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Abstract
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Based on our research, the Self Affine Feature Transform

(SAFT) was introduced as it extracts quantities which hold
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This paper gives details on algorithms which extract various

geometric information from the SAFT matrix. As different
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Figure 1: Typical input images.

1 Introduction

This article investigates the operation of the Self Affine Fea-

ture Transform (SAFT) on geometric images. It focuses on

the extraction of exact geometric quantities rather than ana-

lysing how similar details of digital photographs are handled.

It is assumed, that the input image is geometric, it has a con-

tent which can be described as colored areas bounded by (ana-

lytical) curves. Such images are: drawings, blue-prints, signs,

markers, typographic letters, high resolution vector graphics,

or photographs of geometric scenes, etc., see fig. 1.

SAFT was introduced in [13]. It was proposed, that SAFT

can classify certain image types, and then analyse each type in

a corresponding way. The main contribution of this paper is

to describe this classification procedure in details. The clas-

sification is done invariantly against affine transformations,

but the sensitivity of this process against noise is increased

in certain geometric situations. For each class, affine invari-

ant quantities are extracted by the means of a class-specific

normalisation.

The introduced methods are robust, although the sensitiv-
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Fig. 1. Typical input images.

1 Introduction
This article investigates the operation of the Self Affine Fea-

ture Transform (SAFT) on geometric images. It focuses on the
extraction of exact geometric quantities rather than analysing
how similar details of digital photographs are handled. It is
assumed, that the input image is geometric, it has a content
which can be described as colored areas bounded by (analytical)
curves. Such images are: drawings, blue-prints, signs, mark-
ers, typographic letters, high resolution vector graphics, or pho-
tographs of geometric scenes, etc., see Fig. 1.

SAFT was introduced in [13]. It was proposed, that SAFT
can classify certain image types, and then analyse each type in
a corresponding way. The main contribution of this paper is to
describe this classification procedure in details. The classifica-
tion is done invariantly against affine transformations, but the
sensitivity of this process against noise is increased in certain
geometric situations. For each class, affine invariant quantities
are extracted by the means of a class-specific normalisation.

The introduced methods are robust, although the sensitiv-
ity against geometric transformations and noise cannot be ne-
glected.

The operation of the SAFT detector on photographs requires
a different starting point. SAFT can be effectively used to match
similar details in a transformation invariant way. This property
is out of the scope of the current article, it is described in [14],
where further comparison is made with the widely used detec-
tors as SIFT [7], MSER [9], GLOH [12] and SURF [2].
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1.1 Positioning SAFT in the Image Processing Era
The Self Affine Feature Detector shows an interesting view

when compared to other IP methods. It can be positioned among
Transformation Invariant Features, since it has many similar
properties, thus it can be used to solve similar tasks. However,
SAFT can be used to extract exact geometric information too,
thus it can be positioned for example among classic corner de-
tectors, etc. These abilities of SAFT are due to the fact, that
the calculation of the feature is based on geometrical definitions
and is done by the tools of calculus and linear algebra. In certain
situations, it can also be used to substitute the Hough transform.
Due to the above written, the SAFT cannot be positioned unam-
biguously among existing image processing algorithms, it has a
lot of application areas.

1.2 Sections overview
Section 2 lists related image processing methods. Section 3

gives basic introduction to the emerging entities: affine flows,
their invariant subspaces, the formulation of the affine LK detec-
tor, the formulation of SAFT is highlighted. The interaction of
affine flows and the SAFT features with affine coordinate trans-
formations are shown. A very important point of our contribu-
tion is the extraction of affine invariant properties from affine
flows and creating the SAFT feature. This makes the introduced
algorithms behave invariantly against affine coordinate transfor-
mations. The calculation of transformations which normalises
flow shape or image content is the other pillar of our methods.
Section 4 describes the above mentioned classification and nor-
malisation of affine flows. Section 5 shows useful relations for
velocity distribution of invariant flows. Section 6 describes the
classification and normalisation of the SAFT matrix. Section 7
gives examples how the previously shown results can be applied
for solving emerging problems in vision scenario.

2 Related work
Many existing techniques (for example Edge detectors, the

standard and generalised Hough transform, interest point de-
tectors, and feature descriptors) can solve only a subset of the
image processing tasks that SAFT can solve, and vice versa.
Many similarities can be found in the formulations how the
usual methods and SAFT works. Each of these similarities gives
us an other viewing point of the SAFT matrix M, and the infor-
mation enclosed in it, see (10).

2.1 Relation to classic detectors
SAFT is related to classic corner detectors. The 2 × 2 sym-

metric matrix C = ggT (g is the image gradient) used by the
Harris [5] and by the Shi and Tomasi [16] corner detectors also
appears in the 6 × 6 SAFT matrix M, see (10). This will be
explained later in sec.3.5.1.

There is also a similarity in the formulation of SAFT and
affine shape adaptation [1], [11]. SAFT contains more informa-
tion and changes during affine transformations in a more com-

plex way. The philosophy of affine shape adaptation can be com-
bined with SAFT, but one has to take into account that the com-
putational requirement of SAFT is higher than that of simpler
methods, thus considerable less iterative steps can be afforded.

Different versions of the Hough transform can detect lines
[10], vanishing points [18], circles and ellipses by using original
2-D, cascade-cubic, 3-D and 5-D parameterizing respectively.
5-D parameter space is too large for practical applications.

SAFT is able to detect and extract the parameters of these ge-
ometric objects, but only if the investigated region contains only
one such an object. SAFT is sensitive to the presence of addi-
tional edges when solving these tasks, but have far less compu-
tational complexity than the Hough transform.

2.2 Transformation invariant features and SAFT
Transformation invariant feature descriptors are also related

to SAFT. We have to highlight SIFT [7], MSER [9], GLOH
[12] and SURF [2]. They are used rather to match details of
photographs via the comparison of the distance of feature vec-
tors, than extracting crisp geometric information from drawings.
SAFT can be used for this purpose also, it is described in [14]
together with a longer comparison to the above methods.

SAFT is also related to Affine Moment Invariants [4], [15]
and to Color Image Moments [17]. The highest order moment
utilized in SAFT is the 2nd, while the others use higher degree
moments also. Affine Moment Invariants use only moments cal-
culated over the intensity image, as Color Image Moments over
the multichannel image:

Mklm
i j =

∫
x i y j Rk Gl Bm dA,

where R(x, y) is the red channel of the image, for example. In
contrast, SAFT operates on the gradient images, see (15).

2.3 SAFT and the Lucas-Kanade detector
Relation of SAFT to the Lucas-Kanade (LK) detector is es-

sential, since both the formulation of SAFT and its basic idea
descends from the affine LK detector. Already the first paper
of Lucas and Kanade [8] have suggested the affine extension of
their method, to determine the infinitesimal affine transforma-
tion between two similar portion of images.

It is infrequently described or applied in related papers and
implementations, that the real, reliable output of any LK type de-
tector is not an n-dimensional parameter vector, rather the output
consists of multiple linear constraints against the parameter vec-
tor, see sec.3.3.1 and [13]. This problem generally affects com-
puter vision implementations. Most algorithms lack the ability
to handle the reliability/uncertainty of information propagated
between different stages of the image processing pipeline. This
results that such an implementation cannot detect at all, if the
input contains a singular set-up. The basic idea of SAFT is the
recognition that the shape of the error function is important, and
the locus of its minimum is not enough to be known.
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Nomenclature
To distinguish from scalar variables, bold lower-case letters

are used for vectors (v) and bold capitals for matrices (M). Vec-
tors are column vectors by default, row vectors appear as trans-
posed columns. Kronecker product is notated by ⊗. Homoge-
neous quantities are denoted by subscript H, to aid differntiating
between homogeneous and standard representations. q FG TH

denotes that q is invariant under transformation TH. Cα and Sα

will refer cos(α) and sin(α) respectively, where α is an arbitrary
rotation or angle.

Let us consider the function f(x) over the domain S, x ∈ S
(both f and x can be column vectors or scalars). The term I is the
homogeneous 2nd range-, domain- or range-domain-moment of
f is defined by:

I =

∫ [
v(x)

1

] [
v(x)T 1

]
⊗ g(x) dS,

where {v(x); g(x)} can be one of the following: {[f(x)]; 1},
{[x]; f(x)} or {[f(x)TxT]T

; 1} respectively. Notice that the Kro-
necker product (⊗) usually simplifies to multiplication by scalar,
except for domain-moments if f is vector valued. Range-
moments represent function value histograms, while domain-
moments represent the distribution of functions on the input
space.

The image I (x, y) is integrated according to the weighting
function wA(x, y) on the domain A. Image derivatives are in
vector g(x, y). The : (colon) operator appearing in matrix sub-
scripts denotes MATLAB R©, OCTAVE R© style multiple index-
ing.

There is a quick reference in the appendix about the fre-
quently used variables.

3 Basic relations of the SAFT detector
SAFT was introduced by describing the invariance of an im-

age to different affine flows [13]. This invariance can be com-
puted by the affine LK detector. This section investigates the
properties of affine flows and transformations.

3.1 Affine flows: definition
The basic formulation of the SAFT feature comes from an im-

age’s invariance against infinitesimal affine transformations. In-
finitesimal affine transformations will be referred as affine flows,
which satisfy that the local velocity depends linearly both on ho-
mogeneous position and on flow parameters:

v = Q · pH = [pH
T

⊗ I2×2] · q (1)

where v is 2×1 column vector of local velocity, Q is 6 DoF 2×3
parameter matrix, pH = [x y 1]T is 3 × 1 homogeneous posi-
tion and q contains the elements of Q in column-major order,
thus q is the parameter vector. It is possible to give an alterna-
tive definition:

v = [I2×2 ⊗ pT
H] · q̂, (2)

Fig. 2. Streamlines of normalised affine flows, flow names and Q matrices

with reversed order of Kronecker product, where q̂ contains the
element of Q in row-major order. All matrices descending from
this alternative definition will be notated by hats (ˆ). Q will be
decomposed as

Q =

[
F t

]
=

[
sx rx tx
ry sy ty

]
, q =

[
f
t

]
, QH =

[
Q

0 0 0

]
. (3)

The elements of F is collected to f in column-major order (f =

[sx ry rx sy]T).
Affine flows can be characterized by the streamlines of the

flows. These streamlines are conic sections (if trace(F) = 0),
but exponential spirals or power functions can also occur. Fig. 2
shows examples for affine flows.

These streamlines characterise the flow better (not regarding
flow strength) than algebraic formulations, since streamlines do
not need a coordinate frame to be chosen.

3.1.1 Coordinate transformations on affine flows
We can describe the same flow in coordinate frames A and B,

which have the relation:

pH B = TH B ApH A, TH B A =

[
RB A −cB A

0 0 1

]
(4)

where RB A is regular, but not necessarily orthogonal. The trans-
formation rules for Q and q, q̂ are

vA = QApH A, vB = QBpH B

vB = RB AvA, vA = R-1
B AvB

vA = R-1
B AQBTH B ApH A

QA = R-1
B AQBTH B A

QB = RB AQATH
-1
B A. (5)

From (1):

vB = RB AvA = (1 ⊗ RB A)((pH
T
BTH

-T
B A) ⊗ I2×2)qA

vB = ((pH
T
BTH

-T
B A) ⊗ RB A)qA

vB = (pH
T
B ⊗ I2×2)(TH

-T
B A ⊗ RB A)qA
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Using (1) again:

vB = (pH
T
B ⊗ I2×2)qB, qB = SB AqA

SB A = TH
-T
B A ⊗ RB A (6)

qA = SABqB, SAB = S-1
B A

ŜB A = RB A ⊗ TH
-T
B A, q̂B = ŜB Aq̂A (7)

The transformation S (and Ŝ) are unitary, if and only if the affine
transformation encodes rotation and scaling around the origin.

If q = c · [1 0 0 1 0 0]T, where c is any non-zero real pa-
rameter, then any coordinate transformation that leaves the ori-
gin in place, does not change the parameters of this flow, except
the magnitude of it. The coordinate transformation of pure scal-
ing leaves any flow parameter vector with t = 0 unchanged.

3.1.2 Flow invariance against global planar transformations
In this subsection we investigate, if the plane together with

affine streamlines are distorted by affine transformations (for ex-
ample axonometric photographing), then how the flow parame-
ters response to it. The results presented here are rather geomet-
ric than coordinate-geometric relations, thus they also could be
proved without using coordinates.

A trivial, but important property of affine flows is that the
affine transformation of affine flow streamlines results in affine
flows. The affine transformation of pure scaling leaves any flow
with t = 0 in place. As the streamlines of the flow move together
with the image plane, the new parameters of the flow can be
computed by (5), if the applied transformation is TH.

It is trivial that if Q is invariant to transformations of TH (Q FG

TH), then c1Q FG (TH)c2 for any real (non-zero) c1, c2 ∈ R.
This means, that the ’magnitude’ of Q and TH does not play
role in flow invariance. We do not prove here the following du-
ality conjuncture: If Q1 FG (Q2H + I) then Q2 FG (Q1H + I). It
is obvious, that all affine flows are invariant against the transfor-
mation which represents itself. Applying transformation rules:

pH
′
= (I3×3 + cQH) pH, c ∈ R

v′
= (I + cF)v = (Q + cFQ)pH = Q(I3×3 + cQH) pH ⇒

v′
= QpH

′
⇒ Q′

= Q

3.2 Invariant subspaces of affine flows
It can be recognised, that many affine flows contain places

with zero flow velocity, so we might investigate this numerically
by solving the following equation:

0 = v = QpH, Q =

[
F t

]
, pH =

[
p
1

]

p = −F-1 t (8)

Applying the properties of the solutions of linear equations
we get:

• If F is regular (nonsingular) then the invariant region is a
point, called the fixed-point. See Fig. 2/f...o.

• If F has a defect of 1 and t is in the range of F then the invari-
ant region is a straight line. See Fig. 2/b,c.

• If F has a defect of 1 and t is not in the range of F then there
is no invariant region. See Fig. 2/d,e.

• If F = 0 and t = 0, then the invariant region is the entire
plane, but there is no flow at all (zero flow).

• if F = 0 and t , 0, there is no fixed-point or invariant region,
since the flow is uniform shift. See Fig. 2/a.

3.3 Algebraic Background of the SAFT Descriptor
The formulation of SAFT originates from the affine extension

of the LK detector, thus we describe the essential equations of
the LK detector (with the notations of this paper) and then give
the definition of SAFT.

3.3.1 Formulation of the Lucas-Kanade detector
The generalised LK detector can determine the linear param-

eters of the optical flow between two images. The gradients
and difference of these images are used in the calculations. The
detector integrates quadratic error functions of flow parame-
ters arising from the squared equation error of linear constraints
against local flow velocities. Thus, the affine extension deter-
mines a quadratic cost function on the parameter vector q. The
primary output of any LK detector is the homogeneous quadratic
form of the reprojection error’s dependence from flow parame-
ters.

Usually, the extensions of the LK detector assume that v(p),
the local flow velocity depends on planar position p and linearly
on flow parameters q.

v(p) = L(p)q (9)

In the standard detector LST D(p) = I2×2, qST D = [tx ty]T.
The affine extension can use for example L = pH

T
⊗ I2×2 and

q = [sx ry rx sy tx ty]T. The LK detector integrates squared
reprojection error at image points:

e2
=

∫
(v(p)Tg(p) − 1I (p))2w(p) dA

where 1I (p) is the difference between the two images at point
p, g = ∇ I (p) is the (averaged) gradient of the image(s), and
w(p) is the applied windowing function. This results

e2
= [qT1]

[
M n
nT h

] [
q
1

]
,

[
M n
nT h

]
=

∫ [
L(p)Tg(p)

−1I (p)

] [
g(p)TL(p) −1I (p)

]
w dA.

Minimising this error leads the relation qopt = arg min(e2(q)),
qopt = −M-1n, but the full information extracted from the im-
ages is carried by M and n. Usually only the solution of the
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above equation is returned by the LK implementations. As de-
scribed above, we are interested in the linear constraints against
this solution, so we will use the full information encapsulated in
matrix M.

3.3.2 Calculating the SAFT descriptor
The LK detector assumes that two, slightly different image

will be analyzed to determine the optimal optical flow between
them. However, all equations and assumptions remain valid if
we feed the same picture to the detector instead of two different
images. Why would one do so, as it is obvious that the optimal
solution is the zero flow, as n = 0 ⇒ qopt = 0 in this case?
The reason is, that we want to investigate, how the reprojection
error depends if we disturb flow parameters around the optimum
qopt = 0.

M =

∫
(pH ⊗ g)(pH ⊗ g)Tw dA (10)

M̂ =

∫
(g ⊗ pH)(g ⊗ pH)Tw dA

The matrix M (and M̂) will be block symmetric with 18 inde-
pendent elements and positive semi-definite. The squared total
error can be expressed as:

e2
=

∫
e(p)2w dA = qTMq = q̂TM̂q̂.

3.3.3 Coordinate transformations
The behavior of the algorithm depends on the chosen coordi-

nate frame. The dependence is the following:

MB = ST
ABMASAB, M̂B = ŜT

ABM̂AŜAB (11)

where SAB and ŜAB are the same as in (6) and (7).

3.4 Normalising Flow Strength
In order to compare the resultant error for affine transforma-

tions of the image, a flow strength measure has to be defined.
Having defined the measure the question arises: ’Which are

the affine flows, which deform the image minimally?’ Obvi-
ously, if the flow strength is halved, the resultant squared error
is quartered, so we have to append: ’...among affine flows with
normalised strength.’

minimize qTMq, such that qT6q = 1.

where the 6 × 6 symmetric matrix 6 describes quadratic flow
strength measure. A good selection for 6 is to ensure uniform
flow energy in the window of interest. The flow velocity’s range-
moment can be calculated as

W̃ =

∫
vvTw dA =

∫
QpHpH

TQTw dA (12)

W̃ = Q
∫

pHpH
Tw dAQT

Let us denote the area of the window as Aw =
∫

w dA and
2Hw =

∫
pHpH

Tw dA. Then W̃ = QQT Aw, if 2Hw =

Aw · I3×3, which means that the inertia matrix of the process-
ing window is Aw · I2×2 (the inertia around the origin (axis Z)
is 2 · Aw, mean radius of inertia is

√
2) and the CoG. of the

window is at the origin. Such windows are:

• disk with rmax = 2
• Gaussian bell with σ =

√
2, rmax � 1

• square with sides 2
√

3
• Hann(ing) window w = (1 + cos(π

√
x2 + y2/rmax)/2 with

rmax ≈ 2 · 1.4655

Choosing the window and the coordinate frame according to the
above ensures that the normalisation will be 6 = I6×6.

Remark I: This condition is assumed in the rest of this article.
The results above determine the optimal selection of the co-

ordinate frame versus the investigation window. Therefore, the
coordinate unit is defined relative to the size of the window.

Remark II: In the following, the term unit (length) will refer
the coordinate unit resulting from the deductions above.

3.5 Invariant flows of M
If M is singular, then the null space contains the parameters of

affine flows, the linear combination of which does not change the
investigated image at all. These will be referred later as invariant
flows. The term quasi-invariant flow will refer a flow which
changes the image minimally.

The determination of invariant flows is coordinate frame in-
dependent (in the case of non-singular transformations). This
means, that if we transform MA into frame B, calculate the null
space and transform it back to frame A, then we get the same
space as directly calculating from MA.

If N denotes the null space of M then applying (6) for vectors
in the flow parameter space results

NT
AMA = 0, NT

BST
ABMASAB = 0

ÑA = SABNB ⇒ ÑT
AMA = 0

Since rank(NA) = rank(ÑA) = defects(MA), NA and ÑA de-
scribe the same subspace, the null space of MA.

This property ensures the processing of rank 5 M matrices in
an affine invariant way. However, if the image detail and thus
the calculated M descriptor are sensible to the exact size and
shape of the accumulation window, as image transformations
are affecting them, the affine invariance is weakened, see sec.8.

The determination of quasi-invariant flows (flows with small,
but non-zero eigenvalues) is coordinate frame dependent, but it
is rotation and scaling invariant.

3.5.1 Decomposition of M
Sometimes, the fixed-points of the flows are determined on

the image plane by the image processing task. In this case, we
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want to search among those flows only, which leave the cor-
responding point in place. See details in [13]. The following
decomposition of M is used frequently for different purposes.

M =

[
A B
BT C

]
(13)

where A is 4 × 4 symmetric matrix, B is 4 × 2, and C is 2 ×

2 symmetric. C is frequently used in keypoint detectors, for
example in the Harris [5] and in the Shi and Tomasi [16] corner
detectors. It is also the fundamental output of the standard LK
problem, as e2

= [tx ty]C[tx ty]T describes how sensitive is the
image detail against different translations. The sum of squared
errors of two uniform shifts in any two perpendicular directions
can get by:

E AC = trace(C) = e2
tx + e2

ty
, (14)

which is the accumulated energy of the ’AC’ component in the
image.

C can also be interpreted as the 2nd order component of the
gradient histogram of the image (

∫
ggTw dA). E AC will be used

to normalise the eigenvalues of M and to determine the rank of
M.

3.5.2 Practical relations
During the implementation the reader must pay attention, that

images looking singular do not produce singular M even if only
a small noise is present on the image. As experienced, smooth-
ing the image enhances noise invariance. It is advantageous to
apply a considerable amount of blur. This is especially impor-
tant when processing low resolution images with few distinct
color values. Blur decreases the scatter of measured gradients,
but enhances scatter in position. This effect is similar to the un-
certainty principle. Fortunately, we can eliminate it, by measur-
ing gradient strength on a slightly blurred, and gradient direction
on a highly blurred image. In the case of analysing drawings we
suggest to apply grayscale morphology.

3.6 Alternative interpretations
This subsection gives alternative definitions of the introduced

entities and quantities. M also can be interpreted as the homo-
geneous 2nd domain-moment of ggT.

M =

∫ x2 xy x
xy y2 y
x y 1

 ⊗

[
g2

x gx gy

gx gy g2
y

]
w dA (15)

M =

∫
[pHpH

T] ⊗ [ggT] · w dA,

Similarly M̂ =
∫

[ggT] ⊗ [pHpH
T]w dA. The block symmet-

ric property is clearly seen on the above formulae. Although M
(and M̂) is the sum of Kronecker products, the spectral decom-
position theorem of Kronecker products [6] cannot be utilized,
since the required characteristics is lost during integration. Only
the block symmetric property is preserved.

A 9 × 9 extension of M can be defined:

M?
=

∫
(pH · pH

T) ⊗ (gH · gT
H)w dA

where gH = [gx gy I ]T and I is the image intensity. g can also
be extended as gH = [gx gy 1]T. In this case the lower right
symmetric 3 × 3 block of M? describes only the shape of the
interest window itself, not its contents.

4 Classification of affine flows
This section exploits the effects of affine transformations on

affine flows.
Definition: An affine flow is said to be nonsingular if F is

nonsingular.
The invariant subspace of such a flow always exists and is a

point. The fixed-point’s location is affected by the shift compo-
nent (t) of the flow, see (8). This component can be eliminated
by shifting the origin to this point.

Definition: Any flow with parameter vector t = 0 will be
called Translation Free Affine flow and will be referred as TFA
flow. Moreover, Translation Free Affine transformation (cB A =

0) will be referred as TFA transformation.
In the following we investigate TFA flows only, since apply-

ing (8) we can transform any nonsingular flow to TFA flow. Any
TFA flow is invariant against pure scaling, and the flow describ-
ing pure scaling is invariant against any TFA transformation, see
sec.3.1.2.

Since the origin is moved in a well determined place, we want
to investigate, how F is changed during TFA transformations.
From (5) F is transformed by

FA = R-1
B AFBRB A

Thus, F can be diagonalised by a TFA transformation retrieved
by spectral decomposition. However, in the case when F is not
diagonalisable the normalising transformation is calculated in a
slightly different way. As flows with different strength have the
same shape, the magnitude of the eigenvalues does not play role,
only the ratio of them.

We have to warn MATLAB R© users, that function eig() does
not give correct results nor throw a warning, if diagonalisation
is not possible. If the eigenvalues are equal, one should check
whether F = UDU-1 or rank(U) = n. We recommend to use
U0, D0, V = svd(F−trace(F)I/n); D = D0+trace(F)I/n; U =

UT
0 or similar solution in this case. The eigenvalues are calcu-

lated correctly in any situation.
Let us denote the discriminant of the second order character-

istic polynomial of F by:

κ = trace(F)2
− 4|F| (16)

κ describes the location of the eigenvalues in the complex plane,
for example κ = 0 ⇔ λ1 = λ2. Moreover, let us denote

τ = |rx − ry |
2

= ‖F‖
2
F − trace(F)2

+ 2|F|
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which measures the non-diagonalisable behavior of F if κ =

0. Keep in mind, that κ is transformation invariant, but τ is
only rotation and scaling invariant, as the Frobenius norm (‖ ‖F)
depends on affine transformations. However, sgn(τ ) is invariant
against non-singular TFA transformations. Neither κ nor τ is
invariant against flow strength changes, they are proportional to
the squared strength.

The flow normalisation algorithm can be extended to return
the uncertainty of the calculated transformation, (see sec.2.3),
via a 7×7 homogeneous symmetric matrix of the parameters of
the normalising affine transformation.

4.1 Constrained diagonalisation
Uncertain situations during normalisation can be avoided con-

ceptually if we formalise our goals and use the following defini-
tion: Given the flow q, with normalised strength (in the origin-
centered 4 unit diameter window), we ask if there is any affine
transformation, which has no scaling, but does have any rota-
tion, a constrained translation and a constrained affinity compo-
nent, which would transform QH to have similar non-zero en-
tries in the diagonal, or right above the diagonal. This can be
referred as constrained diagonalisation. If it fails due to vio-
lating constraints, it indicates that the normalisation would be
numerically uncertain.

The constraint against translation should allow translation
strength identical to the case where the fixed-point of a non-
singular flow is no further from the origin than 4..7 units. The
constraint against affinity should allow affinity factors up to 4..7.

4.2 Classification of nonsingular flows
Flow classification can be performed transformation invari-

antly based on the eigenvalues of F. As these values can be
complex conjugate pairs, it is better to use combinations of them
as λ1 + λ2 and λ1λ2, or κ and τ . Crisp flow classification has
the problem, that two very close eigenvalues can be treated dif-
ferently depending on additional noise. Applications requiring
robust behavior might use rather a hypothesis-verification-like
method than crisp classification.

Problems arise during normalisation also. The normalising
transformation is only one particular solution, however, infinite
such transformations can exist, since additional scaling usually
does not change the flow. In most cases, additional unambigui-
ties arise.

Based on sgn(κ) and sgn(τ ), flows with nonsingular F can
be divided into groups with the following properties:

‘SPIRAL’ Flows:

• κ < 0
• the eigenvalues of F are conjugate complex numbers
• the streamlines are exponential spirals or ellipses

(Fig. 2/f,g,h)
• the class has one real parameter β = arg(λ) describing the

ratio of scaling and rotation. It has 180◦ ambiguity

• the normalised flow has uniform squared velocity distribution
(W̃)

• the normalised (isotropic) flow is rotation (and scaling) in-
variant, thus the normalising transformation is ambiguous up
to any combination of rotation and scaling.

‘POWER FN’ (Power Function) Flows:

• κ > 0
• the eigenvalues of F are real numbers
• the streamlines consist of power functions (Fig. 2/j,k,l)
• the class has one real parameter describing the exponent γ =

λ2/λ1. Notice, that the inverse of this parameter results a flow
rotated by 90◦, so sgn(γ )| log(|γ |)| identifies the exponent
better.

• W̃, the velocity histogram of the normalised flow depends on
γ . It is uniform if γ = ±1

• The normalised flow is invariant against affinities parallel to
the axes (and to scaling). Therefore, the normalising trans-
formation is ambiguous up to any combination of scaling and
axis parallel affinity.

‘SCALING’ Flows:

• κ = 0 and τ = 0
• the eigenvalues of F are equal real numbers and F is a simi-

larity matrix
• the streamlines are a fan of straight lines (Fig. 2/i)
• the flow cannot be normalised, as it is invariant against any

transformation.

‘DEROGATORY’ Flows:

• κ = 0 and τ > 0
• the eigenvalues of F are equal real numbers and F is a non-

diagonalisable matrix
• the streamlines are combined exponential and power func-

tions (Fig. 2/m,n,o). The streamlines of the normalised flows
satisfy: [

x
y

]
= et

[
1

t + c6

]
, t, c6 ∈ R

• the normalising transformation of the flow depends on flow
strength up to an axis perpendicular affinity. Any two deroga-
tory TFA flows can be transformed to cover each other. The
normalisation should consist of a rotation which eliminates
ry , and an axis perpendicular affinity which makes the nor-

malised F look like

[
1 1
0 1

]
. See sec.4.4 for more detail.

These groups are closed to the addition of pure scaling, which
is identical to add the same real number to the eigenvalues.

Remark: It can be recognized, that trace(F), the scaling com-
ponent of F does not play role in classification, it is orthogonal
to the above discussed problem.
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Fig. 3. Classification of singular flows. Names, matrix Q and streamlines of
normalized flows are shown.

4.3 Classification of singular flows
The classification of singular flows (rank(F) < 2) is relatively

simple, if we assume that flow strength has been normalised and
the flow was transformed to its natural basis frame. The six
emerging cases are well distinguishable based on the following
factors: rank(F), rank(Q), trace(F). As rank calculation is am-
biguous (see later sec.6.1), the result of classification is uncer-
tain for flow with very small, but non-zero elements in Q. The
six possible flow can be seen in Fig ??, together with the matrix
of the normalised flow.

4.4 Problems of algebraic diagonalization
The normalisation code of ’SPIRAL’ flows does not use eig(),

since it results complex D and U. The implemented algorithm
does not diagonalise F, it finds a transformation which results

F′
= |λ|

[
C −S
S C

]
, C2

+ S2
= 1, C, S ∈ R.

Strength change of flows with diagonalisable F matrix scales
λ12, but leaves the diagonalising basis transformation un-
changed, and coordinate transformation of the flow does not
change the eigenvalues. Neither is true for derogatory flows.
For ’DEROGATORY’ flows, we can adjust nearly any λ and
any ratio of λ and the upper right element by applying affinity to
the image.

By other words, the measure of derogatoriness is subject to
point of view. The almost straight streamlines of a slightly
derogatory flow (Fig. 2/m) can be curved by applying consid-
erable amount of affinity (Fig.2/n,o).

The matrix F =

[
λ 1
0 λ

]
can be changed via

[
1 0
0 e

]
axis

parallel affine transformation and c flow strength amplification:

c

[
1 0
0 1/e

] [
λ 1
0 λ

] [
1 0
0 e

]
=

[
cλ ce
0 cλ

]

Therefore any two derogatory flow’s streamlines can be trans-
formed to cover each other.

Let us consider a ’SCALING’ flow with two similar eigenval-

ues and an additional noise resulting in F =

[
λ δ

0 λ

]
where δ is

small. The calculated normalising transformation and its inverse
is very sensitive to δ.

A flow with very small, infinitesimal τ can be transformed to
a general derogatory flow with a large amount of affinity applied.

Therefore, flow parameters calculated in the primary mea-
surement’s coordinate system with small τ should be treated as
’SCALING’ flows, others should be normalised according to the
following:

• the flow needs to be quasi-diagonalised by a robust method

• the matrix of the flow should be made looking like

[
a ±a
0 a

]
(by an y-affinity e = λ)

• the flow strength needs to be normalised (by q′
= q/|q|)

Strictly speaking, we did not do anything else in this sec-
tion than re-implement the diagonalisation of the 3 × 3 matrix
QH. It always has at least one zero eigenvalue, but the struc-
ture of the Jordan-blocks (elementary divisors) of this matrix
describes different flow classes. This viewpoint is the homo-
geneous view of matrix Q, it is opposed to the inhomogeneous
dissection Q = [F t]. Moreover, we showed clear examples,
when standard, complex-valued diagonalisation procedures are
not suitable to our application. We know, at least from the
above described problems, that the normalising transformation
of Jordan-blocks are extremely sensitive to additional noise. Vi-
sion applications are required to treat small elements as zero
and similar elements as equal based on estimated SNR, in con-
trast to standard algebraic applications. This is the other rea-
son, why we re-implemented the diagonalisation of this 3 × 3
block upper-triangular matrix. We find the two viewpoints of
this classification procedure similarly important both during un-
derstanding the theoretical background of affine flow normalisa-
tion and during implementing applications. The right null-space
of QH is the homogeneous representation of the flow’s fixed-
point. It can handle ’PARABOLAE’ flow’s infinite far fixed-
point p = [x y 0]T, see sec.6.5.3. If we change Q a little
bit, this fixed-point becomes finite, it will refer to the distant
center of concentric ellipses or the center of large hyperbolae
in the opposite direction. This case illustrates many, above de-
scribed computer vision and matrix calculus related phenomena,
it might help deeper understanding of them.

If constrained diagonalisation of a near-elliptic or near-
hyperbolic flow fails, then instead of returning ’FAIL’, we
should assume that the flow is of ’PARABOLAE’ type. The
reconstructed flow’s parameters will differ from the original.
We can choose this method, if the error of modeling the flow
as ‘PARABOLAE’ is smaller than modeling it as a flow of its
original type and by a normalising transformation which satis-
fies the constraints. Similarly, slightly derogatory flows might
be modeled as ’SCALING’, ’POWER FN’ flows with distant
fixed-point and large/infinitesimal |γ | as ’LOG-EXP’.
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5 Velocity distribution of invariant flows
Let us consider the case if the input image looks like Fig. 7/1a.

M will have two defects, the null space consists of two 6-D vec-
tors. One can choose a coordinate frame (see sec.6.5.3 how to
perform it), such that the null space can be decomposed to:[

1 0 0 0 0 0
0 0 0 1 0 0

]
or

1
√

2

[
1 0 0 1 0 0
1 0 0 −1 0 0

]

The flows represented by the base vectors of the null space can
be seen in Fig. 7/1c,1d. The invariant subspaces of the nullspace
vectors of M depend on the exact chosen base. In the following,
we investigate the effect of rotating these basis vectors by the
n × n unitary matrix U:

q′

1
T

...

q′
n

T

 = Null ′(M) = UNull(M) = U


q1

T

...

qn
T


where n ∈ N is the defect of M, in the above example

n = 2, [q1 q2]T
=

[
1 0 0 0 0 0
0 0 0 1 0 0

]
,

U =

[
Cα −Sα

Sα Cα

]
.

Since the invariant subspace of a flow is defined as the loca-
tions where flow velocity is zero, hence we investigate the dis-
tribution map of the flow velocity for nullspace vectors qi , i =

1..n as a function of pH.

|vi (pH)|2 = vi (pH)Tvi (pH) = pH
TQT

i Qi pH (17)

|vi (pH)|2 = pH
TWHi pH, WHi = QT

i Qi

As we can see, the squared velocity is a homogeneous quadratic
function of planar position. Transforming by U yields:

q′
= Uq ≡ q′

k =

n∑
i=1

Uki qi ⇒ Q′

k =

n∑
i=1

Uki Qi , k = 1..n

Let us investigate WH =
∑

k WHk , the accumulated velocity
map, and its dependence from U:

WH
′
=

∑
k

Q′

k
TQ′

k

WH
′
=

∑
k

∑
i

Uki QT
i

∑
j

Uk j Q j (18)

Let Ũi j denote the total contribution of Qi
TQ j to WH

′:

WH
′
=

∑
i

∑
j

Ũi j Qi
TQ j , Ũi j =

∑
k

UkiUk j ⇒ (19)

Û = UTU = In×n ⇒ Ũi j = δ(i, j)

Thus
WH = WH

′
=

∑
i

Qi
TQi (20)

Fig. 4. Potential lines of squared flow velocity distribution (WH) over-
painted on real images

As it has been shown, WH, the velocity map of possible image
movement is independent of nullspace rotations. The deduction
above can be extended to all cases, even if M has no defect at
all. All we have to do is to multiply the eigenvectors of M by
the inverse square root of the corresponding eigenvalue:

qi = V:,i D
−1/2
i i , VDVT

= M (21)

where : is the MATLAB R© colon operator used in indexing. Such
flow parameters have the property, that any linear combination
of them yield to image reprojection error proportional to the
magnitude of vector r describing the linear combination:

q∗
=

[
q1 . . . q6

]
r, e2

= q∗TMq∗
= rTr

In other words, (orthogonal) vectors qi describe a hyper-
ellipsoid in the affine flow parameter space. Any flow parameter
on the surface of this ellipsoid results unit reprojection error.
Let us choose any six parameter vector, which represents the
same ellipsoid. All such a basis can be described as UV, where
V comes from (21), U is arbitrary and UUT

= I6×6 = VVT.
Equations from (17) to (20) can be applied in this case also,
since they do not suppose anything about qi , they utilize only
the orthogonality of U. Therefore, WH is independent of U. It
is easy to prove, that WH can be calculated as

WH = (M̂-1)1:3,1:3 + (M̂-1)4:6,4:6 (22)

An implementation can decide which kind of pseudo inverse to
use in (22), we found λ̃i = λmin/λi and λ̃i = trace(C)/λi to be
a good solution.

One can also investigate (numerically) for each point pH,
which unit-strength flow results the smallest squared error
among those having zero velocity at pH. The shape of this error
function is also interesting to investigate.

The application and abilities of the above results can be
clearly seen on Fig. 4. Images have been blurred prior to the
calculation of M. Then WH, the quadratic velocity distribution
was calculated and was overpainted on the original input images.
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6 Classifying shapes with SAFT
The extraction of geometric information from the SAFT de-

scriptor of a region depends on the content of that region. Ana-
lyzing parallel lines or concentric ellipses needs different algo-
rithms, since the extractable information is fundamentally dif-
ferent. To resolve this problem, classes of shapes are defined.
Shapes belonging to the same class should behave similarly
when analyzed with SAFT. First we have to decide the class of
the investigated region, then we can extract relevant information
with the corresponding algorithms.

6.1 The rank of M
The rank of M plays important role in the classification.

The calculation of the rank is usually done by the investigation
of singular values. Since M is symmetric and positive semi-
definite, the eigenvalues and the singular values are identical.
Standard algorithms would declare an eigenvalue as a defect if
it is close to zero compared to the working precision of the CPU
(or the GPU). We suggest to compare this eigenvalues by E AC ,
the averaged AC information in the image, see sec.3.5.1.

λ′

i =

{
λi λi > c′E AC , c′

∈ (0.01 , 0.1)

0 otherwise

For a certain image, different c′ values can result different ranks.
Therefore, some images can be located in more groups. No mat-
ter what the ranks are, a proper implementation should identify
the class based on invariant flows.

Let us investigate the following problem. The image contains
only a circular disc in the origin with unit intensity change in a
distance d. Its radius will be denoted by r .

gα =

[
Cα Sα

]T
/d;

M =

∫ 2π

0

[
rCα r Sα 1

]T [
rCα r Sα 1

]
⊗ gαgT

αd · r · dα

Decomposing M by (13) yields

A =
π

4d


3r3 0 0 r3

0 r3 r3 0
0 r3 r3 0
r3 0 0 3r3

 , B = 0 C =
π

4d

[
4r 0
0 4r

]
.

The eigenvalues are

λ̂ =

[
2 2 2r2 r2 r2 0

]
E AC/4, E AC = 2πr/d.

Depending on the exact values of r and c′, the calculated rank
of such an image can be 2, 3 or 5. Theoretically it is always 5.

For general image content, one can make a table showing the-
oretically possible combinations of rank(C) and rank(M), but it
does not apply in practice, since the calculated rank(M) can al-
ways be less than the theoretical value. It must not be less than
rank(C). If and only if the image contains gradients only in one

direction, then C in (13) is singular and M has multiple defects,
at least 3.

C =

∫
ggTw dA and rank(C) < 2 ⇒

g(x, y) = g0 f (x, y), C =

∫
f 2w dAg0gT

0 .

Thus, the gradients on the image are parallel. Moreover

M = GK ⊗g0gT
0 , GK =

∫
f 2(x, y)

[
x y 1

]T [
x y 1

]
w dA.

(23)
Applying the theorem of the spectral decomposition of Kro-
necker products [6] , rank(M) ≤ 3 (theoretically). Based on
these, we can set up the practical rule:

rank(C) ≤ rank(M) ≤ 3 · rank(C) (24)

Applications can enforce these inequalities after rank calcula-
tions.

6.2 The eigenvalues of M
The eigenvalues of M do not behave as ideal in practice as in

theory. We highlight five important effects which alter them.

• Random Noise increases the eigenvalues uniformly.
• Rasterisation increases the scatter of gradient direction very

much (consider 45o line), and the width on infinitesimal line
with one pixel. It is obvious that the image must be blurred.

• Blur decreases the eigenvalues of translation-like flows,
which relate to C, the gradient value histogram, but increases
eigenvalues which relate to the gradient position histogram.
One can apply hybrid gradient evaluation shown in sec.3.5.2.

• The distance of the fixed-point of the invariant flow affects
the curvature of the flow within the image. If it is decreased,
then the eigenvalues related to flows with far fixed-points
(high translational components) are decreased also.

• If the image consists only of one streamline (which case
is very important), then the area of useful measurements
(which is indicated by GK ) can be considerably smaller (or
flatter), than the investigation window. This effect decreases
eigenvalues of flows, the invariant subspace of which coin-
cides with the area of useful image content.

Certain geometric arrangements theoretically imply two de-
fects, see sec.6.5.3. These situations can hardly be distinguished
in practice from the situation of a single streamline of a general
flow based only on the eigenvalues. Regarding the flows associ-
ated with them gives us more chance to do so.

Implementing rank calculation based on the ratio of neigh-
bouring eigenvalues was investigated in our research too. One
might determine the defects of M where the ratio of neighbour-
ing eigenvalues are the highest. However, it is better to return
an ’UNCERTAIN’ flag if this ratio is less than 3...4 and to in-
vestigate other candidates also, where the ratio is higher than
7...10.
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Fig. 5. Typical SAFT class members, arranged by rank(C) and rank(M).

6.3 Normalising and classifying in the practice
Normalising the SAFT matrix requires the same viewpoint as

used by flow normalisation in sec.4.1. We investigate if there
is a constrained coordinate transformation, which makes null as
many elements of M as possible. However, in case of images
from real measurements, this criterion needs to be widened, as
the searched transformation should minimize the maximum of
the small elements in M.

Despite the definitions of constrained normalisation is de-
scribed in this paper, in our research we used heuristic methods
also to avoid uncertain situations during normalisation.

Determining image class can be ambiguous in certain situa-
tions. An alternative, but computationally more complex solu-
tion is, that for every candidate class we calculate the parameters
of the image with a robust, class specific method, and determine
the error of our hypothesis. For several classes there are simple
formulae which can be used for this purpose. Otherwise, the
error can be calculated by constructing the SAFT matrix of the
hypothesis. The error of original SAFT matrix against eigen-
flows of the hypothesis must be evaluated.

6.4 Brief enumeration of classes
Fig. 5 shows images of typical class members, and the cor-

responding ranks which are theoretically possible. Similar im-
age contents can evaluate to other ranks due to effects listed in
sec.6.2.

The classes can be constructed as follows: Pure geometric
classes can be found by theoretical reasoning and via experi-
ments. Small details might then be added to these classes (a
small portion of a curve deleted, or a very short line or small
patch (noise) added to a clear area). These added details change
the rank of M.

Fig. 6 is covered with multi-scale interest windows, which are
analysed and classified. Windows are eliminated if the rank of
M equals 6 or 0. Remaining ones are considered interesting.
Windows are referred to be stable if neighbouring windows give
similar results. They are of maximal size, if no bigger, covering
window with similar results can be found.

Fig. 6. Classified stable windows of maximal size. Line style refers
rank(M), width indicates rank(C). See Fig. 5 and (24) also.

6.5 rank(C) = 2
6.5.1 Group rank(M) = 6
Once we diagnosed rank(M) = 6, there is nothing more to do.

The image does not contain information which can be used ex-
tracted based on invariant affine flows. However, we can still de-
termine the transformation which normalises the quadratic func-
tion WH.

6.5.2 Group rank(M) = 5
Classification and normalisation of this group is done by clas-

sifying and normalising its singular flow. However, if the fixed-
point is very far, the normalising transformation will contain too
much affine distortion. We suggest to neglect normalisation if
the fixed-point is far from the center, etc. See sec.6.3.

Note, that not all flow types can occur, since flows with
rank(Q) = 1 have parallel gradients. The SAFT matrices of
such flows have multiple defects. A rank(M) = 5 image has
no gradient component parallel to the streamlines of its singular
flow.

6.5.3 Group rank(M) = 4
Images of this group has two independent invariant flows,

which are encapsulated in the null space of M. Multiplying this
null space by a 2 × 2 rotation matrix Uα , we will have another
pair of independent invariant flows. Thus, these shapes cannot
be characterized by two affine flows, two fixed-points, etc, since
they are changing and moving with the 2 × 2 rotation.[

q̂′

1 q̂′

2

]
= Uα

[
q̂1 q̂2

]
, q̂i =

[
qix

qiy

]
, Qi =

[
qT

ix

qT
iy

]
Two intersecting lines (or half lines) lie on a degenerate hy-

perbola. This detail is very frequent in human-built environ-
ment. Photographing calibration grids also yield to this kind of
details [19], [3]. Parabolae are also very frequent in artificial en-
vironment: As every circle appears as a non-degenerate conic,
the apex of this conic is often undistinguishable from a perfect
parabola.

Extracting Geometric Information with SAFT 1732009 53 3-4



Fig. 7. rank(M) = 4 images, ’CORNER’ and ’PARABOLA’. Original (a)
and blurred (b) image, flow with zero (c) and maximal (d) scale component.
b,c,d have conic K′ overpainted.

Theoretically there are only two non 1-dimensional con-
ics, the degenerated hyperbola (’CORNER’) and the single
’PARABOLA’ which cause rank(M) = 4, see Fig. 7. The
’TEXTURED LINE’ belongs to this class also.

Obviously, in practice, image contents similar to these can
also yield to rank(M) = 4. Analysing apexes of ellipses or
hyperbolae, which are similar to a parabola returns the equation
of the investigated conic with small, often negligible error.

We expect that any flow lying in the null space will have flow
direction parallel to the elements of the gradient image. We are
interested in the locations, where the two flow components of
the null space are parallel to each other. If the velocities of the
two flows are parallel at a given location, then a linear combi-
nation of the two flows can be found which results zero velocity
at the given point. As all linear combinations are described with
null-space rotations, the locations of parallel flow velocities are
identical to the locations of the travel of the invariant subspace
as the basis of the null space is rotated.

We can approximate the homogeneous coordinates of the
fixed-point by calculating the right null-space of Q by vector
product.

pH
′

f i x = q′

1x
× q′

1y
= Cα

2q1x × q1y +

Sα
2q2x × q2y + Cα Sα(q2x × q1y + q1x × q2y ) (25)

pH
′

f i x = (Cα
2
+ Sα

2)pH1 + (Cα
2
− Sα

2)pH2 + (2Cα Sα)pH3,

which is the parametric equation of a general conic section (pHi

can be calculated with ease.) We can conclude, that the fixed-
point travels on a conic. Note, that it can reach infinity, which is
the case for ’PARABOLAE’ flows. The above approximation is
correct only if Q is non-singular. Q will be singular for example,
if the image contains only a degenerated hyperbola.

The properties of these conics can be get by alternative meth-
ods:

• A: Determine the locations, where the two invariant flows are
parallel to each other. These locations are independent to the

rotation of the null space’s basis, and are characterized by
matrix K′:

pH
TK′pH = 0 (26)

K = QT
1
′

[
0 −1
1 0

]
Q′

2, K′
= (K + KT)

The locations where any two affine flows are parallel to each
other lie on a conic, but usually the flows are not parallel to
this conic. Thus, the error of the hypothesis can be measured
as the flow strength of Q1 and Q2 through the conic K′

= 0.
To evaluate this integral K′

= 0 should be parametrized first.
• B: Investigate the travel of the fixed-point through null-space

rotations. One can numerically determine the path of the
fixed-point or approximate it by (25). The fixed-point travels
along the image curve for ’PARABOLA’ and ’TEXTURED
LINE’, but our approximation is not suitable for ’CORNER’-
s.

If the null space calculation is done correctly instead of the
vector-product approximation, then method B is identical to
method A. Further classification and (constrained) normalisa-
tion can be done by the diagonalisation of K′.

If we would like to detect 2nd order conics, we want to utilise
that flows having conic shaped streamlines do not have any scal-
ing component. The strength of the ’SCALING’ flow compo-
nent should be nullified:

trace(F1
′
α) = Cαtrace(F1) + Sαtrace(F2) = 0.

For ’CORNER’ type images, if trace(F1
′) = 0, then q′

1(α) rep-
resents a ’POWER-FN’ flow with λ12 = ±1. If M is affected
by noise, etc, K′ will describe a true hyperbola instead of a de-
generate one, but flow normalisation is hardly affected by this
effect. For ’PARABOLA’ type images, trace(F1

′) = 0 can hap-
pen only if both lambda’s are 0. This referred by q′

1 describing
a ’PARABOLAE’-type non-diagonalisable singular flow. The
fixed-point of this flow lies at infinity. If the image is a little bit
distorted, or noisy, etc, K′ will not describe a parabola, but the
apex of an ellipse or a hyperbola with a distant fixed-point. Con-
strained normalisation should fail in these cases due to the dis-
tance of the fixed-point. The best choice is to enforce parabola
detection, which can be done by seeking the flow, which has
trace(F) = 0 and |F| = 0. The flows corresponding to the three
smallest eigenvalues can be used to find the one belonging to
minimum self-affine error. See sec.7.6 for a different perspec-
tive of the same problem.

rank(M) = 4 can also occur by imaging a small patch and
one line.

6.5.4 rank(M) < 4
rank(M) = 3 occurs in the practice if the image contains the

SAFT class of ’ONE LINE’, or ’MORE LINES’ and a small
gradient element which makes C, the gradient range histogram
regular. This can be caused by a small, 2-D image detail, or if the
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’lines’ are slightly curved. The first case is often very sensitive
to the investigation window, and can be suppressed by Gaussian
or Hann(ing) windowing. The second case can be analyzed by
the curvature method, see sec.7.4.

rank(M) = 2 occurs rarely in the practice, we experienced it
when analyzing a short, slightly curved ’line’, or an even shorter
straight line, or a very small patch. GK , the gradient domain-
moment localises these details with ease.

6.6 rank(C) = 1
The rank(C) = 1 case occurs only if the image is one di-

mensional. The null-vector of C describes the orientation of the
image. The image consists of parallel lines in this direction. The
intensity of the lines may slowly vary along them.

The following questions emerge:

• Are there one, or more lines present on the image?
• Perpendicular to the lines, where is the centroid of the line(s)?
• What is the approximate span of the lines, perpendicular to

them?

Notice, that normalisation can be done only in the 1-dimensional
direction perpendicular to the lines. This can be calculated based
on GK , see (23).

In the practice, a single, slightly curved ’line’ can cause
rank(C) = 1 and rank(M) = 3 also. Therefore, it is better
to answer all the above questions based on GK .

This kind of image details was not investigated so deeply, as
image content is very simple in these cases. The only useful
applications found are the ability of the SAFT descriptor to dif-
ferentiate between a single line and multiple parallel lines, and
to determine the position of a single line beside its orientation.

7 Applications
Information extraction from M needs to decide what is the

SAFT class of the image. It can be done either by the numeri-
cally sensitive classification or can be chosen based on prelimi-
nary hypothesis. Once the class is selected, specific information
extraction and normalisation can be used to determine class spe-
cific quantities.

Other class independent measures can also be used, for exam-
ple the domain-moment of squared gradients GK , or the accu-
mulated velocity map WH.

This section summarizes very briefly several applications,
most of them illustrating vision scenario when emerging prob-
lems are solved by utilizing the relations described in the previ-
ous sections. The sensitivity/robustness of the developed algo-
rithms against different effects are notated.

7.1 Vanishing point of lines
Finding the vanishing point of lines can be done by calculat-

ing the minimum of WH, see sec.5 and sec.3.2. This method is
robust against blur, transformations and noise. See sec.7.5 also.

Fig. 8. Enforcing curvature (a,b) and scaling center (c,d) detection.

7.2 Number of lines
Classic edge detectors can find the main direction of lines in

the investigation window, but cannot distinguish whether a sin-
gle line or multiple parallel lines are present. As these fall into
different SAFT classes, differentiating could be done by check-
ing the rank of M, see sec.6.6. This method is sensitive to certain
effects (blur, curvature, etc.) It is more robust to use rank(GK )

for this purpose.

7.3 Parameters of one line
Once it is detected and classified, SAFT is able to determine

the position and angle of one line. The classification itself is
sensitive to various effects, but the extraction of the parameters
can be considered absolutely robust.

7.4 Curvature
If we expect, that the image consists only of concentric circu-

lar arcs, then we need to investigate the null space of the follow-
ing 3 × 3 symmetric matrix:

TT
r MTr , (27)

where

TT
r =

0 0 0 0 1 0
0 0 0 0 0 1
0 1 −1 0 0 0

 .

The smallest singular value describes the error of our assump-
tion. If our assumption holds, then the null space exists and
encodes p f i xr , the location of concentricity. If the gradient do-
main moment is evaluated with this point as the center, then the
average radius of the arcs trace(G′

K ) can be found by:

G′

K = GK /trace(C) − pgpg + p f i xr pT
f i xr

where pg is the center of ’mass’ of the gradient domain moment
GK . In case of one single arc it returns the exact radius. This
method is similarity invariant and robust against noise.

7.5 Scaling center
A method similar to sec.7.4 can be used to find the center of

scaling, and image resistance against it. M has to be transformed
by Ts ,
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TT
s =

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0

 .

This method is affine invariant and robust against noise.

7.6 Detection of conics
If we want to enforce conic detection, we can analyse the

eigensystem of 5 × 5 matrix TT
c MTc, where Tc is the right null

space of [1 0 0 1 0 0]. We utilized the fact that flows with
conic streamlines do not have any scaling components. The er-
ror of our hypothesis is given by the smallest eigenvalue.

7.7 Normalisation of ellipses
When photographing circular markers from an angle, it is ex-

pected to find the transformation which circularises the ellipse
and moves the origin to the center of the normalised circle. We
have to test if the image class is the rank(M) = 5 Ą ’SPI-
RAL’ class, with zero spiral parameter, then the flow normal-
ising transformation does the job, see sec.4.2.

7.8 Classifying image details
Classifying image details is one of the main focus of this pa-

per. It is useful, for example, when a mobile robot has to search
for markers which were designed to be easily distinguishable
with SAFT. Notice, that several classes can identify a flow pa-
rameter in an affine invariant manner, for example the ‘SPIRAL’
and ‘POWER FN’ classes, sec.6. Image classification is the
most sensitive method described in this article. It should be used
on high resolution details (100 pixels was found to be enough) of
geometrical content. For practical cases, calculating a character-
istic measure showing that the image belongs to a certain class is
superior solution to determining the exact class. Threshold lev-
els used in classification can be determined by soft techniques
based on typical examples.

7.9 Normalising details
The other main contribution of this article is a new method for

normalisation. We highlight the scenario how it can be applied.
A marker can be designed to have a well distinguishable SAFT-
class type part. Based on the projection of this part the rectifying
transformation can be found. When this is applied to the other
parts of the marker, further processing can be carried out on the
rectified image. This process is robust, if the SAFT marker is
chosen properly.

7.10 Vectorization
Since SAFT can distinguish the types of common curves used

in science and engineering (as circles, ellipses, parabolae, hy-
perbolae, exponential spirals), hence it can be used to deter-
mine the (largest) window in the close neighbourhood for which∫

|g|
2 dA is maximum and contains only one curve.

Once the type of the curve is determined via classification,
several parameters of this curve can be easily extracted. This
kind of application has not to deal with image noise. It can
be sensitive to other details falling into the window of interest.
Once the curve is identified, another SAFT matrix should be cal-
culated in the vicinity of the curve. It is a good choice to select
investigated area based on the Harris corner detector’s output.
See sec.6.4 and Fig. ??.

7.11 Grid point Extraction
Computer vision applications frequently require camera cali-

bration. This calibration is usually done by photographing a che-
quered texture. The usage of SAFT offers an alternative method
for sub-pixel accurate grid point extraction, which localises grid
corners much better than well-spread gradient, Laplacian or
model-fitting methods. The location of the intersection can be
get by the minimum locus of WH. We should use the largest
window resulting ’CORNER’ class. This method was found to
be robust, but blur has to be applied according to image noise
level (high frequency image content).

If the directions of the intersecting lines have also to be deter-
mined, we can utilize that the vicinity of grid points belongs to
the ’CORNER’ SAFT class and apply the normalising algorithm
described in sec.6.5.3.

7.12 Accelerating computations
Several real-life applications of the above methods can be

sped up by the same method seen in sec.7.4. If M is pro-
cessed by an application in a very special manner (for example
extracting one real number), then simplifications can be made.
These simplifications can even affect the computation of M, as
in sec.7.4. In these cases, the computational speed of the sim-
plified algorithm can be considerably higher than the speed ap-
proximated at first glance. This has to be highlighted, as the
numeric 6 × 6 symmetric eigenvalue problem can be considered
too slow for many applications.

8 The Influence of pre-processing on affine invariance
The investigation of the same image content in a different co-

ordinate frame can be done in several ways. One can suppose
either if the image and the integration window is fixed, only the
coordinate frame is changing, or the image is transformed re-
garding to the fixed domain and coordinate frame. These two
situations are geometrically different.

When similar image content is analysed (for example the pho-
tograph of the same spatial detail from different angles), the rel-
ative transformation of the interest window affects the resultant
M in various ways:

• What kind of image content falls inside/outside the integra-
tion window?

• What is the kernel for the initial low-pass filter? (It is usually
the integration window’s kernel scaled down.)
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• What is the coordinate frame of the primary calculation of
M? (This can be corrected and modified afterward, whenever
needed. It correctly processes the strength of gradients in dif-
ferent directions due to affinities. It cannot handle the effect
of different low pass filtering.)

• What is the region, that is incorporated when normalising
flow strengths (sec.3.4)?

If the interest window remains the same, but the image is dis-
torted, then this corresponds to the simultaneous effect of all
phenomenon listed above.

Applying non-singular affine transformations to the image re-
sults the same as we apply the inverse transformation to the pro-
cessing (and normalising) window, and transform M by S en-
coding the forward transformation, except for the effect of low-
pass filtering.

In the following, we assume that the neighbourhood of the
investigation window contains the same geometric information
as the window itself. This results that changing the integration
area or windowing function, but keeping the coordinate frame
in place, changes M minimally.

In these cases, the following algorithms behave affine invari-
ant (in the order of robustness against other effect: noise, blur)

• finding the accumulated fixed-point of images with singular
M

• determine the flow parameter if there is any
• classification of affine flows
• verifying preliminary hypotheses about image context
• finding the normalised image and parameters of images with

rank(M) = 5 and 4.
• locating conic sections
• finding the normalised flow and parameters of affine flows.

The following methods are affine invariant, but very sensitive to
other effects:

• determination of the null space of M (finding invariant flows)
• classification of M

Constrained normalisation is not absolutely affine invariant
by definition, but is a good choice to increase the invariance
against noise, blur, rasterisation, etc. It is affine invariant only if
the constraints are not violated.

If the condition above does not hold, then the change in the
integration domain yields different results. This can be thought
as a problem partially related to occlusion artifacts.

The technique of affine shape adaptation can be applied to en-
sure higher affine invariant operation, but requires considerable
more computational power [1].

9 Color channels
Until this point, we supposed that the image consists of one

(grayscale) channel. As for the LK detector, the simple addition
of the resultant M matrix of every channel results the correct

propagation of sum of squared pixel errors, measured channel-
wise.

MRG B = MR + MG + MB

The resultant SAFT matrix MRG B encodes more information
than Mgray of the grayscale version of the multichannel im-
age. Generally, the above formulation fits to geometric infor-
mation extraction from SAFT (for example the calculation of
WH). When SAFT is used as feature detector, one might want
to compare the feature vector (or matrix) of each color channel
separately.

10 Conclusions and future plans
This paper described the classification of geometric images

with the SAFT detector. The calculations are processed affine
invariantly. A normalising affine transformation is also gained,
which is underdetermined and should satisfy constraints. Class-
dependent affine invariant quantities can be easily extracted
from the normalised descriptor matrix. This extraction process
was briefly described in the paper.

The present article has been concentrated on the SAFT based
image information extraction and classification details. The
developed algorithms can be applied for solving different 2-
dimensional image processing tasks, amongst them detection
of convergent lines, circles, ellipses, parabolae and hiperbolae
or localizing corners of calibration grids in a robust and accu-
rate manner. The invariance of the introduced methods against
planar transformation, noise, blur and rasterization was demon-
strated in the article.

There are further results of this research, which have been not
published, articles about these results are expected to be con-
tributed in the near future.
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11 Appendix
11.1 Frequently used variables

size description Eq.
C 2 × 2 lower-right part of M (13)
D n × n general diagonal matrix
F 2 × 2 linear part of Q (3)
f 4 × 1 translation free parameters of

affine flow, elements of F
(3)

g(x, y) 2 × 1 gradient of the image at x,y
GK 3 × 3 domain-moment of gradient

strength
(23)

I n × n identity matrix
M, M̂ 6 × 6 SAFT descriptor matrix (10)
pH 3 × 1 Homog. planar position in

current frame [x y 1]T
(1)

Q 2 × 3 Matrix of affine flows (1)
QH 3 × 3 Homog. extension of Q (3)
q, q̂ 6 × 1 affine flow parameters, ele-

ments of Q
(1)

R 2 × 2 Linear component of TH, not
necessarily orthogonal!

S, Ŝ 6 × 6 Matrices transforming q, M
and q̂, M̂

(6),(7)

TH 3 × 3 Homog. affine coordinate
transformation matrix

(4)

t 2 × 1 constant shift in Q (3)
U n × n general Unitary matrix (of

column-eigenvectors)
v 2 × 1 local flow velocity (1)
W̃ 2 × 2 2nd range-moment of flow ve-

locity
(12)

WH 3 × 3 Homogeneous domain-
moment of sqared flow
velocity

(20)

w(x, y) 1 × 1 windowing function of the
image at x,y
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