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Abstract
The general assumptions made about roundoff noise are that

its samples form a signal-independent white sequence, and they
are uniformly distributed between ±q/2, where q equals the
least significant bit (LSB). While these are often true, strange
cases may appear, e.g. misleading peaks can occur in the spec-
trum. In this paper the roundoff error of the fixed-point and
floating point fast Fourier transform is investigated. It repro-
duces the results of Welch (1969) with modern tools, revisits his
simulations, and investigates the consequences of the violation
of the above assumptions for almost pure sine waves. The maxi-
mum amplitude of spurious peaks is determined and the amount
of the decrease in the dynamic range is given.
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1 Introduction
The Fast Fourier transform (FFT) is one of the most effective

algorithms of digital signal processing. It decreases the need for
complex additions/multiplications from the order of magnitude
of N 2 to N · log2 N . This is why it has been so popular since the
sixties [2]. The basis is the so-called butterfly (see Fig. 1). The
FFT was executed in the sixties with the then-available fixed-
point arithmetic. High-speed FFTs are still done in fixed point.
However, for the FFT, number representation needs to be modi-
fied: the inherent amplitude increase [1] requires that a so-called
block-float exponent (common to all samples) is used to contin-
uously utilize the full bit length (avoid both overflow and round-
off error too large with respect to the signal). Therefore, “Fixed-
point FFT” means block-float FFT. The popularity of block-float
FFT required a thorough analysis of the roundoff errors, e.g.
[4, 5, 8, 9]. This was done partly theoretically (with the noise
model), partly experimentally, using simulation. This latter was
done e.g. in [9] by direct computation in Fortran. Today, sim-
ulation has become possible in modern software (Matlab) in a
reproducible way, using general quantization tools.

2 Reproducing classical results
In his paper, Welch analyzed the radix-2 DIT algorithm1 of

FFT. He studied the effect of roundoff on the output of opera-
tions at each stage of the FFT. Block-float number representation
was used. In this, the numbers are stored in fix bit length. An
exponent is common for all numbers, so it is stored only once,
not for every number. The mantissa is 1+B bits long where B
is the number of the fraction bits, and one bit is used for the
sign. The largest number is downscaled until its absolute value
is in (0.5,1). All the other numbers are downscaled by the same
amount, thus a common exponent can be used:

X input = [0.07 0.334 0.707 0.043 . . . 0.002] × 213 (1)

In this example the common exponent is 13, and the biggest
represented sample equals 0.707 × 213

≈ 5.79 × 103.

1 DIT is an abbreviation decimation-in-time, the way of reducing the size of
DFTs. Radix-2 stands for the size of the butterflies (they can also be radix-4,
radix-3 etc.).
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I. INTRODUCTION 
 

The Fast Fourier transform (FFT) is one of the most effective 
algorithms of digital signal processing. It decreases the need 
for complex additions/multiplications from the order of 

magnitude of N2 to N*log2N. This is why it has been so popular 
since the sixties [2]. The basis is the so-called butterfly (see Fig. 
1). The FFT was executed in the sixties with the then-available 
fixed-point arithmetic. High-speed FFTs are still done in fixed 
point. However, for the FFT, number representation needs to 
be modified: the inherent amplitude increase [1] requires that a 
so-called block-float exponent (common to all samples) is used 
to continuously utilize the full bit length (avoid both overflow 
and round-off error too large with respect to the signal). 
Therefore, “Fixed-point FFT” means block-float FFT. The 
popularity of block-float FFT required a thorough analysis of 
the round-off errors, e.g. [9], [5], [8], [4]. This was done partly 
theoretically (with the noise model), partly experimentally, 
using simulation. This latter was done e.g. in [9] by direct 
computation in Fortran. Today, simulation has become possible 
in modern software (Matlab) in a reproducible way, using 
general quantization tools. 

 

 
Fig. 1. FFT a) decimation-in-time (DIT) flowchart for  N = 8; b) the basic butterfly 

 
Fig. 1. FFT a) decimation-in-time (DIT) flowchart for N = 8; b) the basic butterfly

II. REPRODUCING CLASSICAL RESULTS 
 

In his paper, Welch analyzed the radix-2 DIT algorithm1 of 
FFT. He studied the effect of roundoff on the output of 
operations at each stage of the FFT. Block-float number 
representation was used. In this, the numbers are stored in fix 
bit length. An exponent is common for all numbers, so it is 
stored only once, not for every number. The mantissa is 1+B 
bits long where B is the number of the fraction bits, and one 
bit is used for the sign. The largest number is downscaled 
until its absolute value is in [0.5,1). All the other numbers are 
downscaled by the same amount, thus a common exponent 
can be used: 

  
Xinput = [0.07 0.334 0.707 0.043 ... 0.002] × 213      (1) 

 
In this example the common exponent is 13, and the biggest 
represented sample equals 0.707×213 ≈ 5.79×103. 
During the algorithm, due to the summations and 
multiplications, the numbers have to be downscaled. For 
example if the second element of (1) is added to the third one, 
the result is (0.707 + 0.334) × 213 = 1.041 × 213 , but then the 
mantissa is larger then 1 and this would cause an overflow, so 
before the addition the numbers are downscaled: 

  
X = [0.035 0.167 0.354 0.022 ... 0.001] × 214         (2) 

 
Now (0.167 + 0.354) × 214 = 0.521 × 214 so the result’s 
mantissa is less than 1. The roundoff due to downscalings 
(discarding or rounding the rightmost bit) can be considered 
as adding noise (the error term) to the exact value. 
 Welch gave an upper bound for the error of the 
fixed-point FFT output, assuming rescaling at each stage: 
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In this equation  M = log2N,  B is the number of fraction bits, 
and  C is a constant between 0.4 and 0.9 (depending on the 
signal shape). Therefore, hmax is equal to: 
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This formula was verified by using simulations, with B=17. 
We have reproduced these simulation results for the FFT of a 
series of random numbers in (0,1), then in (-1,1). These two 
cases are significantly different, because in the first case the 
input has a nonzero mean value and this causes many more 
downscalings than zero mean noise does. The runs confirmed 

                                                 
1 DIT is an abbreviation decimation-in-time, the way of 
reducing the size of DFTs. Radix-2 stands for the size of the 
butterflies (they can also be radix-4, radix-3 etc.) 

the theoretical formula as an upper bound. In the first case, 
the noise-to-signal ratio (NSR) increased proportionally with 
log(N), as it is expected from (3). Welch defined the NSR for 
the whole spectrum (a possible alternative is to calculate the 
NSR only for the bin where the sine appears). 
 

III. NEW RESULTS FOR A PURE SINE WAVE 
 

Simulation was also done with the pure sine wave also used 
by Welch (the input signal was x[k]=sin(2*π*k/8), k=0...N-1). 
To our surprise, the simulation gave significantly different 
results from Welch’s. Fig. 2 shows Welch’s result, as the 
noise-to-signal ratio increases with N. However, in our 
simulation h did not increase with √N, it was even constant. 
We speculate that Welch’s simulations were probably done 
with a sine wave somewhat different from the text (maybe 
some noise was added). 
 
 

 
Fig. 2. Welch’s result for clear sine wave input 

 
 
In order to understand in detail what happens for the FFT of a 
pure sine wave, look into Fig. 3. It illustrates the 8-point FFT 
of a sine wave. Compare this now to the FFT of N=16 
samples (Fig. 4.). For this, the samples for k = 0…7 are 
repeated for k = 8…15. Here the second eight outputs of the 
first stage are exactly zero because the corresponding sample 
pairs have to be subtracted from each other: 

  
X1[k+8] = X0[k] – X0[k+8]                        (4) 

 
In the equation X0[k] is an input of the first stage (a sample of 
the input signal), and X1[k] is an output of the first stage (and 
also an input of the second stage). In the next stages in the 
lower half part of the FFT all operations are made on these 
zero elements, so the second eight outputs are all exactly 
equal to zero. 

Fig. 2. Welch’s result for clear sine wave input

During the algorithm, due to the summations and multiplica-
tions, the numbers have to be downscaled. For example if the
second element of (1) is added to the third one, the result is
(0.707 + 0.334) × 213

= 1.041 × 213, but then the mantissa
is larger than 1 and this would cause an overflow, so before the
addition the numbers are downscaled:

X = [0.035 0.167 0.354 0.022 . . . 0.001] × 214 (2)

Now (0.167+0.354)×214
= 0.521×214 so the result’s mantissa

is less than 1. The roundoff due to downscalings (discarding or
rounding the rightmost bit) can be considered as adding noise
(the error term) to the exact value.

Welch gave an upper bound for the error of the fixed-point
FFT output, assuming rescaling at each stage:
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In this equation M= log2 N , B is the number of fraction bits, and

C is a constant between 0.4 and 0.9 (depending on the signal
shape). Therefore, hmax is equal to:
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This formula was verified by using simulations, with B=17.
We have reproduced these simulation results for the FFT of a
series of random numbers in (0, 1), then in (−1, 1). These two
cases are significantly different, because in the first case the in-
put has a nonzero mean value and this causes many more down-
scalings than zero mean noise does. The runs confirmed the the-
oretical formula as an upper bound. In the first case, the noise-
to-signal ratio (NSR) increased proportionally with log(N ), as
it is expected from (3). Welch defined the NSR for the whole
spectrum (a possible alternative is to calculate the NSR only for
the bin where the sine appears).

3 New results for a pure sine wave
Simulation was also done with the pure sine wave also used

by Welch (the input signal was x[k] = sin(2 · π · k/8), k =

0 . . . N − 1). To our surprise, the simulation gave significantly
different results from Welch’s. Fig. 2 shows Welch’s result, as
the noise-to-signal ratio increases with N . However, in our sim-
ulation h did not increase with

√
N , it was even constant. We

speculate that Welch’s simulations were probably done with a
sine wave somewhat different from the text (maybe some noise
was added).

In order to understand in detail what happens for the FFT of
a pure sine wave, look into Fig. 3. It illustrates the 8-point FFT
of a sine wave. Compare this now to the FFT of N=16 samples
(Fig. 4). For this, the samples for k= 0. . . 7 are repeated for k
= 8. . . 15. Here the second eight outputs of the first stage are
exactly zero because the corresponding sample pairs have to be
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Fig. 3. Sine wave input and 8-point FFT 

 

 
Fig. 4. Sine wave input and 16-point FFT 

 
 

The first eight outputs of the first stage equal two 
times the input samples, because the corresponding sample 
pairs have to be added to together: 

      
X1[k+8] = X0[k] + X0[k+8] = 2 × X0[k]             (5) 

 
The addition causes an overflow because X0[2] = X0[10] = 1 
and X1[2] = X0[2] + X0[10], so the algorithm has to downscale 
the samples, and the block exponent increases by one. At the 
first eight outputs of stage 1 the samples are multiplied by 
two, then they are divided by two, thus nothing happened 
with their value. 
 At the next stages the same operations are made on 
the first eight samples as in the case of the 8-point FFT in Fig. 

2. The 16-point FFT’s first eight output samples are equal to 
the 8-point FFT’s output before rescaling (multiplying the 
outputs value with 2be where ‘be’ is the block exponent’s 
value) , the second 8 outputs are equal to zero, only the block 
exponent is larger by 1 than in the 8 point case. Therefore, the 
same operations cause the same roundoff errors. After 
rescaling, the output’s RMS for the N=16 case is 2 times 
the output’s RMS for the N=8 case. The noise’s RMS for 
N=16 is also 2 times the RMS for N=8, so the noise-to-
signal ratio remains unchanged. It does not depend on the 
number of samples. 
 We also checked the pattern of the roundoff error 
and we found it very regular (Fig. 5). 

Fig. 3. Sine wave input and 8-point FFT

 

 
Fig. 3. Sine wave input and 8-point FFT 

 

 
Fig. 4. Sine wave input and 16-point FFT 

 
 

The first eight outputs of the first stage equal two 
times the input samples, because the corresponding sample 
pairs have to be added to together: 

      
X1[k+8] = X0[k] + X0[k+8] = 2 × X0[k]             (5) 

 
The addition causes an overflow because X0[2] = X0[10] = 1 
and X1[2] = X0[2] + X0[10], so the algorithm has to downscale 
the samples, and the block exponent increases by one. At the 
first eight outputs of stage 1 the samples are multiplied by 
two, then they are divided by two, thus nothing happened 
with their value. 
 At the next stages the same operations are made on 
the first eight samples as in the case of the 8-point FFT in Fig. 

2. The 16-point FFT’s first eight output samples are equal to 
the 8-point FFT’s output before rescaling (multiplying the 
outputs value with 2be where ‘be’ is the block exponent’s 
value) , the second 8 outputs are equal to zero, only the block 
exponent is larger by 1 than in the 8 point case. Therefore, the 
same operations cause the same roundoff errors. After 
rescaling, the output’s RMS for the N=16 case is 2 times 
the output’s RMS for the N=8 case. The noise’s RMS for 
N=16 is also 2 times the RMS for N=8, so the noise-to-
signal ratio remains unchanged. It does not depend on the 
number of samples. 
 We also checked the pattern of the roundoff error 
and we found it very regular (Fig. 5). 

Fig. 4. Sine wave input and 16-point FFT

subtracted from each other:

X1[k + 8] = X0[k] − X0[k + 8] (4)

In the equation X0[k] is an input of the first stage (a sample
of the input signal), and X1[k] is an output of the first stage
(and also an input of the second stage). In the next stages in
the lower half part of the FFT all operations are made on these
zero elements, so the second eight outputs are all exactly equal
to zero.

The first eight outputs of the first stage equal two times the
input samples, because the corresponding sample pairs have to
be added to together:

X1[k + 8] = X0[k] + X0[k + 8] = 2 × X0[k] (5)

The addition causes an overflow because X0[2] = X0[10] = 1
and X1[2] = X0[2] + X0[10], so the algorithm has to downscale
the samples, and the block exponent increases by one. At the
first eight outputs of stage 1 the samples are multiplied by two,
then they are divided by two, thus nothing happened with their
value.

 

 
Fig. 5. Error pattern for pure sine wave and fixed-point 

arithmetic 
 
Our simulations and considerations indicate that strange and 
until now not predicted – although not very large – things 
may happen during the FFT of pure or close-to-pure sine 
waves. Therefore, we have investigated such cases in more 
detail. We start it here with a brief overview of the results of 
the noise model. 
 

IV. INVESTIGATING THE NOISE MODEL OF ROUNDOFF FOR FFT 
OF A SINE WAVE 

 
Rounding errors are usually modeled with 

quantization noise. This noise is signal-independent and 
consists of uncorrelated samples, so it is also called 
independent white noise. Its samples are uniformly distributed 
in (-LSB/2, LSB/2), In order to investigate the effect of this 
noise model, our simulation of roundoff allows substitution of 
each rounding operation by the addition of independent white 
noise. This means that instead of applying rounding as it 
happens in a digital signal processor, a random value is 
generated in (-LSB/2, LSB/2) and added to the result’s exact 
value. By this way we can see how similar is effect of the 
noise model of quantization for a pure sine wave’s FFT with 
block-float number representation.  

Applying the noise model of quantization as above, it is 
found that the noise-to-signal ratio increases indeed with 
log(N). This result corresponds to Welch’s (Fig. 2.), in 
contrast with our results for the true fixed-point roundoff of a 
sine wave. An explanation for the NSR’s behavior for the 
noise model can be given as follows. Let us check how the 
roundoff noise, added at each stage to the signal, applies to 
the FFT’s output. Due to the downscalings throughout the 
algorithm, the noise added to signal in earlier stages has much 
less effect to the output than the noise added in later stages. 
So it is a reasonable approximation to consider only the noise 
which is added in the last stage, and we neglect the noises 
added earlier. The NSR clearly does not depend on scaling 
(the DFT of a coherently sampled sine is the same in the 
mantissa, independently of N). The total power of the noise 

added to the mantissas is proportional to N. Thus, the NSR is 
proportional to log(N). In conclusion, the results expected 
from (1) have been obtained. This gives rise to the following 
implications: 

• Welch’s calculations assuming the noise model of 
roundoff are correct, 

• for a pure sine wave the noise model (PQN) 
assumption is not correct, 

• the simulations of Welch probably included an 
unknown factor (probably some input noise was 
added). 

 
Fig. 6. N/2 and N point FFT result for a sine wave input, 

and the added noise at the last stage 
 
V. STRANGE CASES FOR NONCOHERENTLY SAMPLED PURE SINE 

WAVE 
 

The previous simulations were made with coherent 
sampling, so we got an integer number of cycles. For a pure 
sine wave the roundoff error behaves regularly, its pattern is 
absolutely not noise-like (Fig. 5.). If the sampling is not 
coherent, the pattern of the error is more noise-like. In further 
simulations we study how the errors behave when the 
sampling is almost coherent. It is the border-land between the 
above mentioned two cases. The sampling frequency was 
slightly shifted. On the next figures the amount of the 
frequency shift is given in bin percent. For example if the 
input is the x[i] = sin(2πi/8) and an  N = 1024 point FFT is 
performed, the power of the sine wave appears in the k=128th 
bin. Shifting the sampling frequency by “5 bin%” means that 
the sine wave would “appear” on the k=128.05th “bin”. 
 Simulations were executed to determine how the 
error’s pattern depends on the value of frequency shift. These 
simulations were run using an N=1024-point FFT to collect 
more detailed information. We found that for certain 
sampling frequencies the errors are accumulating at some of 
the outputs, and these error peaks can be unexpectedly high. 
A very bad case can be seen in Figure 7. 

Fig. 5. Error pattern for pure sine wave and fixed-point arithmetic

At the next stages the same operations are made on the first
eight samples as in the case of the 8-point FFT in Fig. 2. The
16-point FFT’s first eight output samples are equal to the 8-point
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FFT’s output before rescaling (multiplying the outputs value
with 2be where ‘be’ is the block exponent’s value), the second
8 outputs are equal to zero, only the block exponent is larger by
1 than in the 8 point case. Therefore, the same operations cause
the same roundoff errors. After rescaling, the output’s RMS for
the N=16 case is

√
2 times the output’s RMS for the N=8 case.

The noise’s RMS for N=16 is also
√

2 times the RMS for N=8,
so the noise-to-signal ratio remains unchanged. It does not de-
pend on the number of samples.

We also checked the pattern of the roundoff error and we
found it very regular (Fig. 5).
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sampling, so we got an integer number of cycles. For a pure 
sine wave the roundoff error behaves regularly, its pattern is 
absolutely not noise-like (Fig. 5.). If the sampling is not 
coherent, the pattern of the error is more noise-like. In further 
simulations we study how the errors behave when the 
sampling is almost coherent. It is the border-land between the 
above mentioned two cases. The sampling frequency was 
slightly shifted. On the next figures the amount of the 
frequency shift is given in bin percent. For example if the 
input is the x[i] = sin(2πi/8) and an  N = 1024 point FFT is 
performed, the power of the sine wave appears in the k=128th 
bin. Shifting the sampling frequency by “5 bin%” means that 
the sine wave would “appear” on the k=128.05th “bin”. 
 Simulations were executed to determine how the 
error’s pattern depends on the value of frequency shift. These 
simulations were run using an N=1024-point FFT to collect 
more detailed information. We found that for certain 
sampling frequencies the errors are accumulating at some of 
the outputs, and these error peaks can be unexpectedly high. 
A very bad case can be seen in Figure 7. 

Fig. 6. N/2 and N point FFT result for a sine wave input, and the added noise
at the last stage

Our simulations and considerations indicate that strange and
until now not predicted – although not very large – things may
happen during the FFT of pure or close-to-pure sine waves.
Therefore, we have investigated such cases in more detail. We
start it here with a brief overview of the results of the noise
model.

4 Investigating the noise model of roundoff for FFT of
a sine wave
Rounding errors are usually modeled with quantization noise.

This noise is signal-independent and consists of uncorrelated
samples, so it is also called independent white noise. Its samples
are uniformly distributed in (−LSB/2, LSB/2). In order to inves-
tigate the effect of this noise model, our simulation of roundoff
allows substitution of each rounding operation by the addition
of independent white noise. This means that instead of applying
rounding as it happens in a digital signal processor, a random
value is generated in (−LSB/2, LSB/2) and added to the result’s
exact value. By this way we can see how similar is the effect of
the noise model of quantization for a pure sine wave’s FFT with
block-float number representation.

Applying the noise model of quantization as above, it is found
that the noise-to-signal ratio increases indeed with log(N ). This

result corresponds to Welch’s (Fig. 2), in contrast with our re-
sults for the true fixed-point roundoff of a sine wave. An ex-
planation for the NSR’s behavior for the noise model can be
given as follows. Let us check how the roundoff noise, added
at each stage to the signal, applies to the FFT’s output. Due to
the downscalings throughout the algorithm, the noise added to
signal in earlier stages has much less effect to the output than
the noise added in later stages. So it is a reasonable approx-
imation to consider only the noise which is added in the last
stage, and we neglect the noises added earlier. The NSR clearly
does not depend on scaling (the DFT of a coherently sampled
sine is the same in the mantissa, independently of N ). The to-
tal power of the noise added to the mantissas is proportional to
N. Thus, the NSR is proportional to log(N). In conclusion, the
results expected from (1) have been obtained. This gives rise to
the following implications:

• Welch’s calculations assuming the noise model of roundoff
are correct,

• for a pure sine wave the noise model (PQN) assumption is not
correct,

• the simulations of Welch probably included an unknown fac-
tor (probably some input noise was added).
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The correct output can be seen in Figure 9. (We 
assumed that Matlab’s built-in floating point FFT provides 
the correct result). If the two figures are compared, one can 
see two peaks which are above -20 dB around k=400 and 
k=600 in the fixed-point case, due to roundoff errors. Figure 
10 shows the error for deviations from coherent sampling. 
The deviation is given in bin percent. The other two axes are 
the bins of the FFT and the error’s absolute value. For small 
deviation levels the errors are small and they are concentrated 
to a few points (compare with Fig. 5, the two patterns are 
similar). As the deviation level increases, the error appears at 
more points. Unfortunately at some points the errors are 
accumulating, and become so high that sine wave-like peaks 
appear in the output (0.1875%). This can cause that one can 
observe sine waves which are actually not there. For larger 
deviation levels this accumulation behavior disappears, the 
errors spread to all points of the output, so the noisy-like 
pattern is restored (3%). 
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Fig. 7. Absolute value of the error in a very bad case, N=1024

5 Strange cases for noncoherently sampled pure sine
wave
The previous simulations were made with coherent sampling,

so we got an integer number of cycles. For a pure sine wave
the roundoff error behaves regularly, its pattern is absolutely not
noise-like (Fig. 5). If the sampling is not coherent, the pattern
of the error is more noise-like. In further simulations we study
how the errors behave when the sampling is almost coherent. It
is the border-land between the above mentioned two cases. The
sampling frequency was slightly shifted. On the next figures
the amount of the frequency shift is given in bin percent. For
example if the input is the x[i] = sin(2π i/8) and an N = 1024

Per. Pol. Elec. Eng.182 Vilmos Pálfi / István Kollár



point FFT is performed, the power of the sine wave appears in
the k=128th bin. Shifting the sampling frequency by “5 bin%”
means that the sine wave would “appear” on the k=128.05th
“bin”.

Simulations were executed to determine how the error’s pat-
tern depends on the value of frequency shift. These simulations
were run using an N=1024-point FFT to collect more detailed
information. We found that for certain sampling frequencies the
errors are accumulating at some of the outputs, and these error
peaks can be unexpectedly high. A very bad case can be seen in
Fig. 7.
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Fig. 9. The exact FFT result

The correct output can be seen in Fig. 9. (We assumed that
Matlab’s built-in floating point FFT provides the correct result).
If the two figures are compared, one can see two peaks which are
above −20 dB around k=400 and k=600 in the fixed-point case,
due to roundoff errors. Fig. 10 shows the error for deviations
from coherent sampling. The deviation is given in bin percent.
The other two axes are the bins of the FFT and the error’s ab-
solute value. For small deviation levels the errors are small and

they are concentrated to a few points (compare with Fig. 5, the
two patterns are similar). As the deviation level increases, the
error appears at more points. Unfortunately at some points the
errors are accumulating, and become so high that sine wave-like
peaks appear in the output (0.1875%). This can cause that one
can observe sine waves which are actually not there. For larger
deviation levels this accumulation behavior disappears, the er-
rors spread to all points of the output, so the noisy-like pattern
is restored (3%).
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Next we compared these results with results assuming the 
noise model of roundoff. The absolute value of the FFT’s 
output is Rayleigh distributed. Let us find the value X for 
which the probability is 99% that every peak of the noise FFT 
is smaller than X. The FFT’s result is symmetric, so it 
contains about N/2 independent random variables. We neglect 
the variable at the sine wave’s frequency, and also the DC 
component, so we calculate with 510 variables. P is the 
probability of one peak belonging to the quantization noise is 
less then X. We also assumed independent variables. This 
means: 
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In equation 7. and equation 8. σ2 is the variance of the random 
variables. This value X can be seen in Fig. 11. as a horizontal 
black line. In a very bad case the dynamic range (the range of 
a properly detectable sine wave) can be less by 7 dB than its 
estimated value using the noise model of roundoff. 
 

 
Fig. 11. Maximum value of error peaks compared with the 

estimated value using the noise model of roundoff 
 

In previous simulations we stored the numbers on 16 
bits. We also checked behavior of the roundoff error when the 
number of fraction bits is increased. We found that if the 
number of bits is increased by one, a smaller frequency shift 

value is needed to reach a similar “very bad case”, and the 
maximum value of the error caused by the error accumulation 
is halved. When the number of fraction bits is increased by 
one, the value of LSB is less. So if we apply the noise model 
in simulations the amount of the added noise is also halved. 
This means that the 7 dB loss in the dynamic range does not 
depend on the number of fraction bits. Fig. 12 shows the 
logarithm of the error’s maximum for different bit lengths. 
Simulations were run for 16, 17, 18, 24, and 32 bits (denoted 
by the circles). It is easy to fit a line to these points, so the 
error’s maximum can be calculated easily for other bit lengths 
(denoted with the squares). 

 

 
Fig. 12. The maximum of the error for different bit 

lengths 
 

VI. NONCOHERENTLY SAMPLED SINE WAVE WITH FLOATING-
POINT ARITHMETIC 

 
After these unexpected results we studied the pattern of the 
roundoff error with floating-point number representation. 
Floating-point numbers consist of three parts: sign, mantissa, 
exponent. We ran simulations using IEEE single precision 
number format. An IEEE single-precision number has 1 sign 
bit, 8 exponent bits and 23 mantissa bits, its precision is 24 
because of the hidden leading bit [1]. N=1024 point FFT-s 
were executed to collect more detailed information. Before 
the simulations we expected less roundoff error than in the 
fixed point case, because the floating point arithmetic stores 
the exponent for all numbers. The unique exponent for every 
number means there is no need to downscale all numbers 
when an element of the array is re-quantized (e. g. rounded 
after a multiplication). So first we thought that the error 
would be distributed (more or less) uniformly among the 
1024 outputs, and there would not be spectacularly 
outstanding peaks. 

Fig. 11. Maximum value of error peaks compared with the estimated value
using the noise model of roundoff

Next we compared these results with results assuming the
noise model of roundoff. The absolute value of the FFT’s output
is Rayleigh distributed. Let us find the value X for which the
probability is 99% that every peak of the noise FFT is smaller
than X . The FFT’s result is symmetric, so it contains about N/2
independent random variables. We neglect the variable at the
sine wave’s frequency, and also the DC component, so we cal-
culate with 510 variables. P is the probability of one peak be-
longing to the quantization noise less then X . We also assumed
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independent variables. This means:

P510
= 0.99, P =
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0.99 (6)
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In Eqs. (7) and (8) σ 2 is the variance of the random variables.
This value X can be seen in Fig. 11 as a horizontal black line.
In a very bad case the dynamic range (the range of a properly
detectable sine wave) can be less by 7 dB than its estimated
value using the noise model of roundoff.
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In previous simulations we stored the numbers on 16 bits. We
also checked behavior of the roundoff error when the number of
fraction bits is increased. We found that if the number of bits
is increased by one, a smaller frequency shift value is needed
to reach a similar “very bad case”, and the maximum value of
the error caused by the error accumulation is halved. When the
number of fraction bits is increased by one, the value of LSB is
less. So if we apply the noise model in simulations the amount
of the added noise is also halved. This means that the 7 dB loss
in the dynamic range does not depend on the number of fraction
bits. Fig. 12 shows the logarithm of the error’s maximum for
different bit lengths. Simulations were run for 16, 17, 18, 24,
and 32 bits (denoted by the circles). It is easy to fit a line to
these points, so the error’s maximum can be calculated easily
for other bit lengths (denoted with the squares).

6 Noncoherently sampled sine wave with floating-point
arithmetic
After these unexpected results we studied the pattern of

the roundoff error with floating-point number representation.
Floating-point numbers consist of three parts: sign, mantissa,
exponent. We ran simulations using IEEE single precision num-
ber format. An IEEE single-precision number has 1 sign bit, 8

exponent bits and 23 mantissa bits, its precision is 24 because
of the hidden leading bit [1]. N=1024 point FFTs were exe-
cuted to collect more detailed information. Before the simu-
lations we expected less roundoff error than in the fixed point
case, because the floating point arithmetic stores the exponent
for all numbers. The unique exponent for every number means
there is no need to downscale all numbers when an element of
the array is re-quantized (e. g. rounded after a multiplication).
So first we thought that the error would be distributed (more or
less) uniformly among the 1024 outputs, and there would not be
spectacularly outstanding peaks.

Simulation results are surprising again. The error pattern was
very similar to the fixed point case (Fig. 13). On the figure i
is the ordinal number of the simulations. Instead of uniformly
distributed error power there are still special output bins where
the significant part of the error is accumulating. It is also no-
ticeable that two of these special bins (the two in the middle)
are far away from the frequency of the sine wave. To find a
really bad case with higher error peaks we generated random
frequency shift values and ran another 3000 simulations. Next
we compared these results with result assuming the noise model
of roundoff. A floating point number’s variance is about var{ν}
≈ 0.180 · 2−p

· var{x}, with p the precision and x the signal
[1], and it is uncorrelated with the signal, and it is white. The
absolute value of the Fast Fourier Transform’s roundoff error is
Rayleigh distributed. X is the value for which the probability is
99.9% that every peak of the roundoff error is smaller than X .
In the case of N=1024 point FFT this means that only one error
peak is expected to be larger than the X value. This X value
can be seen on Fig. 14 as the horizontal line. In a very unfor-
tunately situation 15 dB loss can be experienced in the dynamic
range when compared to the noise model. It is really surprising,
mainly because the maximum loss found in the fixed-point case
is 7 dB.

The conclusion is that for pure or almost pure sine waves the
roundoff error could behave irregularly if the input is noiseless.
This special behavior does not depend on the number format
(floating point or fixed point). The high peaks due to quantiza-
tion noise can appear far away from the frequency of the sine
wave. The exact frequency cannot be predicted, so the FFT’s
output should be used with some extra care. To our experience,
these unwanted peaks disappear even for proper input dither. By
adding noise in [−8LSB,+8LSB] (where LSB is the least signif-
icant bit) to the signal the high error peaks disappear from the
output. So sometimes noisy input causes less disturbing round-
off error. Another noticeable conclusion is that the noise model
of quantization is not as universal as we thought.
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Fig. 13. Error’s absolute value on different frequency shift values for N=1024 point FFT with IEEE single precision 
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Fig. 14. Maximum value of error peaks compared with the estimated value using the noise model of roundoff 
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