences concluded that pure transformation costs are
almost the same at the process level as they are in the case of
our XSLT execution within the encapsulated services. However
with this proposal the creation and employment of an additional
service interface (the service interface of the proxy service) is
avoidable. Comparing Eqs. (11) and (7):

Radd_XSLT = Radd_Direct and

Radd_XSLT = Radd_Direct + Rws_interface (12)

Furthermore Radd_XSLT loads the process server and not the en-
terprise application server. (Note that this may be an advantage
or disadvantage of this proposal depending on the appearance
of the bottleneck on the process server or the enterprise server.)
By using this and Eqs. (10) and (11) the response time can be
calculated as follows:

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs

if
∑

n_conc

Rorchest ≤ Ravail_enterprise and∑
n_conc

Rconstructs ≤ Ravail_process

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs

 ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc

Rorchest ≤ Ravail_enterprise and∑
n_conc

Rconstructs > Ravail_process,

Tresponse =

∑
path

Tservice ·

∑
n_conc

Rorchest

Ravail_enterprise
+

∑
path

Tadd + Tconstructs

if
∑

n_conc

Rorchest > Ravail_enterprise and∑
n_conc

Rconstructs ≤ Ravail_process,

Tresponse =

∑
path

Tservice ·

∑
n_conc

Rorchest

Ravail_enterprise
+

Tconstructs +

∑
path

Tadd


∑

n_conc
Rconstructs

Ravail_process

if
∑

n_conc

Rorchest > Ravail_enterprise and∑
n_conc

Rconstructs > Ravail_process.

(13)

where instead of Rorchest Rconstructs contains the additional
resource requirement of transformations compared to pro-
posal_XSLT.

To sum up, some increase in the performance (lowering the
response time) is possible compared to the proposal_XSLT in
given cases. However additional cost of maintaining a service
interface are not significant compared to the service (Rservice)

and process running (Rconstructs) costs, so possible performance
increase is not significant.

This little improvement probably is not worth the price we
have paid for it. Because our transformations are defined at
the process level they are process dependent. Hence probably
they can not be reused in other process compositions. Further-
more by adding data transformations to the business logic we
have messed up the clear structure and view of the orchestra-
tion. (The transformations were added to given copy rules of
assign elements in the BPEL process where also the structural
assignments of services – connection of global BPEL and local
service variables – were defined. These can not be separated and
differentiated easily later by a process upgrade or modification.)
So the modularity of the orchestration was almost ruined and the
possibility of creating an additional private business layer upon
the enterprise service was largely reduced.

3.1.3 Proposal BPEL
The next presented proposal also defines the necessary trans-

formations at the process level, but it eliminates upcoming low
modularity and non-reusability problems of proposal_Direct.
The methodology of creating working composite processes is
the following:

• Define a collection of possible concepts for the given domain
(global schema).

• Adopt each participating services to the process level each of
them into a new process.

• Design and implement transformations in these processes
to align complex service (process) interface to the global
schema.

• Orchestrate business process using complex services created
in the previous step as building blocks.

Similarly to proposal_Direct the transformations are defined
at the process level (Copy rules are defined in assign elements
in the BPEL process). On the other hand complex services con-
taining only one operation (service) invoke and glued up- and
downcast transformations are equivalent with the encapsulated
services of proposal_XSLT.

This proposal is called proposal_BPEL (because additional
BPEL processes are also applied to bridge data heterogeneities
at each service invoke) in the rest of the paper. The configuration
and typical process execution can be viewed in Fig. 4.

SOA based web service adaptation in enterprise application integration 1312009 53 3-4

almost ruined and the possibility of creating an additional private business layer upon the

enterprise service was largely reduced.

3.1.3 Proposal BPEL

The next presented proposal also defines the necessary transformations at the process level,

but it eliminates upcoming low modularity and non-reusability problems of proposal_Direct.

The methodology of creating working composite processes is the following:

- Define a collection of possible concepts for the given domain (global schema).

- Adopt each participating services to the process level each of them into a new process.

- Design and implement transformations in these processes to align complex service

(process) interface to the global schema.

- Orchestrate business process using complex services created in the previous step as

building blocks.

Similarly to proposal_Direct the transformations are defined at the process level (Copy rules

are defined in assign elements in the BPEL process). On the other hand complex services

containing only one operation (service) invoke and glued up- and downcast transformations

are equivalent with the encapsulated services of proposal_XSLT.

This proposal is called proposal_BPEL (because additional BPEL processes are also applied

to bridge data heterogeneities at each service invoke) in the rest of the paper. The

configuration and typical process execution can be viewed in figure 4.

Figure 4. – Execution of a process request at proposal BPEL

The additional resource requirement is significant. Besides the additional cost of

transformations (transfR) there is a process management overhead (constructsR and orchestR) at every

participating service invoke. Although the orchestration costs are negligible (each

“encapsulated” services contains only 2 assign elements and 1 service invoke) the creation of

process instance and managing process interface adds significant overhead (constructsR to each

participating operation) in the run-time.

Similarly to proposal_Direct additional performance requirements are loaded to the process

server. Based on expression 13 the response time can be predicted as follows:

constructs

path

add

path

serviceresponse TTTT ++= ∑∑

if enterprise_avail

conc_n

orchest RR ≤∑ and process_avail

conc_n

constructs RR ≤∑ ,

Process
Invoke

Orchestrated Process (BPEL)

Service
Invoke

…

Single Process (BPEL)

…

Service
Response

Process
Response Standard

Service
Assign
activity

Service
Invoke Assign

activity

Service
Response

(XPath)

(XQuery) (XQuery)

(XPath)

… …

Fig. 4. Execution of a process request at proposal BPEL

The additional resource requirement is significant. Besides
the additional cost of transformations (Rtransf) there is a pro-
cess management overhead (Rconstructs and Rorchest) at every
participating service invoke. Although the orchestration costs
are negligible (each “encapsulated” servicer contains only 2 as-
sign elements and 1 service invoke) the creation of process in-
stance and managing process interface adds significant overhead
(Rconstructsto each participating operation) in the run-time.

Similarly to proposal_Direct additional performance require-
ments are loaded to the process server. Based on Eq. (13) the
response time can be predicted as follows:

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs

if
∑

n_conc

Rorchest ≤ Ravail_enterprise

and
∑

n_conc

Rconstructs ≤ Ravail_process,

Tresponse =

∑
path

Tservice +

∑
path

Tadd + Tconstructs

 ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc

Rorchest ≤ Ravail_enterprise and

∑
n_conc

Rconstructs > Ravail_process

Tresponse =

∑
path

Tservice ·

∑
n_conc

Rorchest

Ravail_enterprise
+

∑
path

Tadd + Tconstructs

if
∑

n_conc

Rorchest > Ravail_enterprise and∑
n_conc

Rconstructs ≤ Ravail_process,

Tresponse =

∑
path

Tservice

∑
n_conc

Rorchest

Ravail_enterprise

+

Tconstructs +

∑
path

Tadd

 ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc

Rorchest > Ravail_enterprise

and
∑

n_conc

Rconstructs > Ravail_process (14)

where
∑
path

Tadd contains also Tconstructs which is the cost of each

built in complex service invoke.
The extra cost added to each operation (service) invoke is:

Radd_BPEL_service = Rtransf + Rconstructs (15)

which is significantly greater than the extra costs of pro-
posal_XSLT and proposal_Direct (based on our experiences
Rconstructs � Rws_interface). Thus performance of this proposal is
expected to be lower (higher response times, and lower through-
put) than the previous proposals.

On the other hand applying transformations at the process
level has advantages too. The solid tools for BPEL process de-
sign and run-time can be reused and no further equipment is
required to create and run the transformations. Furthermore the
same process run-time environment can be applied for deploy-
ing and running both stand-alone “encapsulated” processes and
orchestrated composite services.

Similarly to proposal_XSLT the “encapsulated” processes
(services) are reusable in later orchestration scenarios. More-
over the proposal involves modularity and makes it possible to
create an additional private layer beyond the enterprise services
at the process level of stand-alone processes.

The reader may also note, that extending our configuration
with an additional process server environment the “encapsu-
lated” processes can be separated from the orchestrated pro-
cesses which probably results significant improvement in the
throughput at higher loads.

3.1.4 Proposal Native
The realization of the last presented proposal consists of the

steps as follows:

Per. Pol. Elec. Eng.132 Péter Martinek / Béla Szikora

To modify an enterprise application the special development environment of the application

is required. This is mostly unavailable at the customer of the system. Furthermore employees

of the organization are usually not allowed (or able) to modify standard functions of

enterprise applications they use. Thus alignment of services and their interfaces to a global

schema remains to the software vendor. Because integration (the creation of collaborative

business process) can concern more application systems at more companies with various

vendors, the process orchestration requires the contribution of numerous developers and can

slow down the whole integration progress. Contrary to this, the creation of transformations

and processes can be performed by integration experts responsible directly for process

orchestration.

This proposal is called as proposal_Native (because bridging of data heterogeneities is

solved at the native, enterprise application implementation level) in the rest of the paper. The

configuration and typical process execution can be viewed in figure 5.

Figure 5. – Execution of a process request at proposal Native

After all participating services are aligned to the global schema the performance of this

proposal is convincing. The additional resource requirements of the modified enterprise

service are not significant and no more additional resource consumption is required nor by the

preparation nor by the orchestration at all. The enterprise server is loaded by the resource

costs of invoked operations and the process server is loaded by the costs of the management

of orchestrated composite service (constructsR). Due to the additional cost of proposals the

following relations hold:

serviceBPELaddserviceXSLTaddserviceDirectaddserviceNativeadd RRRR ________ <<< (Exp. 16.) AND

constructstransfserviceBPELadd

erfacewstransfserviceXSLTaddtransfserviceDirectaddserviceNativeadd

RRR

RRRRRR

−−

≈−−≈−≈

__

int_______
 (Exp. 17.)

The response time of the configuration can be predicted by the following expression:

constructs

path

serviceresponse TTT +=∑

if enterprise_avail

conc_n

orchest RR ≤∑ and process_avail

conc_n

constructs RR ≤∑ ,

Process
Invoke

Orchestrated Process (BPEL)

Service
Invoke

…

Modified Enterprise Service

…

Service
Response

Process
Response Standard

functions
Alligment to

global schema

(Own development language of enterpise application)

… …
… …

Fig. 5. Execution of a process request at proposal Native

• Define a collection of possible concepts for the given domain
(global schema),

• Modify the enterprise application service and/or its interface
directly at the application level to assign participating opera-
tions to the global schema,

• Orchestrate business process using the revised services of en-
terprise applications created in the previous step as building
blocks.

To modify an enterprise application the special development en-
vironment of the application is required. This is mostly un-
available at the customer of the system. Furthermore employees
of the organization are usually not allowed (or able) to mod-
ify standard functions of enterprise applications they use. Thus
alignment of services and their interfaces to a global schema re-
mains to the software vendor. Because integration (the creation
of collaborative business process) can concern more application
systems at more companies with various vendors, the process
orchestration requires the contribution of numerous developers
and can slow down the whole integration progress. Contrary to
this, the creation of transformations and processes can be per-
formed by integration experts responsible directly for process
orchestration.

This proposal is called as proposal_Native (because bridging
of data heterogeneities is solved at the native, enterprise appli-
cation implementation level) in the rest of the paper. The con-
figuration and typical process execution can be viewed in Fig. 5.

After all participating services are aligned to the global
schema the performance of this proposal is convincing. The ad-
ditional resource requirements of the modified enterprise service
are not significant and no more additional resource consump-
tion is required nor by the preparation nor by the orchestration
at all. The enterprise server is loaded by the resource costs of in-
voked operations and the process server is loaded by the costs of
the management of orchestrated composite service (Rconstructs).
Due to the additional cost of proposals the following relations
hold:

Radd_Native_service < Radd_Direct_service

< Radd_XSLT_service < Radd_BPEL_service (16)

Radd_Native_service ≈ Radd_Direct_service

− Rtransf ≈ Radd_XSLT_service − Rtransf − Rws_interface ≈

Radd_BPEL_service − Rtransf − Rconstructs (17)

The response time of the configuration can be predicted by the
following equation:

Tresponse =

∑
path

Tservice + Tconstructs

if
∑

n_conc
Rorchest ≤ Ravail_enterprise and

∑
n_conc

Rconstructs ≤

Ravail_process,

Tresponse =

∑
path

Tservice + Tconstructs ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc
Rorchest ≤ Ravail_enterprise and

∑
n_conc

Rconstructs >

Ravail_process,

Tresponse =
∑
path

Tservice ·

∑
n_conc

Rorchest

Ravail_enterprise
+ Tconstructs

if
∑

n_conc
Rorchest > Ravail_enterprise and

∑
c_conc

Rconstructs ≤

Ravail_process,

Tresponse =

∑
path

Tservice ·

∑
n_conc

Rorchest

Ravail_enterprise
+ Tconstructs ·

∑
n_conc

Rconstructs

Ravail_process

if
∑

n_conc
Rorchest > Ravail_enterprise and

∑
n_conc

Rconstructs > Ravail_process. (18)

where Rconstructs is the process management cost of the orches-
trated service and Rorchest is the run-time cost of invoked partic-
ipating enterprise services (operations).

Based on resource requirements this proposal may yield an
optimal (maximal) throughput for a given composite service
(process). On the other hand it is hard to be carried out be-
cause upcoming modification requests (alignment of service to
the global schema) can only be treated at the enterprise applica-
tion development level.

SOA based web service adaptation in enterprise application integration 1332009 53 3-4

Concerning modularity and transparency this proposal does
not differ from the orchestration of standard enterprise services.
Updated services remain black-boxes, and are reusable in sub-
sequent orchestration scenarios.

Table 1 summarizes the main aspects (advantages and disad-
vantages) of the 4 presented proposals.

The next chapter presents our experimental results. All
proposals were implemented for the same integration scenario
(same data heterogeneity problem) on the same configuration.
The results have confirmed the analytic methods and predicted
values described in this section.

4 Experiments
The applied configuration contains two computers in our ex-

periments. One was used as the enterprise server the other one
as the process server. Both work with a PentiumCore2Duo pro-
cessor at 2.1Ghz and is equipped with 2GigaBytes of memory,
uses high speed disks and internet connection. As the tests will
show later, the bottleneck resource of the configuration is the
computational requirement (CPU usage). Thus further technical
parameters of the configuration are not described in details.

To run the test (simulate concurrent service requests) an ad-
ditional computer was also necessary. Because the test ma-
chine only sends requests and receives responses to and from
the orchestrated service its resource consumption is significantly
lower then the load on the servers. None of the resources was
consumed totally, so the bottleneck of the system was not the
test computer. Note, that in real usage scenarios client requests
are mostly distributed on several computers. Thus performance
on the side of the client is usually not critical.

To simulate real integration scenario and data heterogeneities
a toy example was used in our tests. Our virtual organization of-
fers all kinds of healthcare and wellness services to the clients.
To help estimate customers’ demands and to give advice on
healthy living the company decided to implement a portal based
on SOA architecture and methodology. For example, a com-
posite process is able to ask (retrieve) a client’s parameters and
propose optimal sport activity and personalized dietary. Since
there are numerous enterprise systems at the organization, com-
posite processes often communicate with several systems. To
overcome data heterogeneities the leadership decided to align
all services (and service interfaces) to a global schema of the
domain sports and healthcare. In our test only the alignment of
one service is presented. The standard Body-Mass-Index calcu-
later (shortly BMIcalculator) service of our enterprise system is
equipped with necessary up- and downcast transformations and
the performance of its application in composite services is mea-
sured during several tests. Based on the proposals described in
the previous section, the performance of 4 different implemen-
tations is compared during the tests. Moreover basic analytic
equations of the previous section are also confirmed.

The standard BMI calculator service requests full name,
height and weight as input parameters and responds the full

name, the BMI and a category of a person as an output. Be-
cause the application was made in the UK, the service requests
the height given in feet, the weight in pounds and awaits the full
name given within one field – first name and last name separated
with a space. However our applied global schema (and most
of other enterprise applications of ours) calculates the height in
centimeters and the weight in kilograms. Moreover the name
of the clients is stored in a structure containing two fields: one
for the first name and one for the last name. The responded
category of BMI status should also be translated for Hungarian
customers and other applications: categories underweight, nor-
mal, overweight and obesity are transformed into sovány, nor-
mál, túlsúlyos and kórosan elhízott. Thus up-cast transformation
is required to change between different metrics and concatenate
separated last name and first name and down-cast transforma-
tion is required to translate the value of category and split full
name string value into two separated fields.

The standard BMI service and all necessary transformations
and constructs of all proposals were implemented. For the im-
plementation .Net framework, Visual C# and Active BPEL [1]
designer were used. The running was performed on Internet
Information Services (IIS) and on Active BPEL run-time en-
gine. Native level enterprise transformations (proposal_Native)
were also implemented in C# and XSLT transformation and the
proxy service were executed on the .Net framework as well (pro-
posal_XSLT). Process level transformations were defined using
the Xpath and XQuery standards in the Active BPEL designer.

To determine basic efficiency of the given experimental con-
figuration the standard BMI service were evaluated. First the
bottleneck resource was searched. With 9 concurrent clients
sending request continuously the CPU usage has reached 95%
usage while the usage of other resources was significantly below
the available maximum. (In our experiments the usage level of
the bottleneck resource (CPU) has never reached higher values
then 95-96%). Fig. 6 shows the usage level of all resources at
this load.

Changing the number of concurrent client requests the re-
sponse time and throughput moved closely enough to the ex-
pected values which confirms our Eqs. 1-5. Fig. 7 shows the
changing of response time and throughput according to the
changing in the number of concurrent clients. All tests were
performed for 3-5 minutes until the average results have stabi-
lized while values of the setup period were excluded from the
results.

In the same way as the enterprise server environment the pro-
cess server was tested, the process server was tested as well.
A stand-alone process containing no external operation invokes
was implemented for this purpose. Fig. 8 shows the usage
level of resources at the reached 100% bottleneck resource load
and Fig. 9 shows response time and throughput reflecting the
changes in the number of concurrent process requests.

The implementation based on proposal XSLT was evaluated
first. Similarly to previous test results the bottleneck resource

Per. Pol. Elec. Eng.134 Péter Martinek / Béla Szikora

Tab. 1. Comprehensive table of proposals

Proposal\Aspect Resource overhead

per enterprise

operation invoke

Modularity of the or-

chestrated process

Reusability of

transformations &

encapsulated services

Applied technologies

Proposal_XSLT R_transf+

R_wsinterface

Modular encapsulated

services

Encapsulated service

are reusable

Process (BPEL)* and transformation (XSLT)

Proposal_Direct R_transf Orchestration logic is

messed up by transfor-

mations

Transformations are

NOT reusable

Process (BPEL)*

Proposal_BPEL R_transf +

R_constructs

Modular processes

containing 1 operation

and 2 transformations

Single processes con-

taining 1 operation and

2 transformations are

reusable

Process (BPEL)*

Proposal_Native None Same as in standard

SOA architecture

Same as in standard

SOA architecture

Process (BPEL)

* Process (BPEL) means that included technologies of the BPEL standard (e.g. XPath, XQuary) are used for transformation creation

and execution as well.

Active BPEL run-time engine. Native level enterprise transformations (proposal_Native) were

also implemented in C# and XSLT transformation and the proxy service were executed on the

.Net framework as well (proposal_XSLT). Process level transformations were defined using

the Xpath and XQuery standards in the Active BPEL designer.

60%

95%

9%

38%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Netw ork CPU Disk Memory

Resource type

U
s
a
g

e
 l
e
v
e
l

Figure 6 – Resource usage reaching maximum bottleneck resource usage by standard service invoke

To determine basic efficiency of the given experimental configuration the standard BMI

service were evaluated. First the bottleneck resource was searched. With 9 concurrent clients

sending request continuously the CPU usage has reached 95% usage while the usage of other

resources was significantly below the available maximum. (In our experiments the usage level

of the bottleneck resource (CPU) has never reached higher values then 95-96%). Figure 6

shows the usage level of all resources at this load.

Changing the number of concurrent client requests the response time and throughput moved

closely enough to the expected values which confirms our expressions 1-5. Figure 7 shows the

changing of response time and throughput according to the changing in the number of

concurrent clients. All tests were performed for 3-5 minutes until the average results have

stabilized while values of the setup period were excluded from the results.

0

10

20

30

40

50

60

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

 Fig. 7– Evaluation of response time and throughput invoking standard service

In the same way as the enterprise server environment the process server was tested, the

process server was tested as well. A stand-alone process containing no external operation

invokes was implemented for this purpose. Figure 8 shows the usage level of resources at the

reached 100% bottleneck resource load and figure 9 shows response time and throughput

reflecting the changes in the number of concurrent process requests.

Fig. 6. Resource usage reaching maximum bottleneck resource usage by standard service invoke

Active BPEL run-time engine. Native level enterprise transformations (proposal_Native) were

also implemented in C# and XSLT transformation and the proxy service were executed on the

.Net framework as well (proposal_XSLT). Process level transformations were defined using

the Xpath and XQuery standards in the Active BPEL designer.

60%

95%

9%

38%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Netw ork CPU Disk Memory

Resource type

U
s
a
g

e
 l
e
v
e
l

Figure 6 – Resource usage reaching maximum bottleneck resource usage by standard service invoke

To determine basic efficiency of the given experimental configuration the standard BMI

service were evaluated. First the bottleneck resource was searched. With 9 concurrent clients

sending request continuously the CPU usage has reached 95% usage while the usage of other

resources was significantly below the available maximum. (In our experiments the usage level

of the bottleneck resource (CPU) has never reached higher values then 95-96%). Figure 6

shows the usage level of all resources at this load.

Changing the number of concurrent client requests the response time and throughput moved

closely enough to the expected values which confirms our expressions 1-5. Figure 7 shows the

changing of response time and throughput according to the changing in the number of

concurrent clients. All tests were performed for 3-5 minutes until the average results have

stabilized while values of the setup period were excluded from the results.

0

10

20

30

40

50

60

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

 Fig. 7– Evaluation of response time and throughput invoking standard service

In the same way as the enterprise server environment the process server was tested, the

process server was tested as well. A stand-alone process containing no external operation

invokes was implemented for this purpose. Figure 8 shows the usage level of resources at the

reached 100% bottleneck resource load and figure 9 shows response time and throughput

reflecting the changes in the number of concurrent process requests.

Fig. 7. Evaluation of response time and throughput invoking standard service

was the computational efficiency of the system, more precisely
the process server has reached its maximum consumption of the
CPU usage at a level of about 96%. Thus the CPU usage of the
enterprise server was about 30% we conclude that Rconstructs is
significantly greater than Rorchest. Fig. 10 show evaluation of

response time and throughput reflecting to the changes in the
number of concurrent requests. The experiments provide evi-
dence on our Eqs. (1-5) and (10) to be found in the analytical
section.

The evaluation of proposal_Direct showed the expected dif-

SOA based web service adaptation in enterprise application integration 1352009 53 3-4

25%

96%

24%

50%

0%

20%

40%

60%

80%

100%

120%

Network CPU Disk Memory

Resource type

U
s

a
g

e
 l

e
v

e
l

Figure 8 – Resource consumption reaching maximum bottleneck resource usage at the process server

The implementation based on proposal XSLT was evaluated first. Similarly to previous test

results the bottleneck resource was the computational efficiency of the system, more precisely

the process server has reached its maximum consumption of the CPU usage at a level of about

96%. Thus the CPU usage of the enterprise server was about 30% we conclude that constructsR is

significantly greater than orchestR . Figure 10 show evaluation of response time and throughput

reflecting to the changes in the number of concurrent requests. The experiments provide

evidence on our expressions (1-5 and 10) to be found in the analytical section.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

100

200

300

400

500

600

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 9 – Evaluation of response time and throughput by invoking empty process

The evaluation of proposal Direct showed the expected differences compared to proposal

XSLT. However differences in response time and throughput are disappearing between the

two proposals corresponding to a continuously increasing load over the maximum loaded

interval. Response time and throughput are showed in figure 10. Based on the test results the

following relations can be stated: erfacewsR int_ influences the overall performance not much and

DirectaddR _ is not significant compared to constructsR . Furthermore measured values of response

time confirmed the expression 13.

Fig. 8. Resource consumption reaching maximum bottleneck resource us-
age at the process server

ferences compared to proposal XSLT. However differences in
response time and throughput are disappearing between the two
proposals corresponding to a continuously increasing load over
the maximum loaded interval. Response time and throughput
are showed in Fig. 10. Based on the test results the following
relations can be stated: Rws_interface influences the overall per-
formance not much and Radd_Direct is not significant compared
to Rconstructs. Furthermore measured values of response time
confirmed the Eq. 13.

Proposal BPEL was observed to be the slowest approach ac-
cording to the test results. Adding Rconstructsresource overhead
to every participated operation invoked caused a significant in-
crease in response time and a decrease in throughput compared
to other proposals. Fig. 11 shows test results.

Proposal Native has slightly outperformed the other 3. On
one hand the reducing of costs by eliminating transformations
was yet not significant compared to Rconstructs, on the other hand
some computational resources are still required because of the
extended functionality of the standard service. The resource
need caused by Rconstructsis determining again which exhausts
the bottleneck resource (CPU) on the process server. Fig. 12
shows response time and throughput according to changes in
the number of concurrent requests (clients).

The reader may recognize that the response time also in-
creases in the period before maximum load has reached. Al-
though it seems to be conflicting to the statements of the pre-
vious section, regarding the hardware specification of our con-
figuration the explanation is trivial. The CPU of the computers
contains two (or even more) computational units today. The sys-
tem optimizes the resource allocation dedicating different tasks
for parallel execution resulting a performance growth up to the
number of additional processor cores. However the response
time can only be decreased this way until the load has reached
its maximum. The advantage of having two (or more) computa-
tional units is fully consumed when maximum usage of the CPU
is hit. In our case the one additional core caused 2 times shorter
response time at low load which has decreased continuously till

the maximum throughput has been reached.
The performed tests have shown the applicability of each pro-

posal and proved that the analytic results presented in the previ-
ous section were right.

Conclusions and possible areas of future work are presented
in the next section.

5 Conclusion and future work
This paper has presented an approach to bridging seman-

tic heterogeneities during the enterprise application integration.
The framework is based on the concepts, standards and tech-
nologies of the SOA methodology. To evaluate the efficiency
of our solution analytical tools were developed and presented
in the paper. Apart from our approach, three further proposals
were implemented and compared to each other. The analytical
results were reinforced by extensive experiments and the test
results have confirmed the performance values expected from
formal calculations. Hence, the paper has presented a complete
methodology and detailed technological proposal to implement
integration configurations and predict non-functional QoS pa-
rameters of orchestrated services.

The approach has presented solution for attaching and execut-
ing transformations before (and after) standard service invoke
(and after service response). However the paper gives no promo-
tion to detect data inconsistencies and to create up- and down-
cast transformations. The integration environment and the num-
ber of participating enterprise services can be huge at large orga-
nizations making the detection of semantically related concepts
and the designing of proper transformations rather inconvenient
for human integration experts and developers. Tools realizing
(semi)-automated assistance of this process may be needed.

The experiments were only performed on one given config-
uration and implemented on one given task (integration of the
BMI calculator service). More complex tests and more refined
configurations would probably lead to more detailed results.
Real services of standard enterprise application could also be
involved into the analysis and experiments in the future.

References
1 Active Endpoints – Active BPEL, available at http://www.activevos.
com/community-open-source.php. viewed 12. nov. 2008.

2 Al-Masri E, Mahmoud Q H, Investigating Web Services on the World Wide

Web, Proceeding of the 17th international conference on World Wide Web,
2008, pp. 795-804.

3 Baresi L, Ghezzi C, Guinea S, Smart Monitors for Composed Services,
Proceedings of the 2nd international conference on Service oriented comput-
ing, 2004, pp. 193-202.

4 Blazona B, Koncar M, HL7 and DICOM based integration of radiology

departments with healthcare enterprise information systems, International
Journal of Medical Informatics 76S (2007), 425-432.

5 Buttler D, A Short Survey of Document Structure Similarity Algorithms, Pro-
ceedings of the 5th international conference on internet computing, 2004.

6 Canfora G, Di Penta M, Esposito R, Villani M L, A framework for QoS-

aware binding and re-binding of composite web services, Journal of Systems
and Software 81 (2008), 1754-1769.

Per. Pol. Elec. Eng.136 Péter Martinek / Béla Szikora

http://www.activevos.com/community-open-source.php
http://www.activevos.com/community-open-source.php

25%

96%

24%

50%

0%

20%

40%

60%

80%

100%

120%

Network CPU Disk Memory

Resource type

U
s

a
g

e
 l

e
v

e
l

Figure 8 – Resource consumption reaching maximum bottleneck resource usage at the process server

The implementation based on proposal XSLT was evaluated first. Similarly to previous test

results the bottleneck resource was the computational efficiency of the system, more precisely

the process server has reached its maximum consumption of the CPU usage at a level of about

96%. Thus the CPU usage of the enterprise server was about 30% we conclude that constructsR is

significantly greater than orchestR . Figure 10 show evaluation of response time and throughput

reflecting to the changes in the number of concurrent requests. The experiments provide

evidence on our expressions (1-5 and 10) to be found in the analytical section.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

100

200

300

400

500

600

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 9 – Evaluation of response time and throughput by invoking empty process

The evaluation of proposal Direct showed the expected differences compared to proposal

XSLT. However differences in response time and throughput are disappearing between the

two proposals corresponding to a continuously increasing load over the maximum loaded

interval. Response time and throughput are showed in figure 10. Based on the test results the

following relations can be stated: erfacewsR int_ influences the overall performance not much and

DirectaddR _ is not significant compared to constructsR . Furthermore measured values of response

time confirmed the expression 13.

Fig. 9. Evaluation of response time and throughput by invoking empty process

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

Direct

XSLT

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Direct

XSLT

Fig. 10 – Evaluation of response time and throughput by invoking processes of proposals XSLT and Direct

Proposal BPEL was observed to be the slowest approach according to the test results.

Adding constructsR resource overhead to every participated operation invoked caused a

significant increase in response time and a decrease in throughput compared to other

proposals. Figure 11 shows test results.

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 11 – Evaluation of response time and throughput by invoking processes of proposal BPEL

Proposal Native has slightly outperformed the other 3. On one hand the reducing of costs by

eliminating transformations was yet not significant compared constructsR , on the other hand

some computational resource are still required because the extended functionality of the

standard service. The resource need caused by constructsR is determining again which exhausts

the bottleneck resource (CPU) on the process server. Figure 12 shows response time and

throughput according to changes in the number of concurrent requests (clients).

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 12 – Evaluation of response time and throughput by invoking processes of proposal Native

The reader may recognize that the response time also increases in the period before

maximum load has reached. Although it seems to be conflicting to the statements of the

Fig. 10. Evaluation of response time and throughput by invoking processes of proposals XSLT and Direct

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

Direct

XSLT

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Direct

XSLT

Fig. 10 – Evaluation of response time and throughput by invoking processes of proposals XSLT and Direct

Proposal BPEL was observed to be the slowest approach according to the test results.

Adding constructsR resource overhead to every participated operation invoked caused a

significant increase in response time and a decrease in throughput compared to other

proposals. Figure 11 shows test results.

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 11 – Evaluation of response time and throughput by invoking processes of proposal BPEL

Proposal Native has slightly outperformed the other 3. On one hand the reducing of costs by

eliminating transformations was yet not significant compared constructsR , on the other hand

some computational resource are still required because the extended functionality of the

standard service. The resource need caused by constructsR is determining again which exhausts

the bottleneck resource (CPU) on the process server. Figure 12 shows response time and

throughput according to changes in the number of concurrent requests (clients).

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 12 – Evaluation of response time and throughput by invoking processes of proposal Native

The reader may recognize that the response time also increases in the period before

maximum load has reached. Although it seems to be conflicting to the statements of the

Fig. 11. Evaluation of response time and throughput by invoking processes of proposal BPEL

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

Direct

XSLT

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Direct

XSLT

Fig. 10 – Evaluation of response time and throughput by invoking processes of proposals XSLT and Direct

Proposal BPEL was observed to be the slowest approach according to the test results.

Adding constructsR resource overhead to every participated operation invoked caused a

significant increase in response time and a decrease in throughput compared to other

proposals. Figure 11 shows test results.

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 11 – Evaluation of response time and throughput by invoking processes of proposal BPEL

Proposal Native has slightly outperformed the other 3. On one hand the reducing of costs by

eliminating transformations was yet not significant compared constructsR , on the other hand

some computational resource are still required because the extended functionality of the

standard service. The resource need caused by constructsR is determining again which exhausts

the bottleneck resource (CPU) on the process server. Figure 12 shows response time and

throughput according to changes in the number of concurrent requests (clients).

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Number of concurrent clients

A
v

a
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e

0

50

100

150

200

250

300

0 10 20 30 40

Number of concurrent clients

T
h

ro
g

h
p

u
t

Fig. 12 – Evaluation of response time and throughput by invoking processes of proposal Native

The reader may recognize that the response time also increases in the period before

maximum load has reached. Although it seems to be conflicting to the statements of the

Fig. 12. Evaluation of response time and throughput by invoking processes of proposal Native

SOA based web service adaptation in enterprise application integration 1372009 53 3-4

7 Cardoso J, Complexity analysis of BPEL web processes, Software Process:
Improvement and Practice 12 (2006), 35-49.

8 Hong-Hai Do, Erhard Rahm, Matching large schemas: Approaches and

evaluation, Information Systems 32 (2007), 857-885.
9 Goodchild M F, Max J. Egenhofer, Robin Fegeas, Cliff Kottman,

Changing focus on interoperability in information systems: from system, syn-

tax, structure to semantics, Changing focus on interoperability in information
systems: from system, syntax, structure to semantics (Amit P. Sheth, ed.),
Springer, 1999. chapt. 2, pp. 5-30.

10 Guglielmina C, Kiauleikis M, Tolle K, Morkevicius N, Performance and

Architecture Modeling of Interoperability System for SME’s, Lecture Notes
in Business Information Processing 7 (2008), 345-356, DOI 10.1007/978-3-
540-79396-0_30.

11 Kavianpour M, SOA and Large Scale and Complex Enterprise Transfor-

mation, Proceedings of the 5th international conference on Service-Oriented
Computing, 2007, pp. 530-545.

12 Lamparter S, Ankolekar A, Oberle D, Studer R, Weinhardt C, Semantic

specification and evaluation of bids in web-based markets, Electronic Com-
merce Research and Applications 7 (2008), 313-329.

13 Madhavan J, Bernstein P A, Rahm E, Generic Schema Matching with

Cupid, Proceedings of the 27th International Conference on Very Large Data
Bases, 2001, pp. 49-58.

14 Martinek P, Szikora B, Detecting semantically related concepts in a SOA

integration scenario, Periodica Polytechnica. in press.
15 Martinek P, Tóthfalussy B, Szikora B, Implementation of Semantic Ser-

vices in Enterprise Application Integration, WSEAS Transactions on com-
puters 7 (2008), 1658-1668.

16 Maximilien E M, Singh M P, A Framework and Ontology for Dynamic Web

Services Selection, IEEE Internet Computing, 2004, pp. 84-93.
17 Melnik S, Garcia-Molina H, Rahm E, Similarity Flooding: A Versatile

Graph Matching Algorithm and its Application to Schema Matching, Pro-
ceedings of the 18th International Conference on Data Engineering, 2002,
pp. 117-128.

18 Moser O, Rosenberg F, Dustdar S, Non-Intrusive Monitoring and Service

Adaptation for WS-BPEL, Proceeding of the 17th international conference on
World Wide Web, 2008, pp. 815-824.

19 I. Navas-Delgado, M. del Mar Roldán-García, J. Francisco Aldana-

Montes Kreios, Towards Semantic interoperable systems, Lecture notes in
computer science 3261 (2004), 161-171.

20 OASIS - Web Services Business Process Execution Language WS-BPEL

(ver. 2.0), available at http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html. viewed 3. febr. 2009.

21 Advanced Open Standards for the Information Society (OASIS) - e-business

XML (ebXML), available at http://www.ebxml.org/. viewed 10. febr.
2009.

22 Pautasso C, Heinis T, Alonso G, Autonomic resource provisioning

for software business processes, Information and Software Technology 49
(2007), 65-80.

23 Peltz C, BWeb services orchestration and choreography, IEEE Computer 36
(2003), no. 10, 46-52.

24 Sato N, Trivedi K S, Stochastic Modeling of CompositeWeb Services for

Closed-Form Analysis of Their Performance and Reliability Bottlenecks,
Lecture Notes In Computer Science 4749 (2007), 107-118.

25 Shen J, Grossmann G, Yang Y, Stumptner M, Schrefl M, Reiter T,
Analysis of business process integration in Web service context, Future Gen-
eration Computer Systems 23 (2007), 283-294.

26 Theodoratos D, Semantic Integration and Querying of Heterogeneous Data

Sources Using a Hypergraph Data Model, Lecture Notes In Computer Sci-
ence 2405 (2002), 166-182.

27 Thompson S, Giles N, Li Y, Gharib H, Duong Nguyen T, Using AI

and semantic web technologies to attack process complexity in open systems,
Knowledge-Based Systems 20 (2007), 152-159.

28 W3C – XML Path Language (XPath), available at http://www.w3.org/TR/
xpath. viewed 22. dec. 2008.

29 W3C – XML Query Language (XQuery), available at http://www.w3.org/
TR/xquery/. viewed 21. dec. 2008.

30 W3C – Simple Object Access Protocol (SOAP), available at http://www.
w3.org/TR/soap/. viewed 27. jan. 2009.

31 W3C, Web Service Description Language, available at http://www.w3.
org/TR/wsdl,2001.03.15..

32 W3C – XSL Transformations (XSLT), available at http://www.w3.org/TR/
xslt. viewed 12. jan. 2009.

33 Wahler A, Schreder B, Balaban A, Gomez J M, Niederacher K, MIKSI

- A Semantic and Service Oriented Integration Platform, The Semantic Web:
Research and Applications, 2004, pp. 459-472, DOI 10.1007/978-3-540-
25956-5_32.

34 Junbiao Wand, Hu Deng, Jianjun Jiang, Binghong Yang, Bailing

Wang, EAI-oriented information classification code system in manufac-

turing enterprises, Frontiers of Mechanical Engineering in China 3 (2008),
no. 1, 81-85.

35 BangYu Wu, Chi-Hung Chi, Zhe Chen, Ming Gu, JiaGuang Sun,
Workflow-based resource allocation to optimize overall performance of com-

posite services, Future Generation Computer Systems 25 (2009), 199-212.
36 XML Comman Business Liberary (XCBL), available at http://www.xcbl.
org/. viewed 10. febr. 2009.

37 Ye Y, Yang D, Jiang Z, Tong L, Ontology-based semantic models for supply

chain management, The International Journal of Advanced Manufacturing
Technology 37 (2008), no. 11-12, 1250-1260.

38 Liangzhao Zeng, Benatallah B, Ngu A H H, Dumas M, Kalagnanam

J, Chang H, QoS-aware middleware for Web services composition, IEEE
Transactions on Software Engineering 30 (2004), 311 - 327.

Per. Pol. Elec. Eng.138 Péter Martinek / Béla Szikora

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.ebxml.org/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl, 2001.03.15.
http://www.w3.org/TR/wsdl, 2001.03.15.
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.xcbl.org/
http://www.xcbl.org/

	Related work
	SOA integration methodology and architecture
	Preparing for orchestration
	Executing encapsulated services
	Applied standards and technology
	Performance prediction and configuration analysis

	Analysis and comparison of our approach
	Evaluation of proposals
	Proposal XSLT
	Proposal Direct
	Proposal BPEL
	Proposal Native

	Experiments
	Conclusion and future work

