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Abstract

The paper gives an overview of the analysis methods ap-

plied by electronic failure analysis laboratories for detection,

localization and in depth analysis of solder joint failures. The

paper focuses on failures that arise during the soldering pro-

cess. Besides the analysis methods case studies and a few fail-

ure modes together with their inspection and root causes are

also described. Optical microscopy is used for sample doc-

umentation and failure localization. X-ray microimaging can

be applied to non-destructively inspect hidden joints i.e. BGA

(ball grid array), flip-chip, CSP (chip scale package) bump and

micro-wire. It can be also used to measure the amount of sol-

der or voids in the joints. Inspection of PWB (printed wiring

board) tracks and via metallization can also be carried out by

these systems. SAM (scanning acoustic microscopy) is an ef-

fective tool to detect and to visualize delaminations or cracks

inside electronics packages or assemblies. As failures are in

most cases retraceable to material or compositional problems,

SEM (scanning electron microscopy) together with electron mi-

croprobe analysis can be applied to find the root cause of fail-

ures.

Thorough analysis of a broken solder joint, wetting problem

of cut surfaces, delamination and insufficient through-hole sol-

der joints are presented in the paper. By these case studies not

only the failure analysis procedure can be demonstrated, but

also the root causes of these failures are revealed.
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1 Introduction

The electronics manufacturing industry applies more and

more technologies together to fulfil the demands of the ever in-

creasing functional integration of electronic devices. The devel-

opment of portable electronics in the last decade was only real-

izable by chip scale packaging technology and by the reduction

of the size of the passive components. The reliable production

of these joints is a key issue of the electronic industry. Therefore

companies apply AOI (automated optical inspection), AXI (au-

tomated X-ray inspection) and various electrical tests (ICT – in

circuit test) to fulfil the ever increasing quality control needs of

the market. The inspection methods applied in or off the produc-

tion line are sufficient to filter the defective units out, but these

techniques usually do not go further than recognition and pos-

sible failure localization. In order to understand the root cause

of such failures, in-depth analysis is necessary. The aim of this

paper is to show the methods and the processes by which the

root cause of production failures can be revealed.

Reliability of solder joints has been extensively studied, espe-

cially in the last few years as new lead-free materials had to be

introduced. It has been shown that isothermal ageing at elevated

temperature increases the intermetallic layer, thus reduces the

mechanical strength of the joints [1]. Kim et al have proven that

thermal shock tests also induce intermetallic thickness growth,

which results in reduced bonding strength [2]. Gong et al have

shown that the residual stresses in solder joints are influenced

by the reflow profile [3], the microstructure of the joints also

depends on the cooling rate applied in reflow ovens [4]. It has

been shown that the reflow profile influences the fatigue life of

the solder [5]. As it can be seen from the previous few examples

the long term reliability and the influence of the manufacturing

process on the life of the solder joints have been a subject of

many scientific studies. However the failures arising during the

soldering process and their root causes are not described in de-

tail in any of these papers. The authors hope, that they can start

to fill this gap, by describing the most important inspection tech-

niques and methodology applied in this field of failure analysis

via several case studies.
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translation stages, which move the transducers, provide lateral resolution down to 
10 µm.  

3. Case studies 
Through the following four case studies the application of the above described 
analysis techniques and the methodology of solder joint failure analysis can be 
presented. All of the described failures were detected by one of the inspections 
during the manufacturing process and were sent to BME-ETT for further, in-depth 
analysis to reveal the root cause of these failures.  

3.1 Broken solder joint 
The two solder joints of an SMD diode were found broken on an assembled circuit 
(see Fig. 3.). The aim of the analysis was to reveal what reasons could have led to 
the low joint strength. 

a. 
 

b. 

Fig. 3. a.) Broken of SMD diode; b.) Corresponding pads on the PCB 
By optical and scanning electron microscopic analysis even (Fig. 4/a.) and rough 
(Fig. 4/b.) fracture surfaces could be observed. EDX analysis revealed compositional 
differences between these two regions. Where rough fracture occurred the tin-lead 
ratio was eutectic, while in the even areas the relative tin content was higher, 
70.25 weight%.  
The even surfaces indicate that no proper joint formed, that in these regions no 
mechanical contact was present between the pad and the component terminal. 
Relatively high amount of voids was also present in the rough areas, which also 
decreased the strength of the joint. Since no contamination was detected, the reason 
of such improper joint formation may have been in the reflow temperature profile 
[11]. Especially as the component is placed between two large heat sinks, the 
temperature in this region could be lower than in other areas of the PCB, thus the 
short time a solder in liquid form will not have permitted proper joint and 
intermetallic formation.  
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pads from 
where the 
component 
broke off 

Fig. 1. X-ray micrographs of a step motor

a.) without tilted detector the pin and the coil can be seen

b.) with tilted detector a solder ball behind the coil can be observed (the dot in

the cross-hairs in the left bottom corner of the figure indicate the detector tilt

angle)

 
Fig. 2. Spectacular and interpretable C-scan images can be produced from

different depth of the sample by choosing adequate time gates or windows of the

A-scan time diagram.

2 Experimental

This section introduces and describes the methods and equip-

ments applied for electronic failure analysis inspections. The

described equipments are used by the authors during their ev-

eryday research work.

2.1 Optical microscopy and microsectioning

First and foremost the state of every sample has to be in-

spected by optical microscopy. This is not only necessary for

deciding the further analysis methods to be done, but also im-

portant to document the state of the sample as received [6].

Two types of optical microscope were applied for the anal-

yses described in the 3 section: Olympus SZX9 stereo micro-

scope and Olympus BX51 upright microscope. These two types

of microscope are usually needed for a complex analysis. The

stereo microscope provides a sufficient field of view and depth

of focus for the investigation of assembled printed circuits. In

this case up to several mm height differences can be present be-

tween the level of the pad surfaces and the top of the solder joints

on the component terminals. However the achievable magnifi-
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cation with these systems is rarely above 100x, so they cannot

fulfil the needs of the metallographic analysis of the microsec-

tioned solder joints. For such purposes upright or inverted mi-

croscopes can be used. The working distance of the objectives

and thus the depth of focus can be as low as a few 0.1 mm, but

the magnification can go up to 1000x.

2.2 SEM – Scanning Electron Microscopy

Scanning electron microscopy is a widely used and well

known technique, which provides magnifications up to several

10.000x while the depth of field can remain in the mm range. All

this is achieved while an electron beam is scanned across the sur-

face of the sample. As the electrons strike the sample, a variety

of signals are generated i.e. secondary and back scattered elec-

trons, characteristic X-ray, Auger electrons and bremsstrahlung.

Secondary electrons (SE) are detected only from the top 5-

50 nm of the sample, so a very high resolution image can be pro-

duced where the surface morphology can be observed in great

detail. Back scattered electrons (BSE) are bounced back from

the nuclei. The information depth, which depends on the atomic

number and the accelerating voltage, is in the µm range. The

contrast in the produced image is determined by the atomic num-

ber of the elements in the sample. The image will therefore show

the distribution of different chemical phases in the sample. Be-

cause these electrons are emitted from up to a few µm depth of

the sample, the resolution in the image is not as good as with

secondary electrons.

Interaction of the primary beam with atoms in the sample

can cause shell transitions which result in the emission of X-

ray characteristic of the given element. Detection and measure-

ment of the energy permits elemental analysis (Energy Disper-

sive X-ray Spectroscopy or EDS or EDX). EDX can provide

rapid qualitative, or with adequate standards, quantitative anal-

ysis of elemental composition with a sampling depth and lateral

resolution of 1-2 µm. X-rays may also be used to form maps

or line profiles, showing the elemental distribution in a sample

surface [6–9].

A Philips XL-30 SEM was applied in the later described in-

spections.

2.3 X-ray microstructure inspection

X-ray inspection systems are widely used by electronics man-

ufacturers in or off the production line to control the quality of

hidden solder joints of BGA, CSP, QFN (quad flat no-lead), and

flip-chip components. The imaging method is always transmis-

sive, the sample being placed between the X-ray source and the

detector. The X-ray absorption of the materials that make up

an electronic device is different thus the detected X-ray inten-

sity can be converted to a grey scale image, where the darker

areas indicate higher absorption regions. The image can later be

post-processed to generate more spectacular or interpretable vi-

sualizations. The latest systems can even produce 3D CT (com-

puter tomography) images, which can be interpreted by less ex-

perienced users as well. The possibility to view a sample from

different angles is not only necessary for 3D images, but also

in traditional imaging technologies, since the shape of solder

bumps, the position of a broken net in a multilayer structure,

via metallization can only be qualified in tilted images. A bulky

component can also block the X-rays. Thus to inspect features

below them tilted views are desirable, as it can be seen in Fig. 1.

Automation features i.e. amount of voids, circularity analysis

of bumps are available. However the identification of failures

(opens, shorts, solder meniscus problems, improper wire bond-

ings) still needs human control [6].

A Dage XiDAT6600 X-ray microstructure inspection system

was applied to the analyses described below. The main parame-

ters of the system are:

• open X-ray tube

• W target

• accelerating voltage up to 160 kV

• movable detector: up to 45˚ tilt angle and complete 360˚ ro-

tation around axis Z

2.4 SAM – Scanning Acoustic Microscopy

SAM is a non-destructive imaging method for evaluating in-

ner structure failures. It is based on two important properties of

the ultrasound:

• sound waves can be focused,

• a portion of the waves reflects at the boundaries of different

materials.

In general, scanning acoustic microscopy is used in micro-

electronics materials research, product development, production

process control, quality assurance and failure analysis. Some

examples for the defects that can be detected with SAM:

• die crack, die tilting, voids and cracks in the packaging mate-

rial of plastic encapsulated ICs

• delamination of the packaging material from the die, from the

leads or from the die-pad

• voids in the underfilling material of flip chips, CSPs and

BGAs

• harmful voids in the hermetic sealing of ceramic packages

• flaws in TAB tapes, PWBs.

A scanning acoustic microscope can be used in pulse echo or

through transmission modes. The inspection signal pulse is gen-

erated by a transducer, which can afterwards act as receiver to

detect the reflected echoes. The transmitted signal can be used to

check the data of the reflected image, but unlike the echo it does

not provide depth information. To characterize the propagation

of sound waves in a certain material, the acoustic impedance (Z)

is introduced. ‘Z’ is the product of the sound’s velocity (c) in
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translation stages, which move the transducers, provide lateral resolution down to 
10 µm.  

3. Case studies 
Through the following four case studies the application of the above described 
analysis techniques and the methodology of solder joint failure analysis can be 
presented. All of the described failures were detected by one of the inspections 
during the manufacturing process and were sent to BME-ETT for further, in-depth 
analysis to reveal the root cause of these failures.  

3.1 Broken solder joint 
The two solder joints of an SMD diode were found broken on an assembled circuit 
(see Fig. 3.). The aim of the analysis was to reveal what reasons could have led to 
the low joint strength. 

a. 
 

b. 

Fig. 3. a.) Broken of SMD diode; b.) Corresponding pads on the PCB 
By optical and scanning electron microscopic analysis even (Fig. 4/a.) and rough 
(Fig. 4/b.) fracture surfaces could be observed. EDX analysis revealed compositional 
differences between these two regions. Where rough fracture occurred the tin-lead 
ratio was eutectic, while in the even areas the relative tin content was higher, 
70.25 weight%.  
The even surfaces indicate that no proper joint formed, that in these regions no 
mechanical contact was present between the pad and the component terminal. 
Relatively high amount of voids was also present in the rough areas, which also 
decreased the strength of the joint. Since no contamination was detected, the reason 
of such improper joint formation may have been in the reflow temperature profile 
[11]. Especially as the component is placed between two large heat sinks, the 
temperature in this region could be lower than in other areas of the PCB, thus the 
short time a solder in liquid form will not have permitted proper joint and 
intermetallic formation.  
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Fig. 3. a. Broken off SMD diode;b. Corresponding pads on the PCB

a. 
 

b. 
Fig. 4. High magnification back scattered electron micrograph of the even (a) and the rough 

(b) fracture surfaces of the solder joint.  
 

3.2 Wetting problems of cut surfaces 
Component manufacturer usually use copper as base material for lead frames, heat 
sinks and die pads.  These are coated by tin or tin-lead to enable the solderability of 
the component leads. For technological reason the components are batch processed 
in the same lead frame and they are only cut out at the end of the manufacturing 
process. Thus the cut surface on the front of the leads is not covered with tin and can 
cause wetting problems as shown in Fig. 5.  
The surface without coating was not wettable, so the complete amount of solder 
wetted the bottom of the cold plate and cannot be observed in the images. The high 
amount of organic material around the cold plate are flux residues. Such wetting 
problems can be due to either component storage condition or low flux activation. 
 

a. 
 

b. 
Fig 5. Wetting problem of a FET cold plate.  

a.) Optical microscopic image of two FETs. No solder fillet can be observed on the left 
hand side. b.) BSE-SEM micrograph of the defective solder joint. The bare copper cut 

surface can be observed. 
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Fig. 4. High magnification back scattered electron micrograph of the even (a) and the rough (b) fracture surfaces of the solder joint.

a. 
 

b. 
Fig. 4. High magnification back scattered electron micrograph of the even (a) and the rough 

(b) fracture surfaces of the solder joint.  
 

3.2 Wetting problems of cut surfaces 
Component manufacturer usually use copper as base material for lead frames, heat 
sinks and die pads.  These are coated by tin or tin-lead to enable the solderability of 
the component leads. For technological reason the components are batch processed 
in the same lead frame and they are only cut out at the end of the manufacturing 
process. Thus the cut surface on the front of the leads is not covered with tin and can 
cause wetting problems as shown in Fig. 5.  
The surface without coating was not wettable, so the complete amount of solder 
wetted the bottom of the cold plate and cannot be observed in the images. The high 
amount of organic material around the cold plate are flux residues. Such wetting 
problems can be due to either component storage condition or low flux activation. 
 

a. 
 

b. 
Fig 5. Wetting problem of a FET cold plate.  

a.) Optical microscopic image of two FETs. No solder fillet can be observed on the left 
hand side. b.) BSE-SEM micrograph of the defective solder joint. The bare copper cut 

surface can be observed. 
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Fig. 5. Wetting problem of a FET cold plate.

a. Optical microscopic image of two FETs. No solder fillet can be observed on

the left hand side.

b. BSE-SEM micrograph of the defective solder joint. The bare copper cut

surface can be observed.

the material and the density (ρ) of the material. As ultrasonic

waves propagate from one material into the other the acoustic

impedance changes suddenly at the interface. Because of this

sudden change, a portion of the waves’ energy is reflected from

the boundary. As the wave propagates from a material with Z1

acoustic impedance into one with Z2, the amount of reflected (R)

and transmitted (T) energies can be calculated from the acoustic

impedances [10]:

R =
Z2 − Z1

Z1 + Z2

(1)

T =
2 · Z1

Z2 + Z1

= 1− R (2)
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3.3 Detection of delamination 
X-ray microscopy is a sufficient tool to quantify the amount of voiding and to 
analyze the shape of hidden (or not hidden) solder joints. However it is not capable 
of detecting cracks or delaminations, since these features do not produce X-ray 
absorption differences. In Fig. 6. SAM and X-ray micrographs of two QFPs can be 
seen. This component needs extensive cooling, thus its bottom is soldered to a rivet, 
and the solder joint areas are indicated by the circles. The darker region in the 
middle is the rivet itself, while the solder joint is larger in diameter.  

a. 
 

b. 

c. 
 

d. 

Fig. 6. Comparison of X-ray and acoustic micro imaging.  
a.) SAM micrograph – good sample, no delamination;  

b.) X-ray micrograph – good sample 
c.) SAM micrograph – bad sample, delamination in the centre;  
d.) X-ray micrograph – bad sample, no defect can be detected 

Fig. 6. Comparison of X-ray and acoustic micro imaging.

a. SAM micrograph – good sample, no delamination;

b. X-ray micrograph – good sample

c. SAM micrograph – bad sample, delamination in the centre;

d. X-ray micrograph – bad sample, no defect can be detected

In acoustic microscopic terminology the ultrasound signal de-

tected above one point of the sample is called A-scan. A typical

waveform can be seen in Fig. 2. The first wave corresponds

to the reflection on the top of the package, and then the ultra-

sound travels undisturbed until it reaches the top of the silicon

die. The third wave is not separated too far from the second as it

is produced by the reflection from the die attach layer. So called

C-scan images can be produced by selecting a time gate on the

A-scan and scanning the whole area of the sample. The grey

scale of each point on the C-scan is proportional to the highest

amplitude within the chosen time gate. This way a “horizontal

cross-section” of the sample can be made non-destructively, as

long as immersion into the coupling material, de-ionized water,

does not harm it.

A Sonix HS 1000 type SAM was applied to the analyses de-

scribed later. A wide range of transducers from 10 to 300 MHz

can be applied with this system. The translation stages, which

move the transducers, provide lateral resolution down to 10 µm.

3 Case studies

Through the following four case studies the application of

the above described analysis techniques and the methodology

of solder joint failure analysis can be presented. All of the de-

scribed failures were detected by one of the inspections during

the manufacturing process and were sent to BME-ETT for fur-

ther, in-depth analysis to reveal the root cause of these failures.

3.1 Broken solder joint

The two solder joints of an SMD diode were found broken on

an assembled circuit (see Fig. 3). The aim of the analysis was to

reveal what reasons could have led to the low joint strength.

By optical and scanning electron microscopic analysis even

(Fig. 4a.) and rough (Fig. 4b.) fracture surfaces could be ob-

served. EDX analysis revealed compositional differences be-
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The component shown above (Fig. 6/a, b) passed the load test, while the one below 
(Fig. 6/c, d) failed due to overheating. The X-ray images do not show significant 
difference between the two components, while the C-scan acoustic micrographs 
reveal the reason of the insufficient cooling of the lower component. The solder joint 
is delaminated from the bottom of the component, which is indicated by the bright 
area in the middle. 

3.4 Insufficient through-hole solder joints 
The optical microscopic inspection (Fig. 7/a.) showed no solder fillet at one of the 
three pins of a through-hole component. The X-ray analysis revealed that the solder 
is missing from the whole length of the hole, since a very bright area can be seen 
where it is marked by the arrow in Fig. 7/b.  

a. 
 

b. 

c. 
 

d. 

Figure 7. a.) Optical microscopic image of the non-wetted pin; b.) X-ray micrograph, the 
solder did not completely fill the via; c.) SEM micrograph, high amount of contamination 

can be seen around the non-wetted pin; d.) The arrows indicate solder flags on other pins of 
the same PCB. 

 
SEM-EDX analysis showed significantly higher amount of organic material on and 
around the non-wetted pin as at the others. Based on this one could suspect that the 

Fig. 7. a. Optical microscopic image of the non-wetted pin; b. X-ray mi-

crograph, the solder did not completely fill the via; c. SEM micrograph, high

amount of contamination can be seen around the non-wetted pin; d. The arrows

indicate solder flags on other pins of the same PCB.

tween these two regions. Where rough fracture occurred the

tin-lead ratio was eutectic, while in the even areas the relative

tin content was higher, 70.25 weight%.

The even surfaces indicate that no proper joint formed, that in

these regions no mechanical contact was present between the

pad and the component terminal. Relatively high amount of

voids was also present in the rough areas, which also decreased

the strength of the joint. Since no contamination was detected,

the reason of such improper joint formation may have been in

the reflow temperature profile [11]. Especially as the compo-

nent is placed between two large heat sinks, the temperature in

this region could be lower than in other areas of the PCB, thus

the short time a solder in liquid form will not have permitted

proper joint and intermetallic formation.

3.2 Wetting problems of cut surfaces

Component manufacturer usually use copper as base material

for lead frames, heat sinks and die pads. These are coated by tin

or tin-lead to enable the solderability of the component leads.

For technological reason the components are batch processed in

the same lead frame and they are only cut out at the end of the

manufacturing process. Thus the cut surface on the front of the

leads is not covered with tin and can cause wetting problems as

shown in Fig. 5.

The surface without coating was not wettable, so the complete

amount of solder wetted the bottom of the cold plate and cannot

be observed in the images. The high amount of organic material

around the cold plate are flux residues. Such wetting problems

can be due to either component storage condition or low flux

activation.

3.3 Detection of delamination

X-ray microscopy is a sufficient tool to quantify the amount

of voiding and to analyze the shape of hidden (or not hidden)

solder joints. However it is not capable of detecting cracks or

delaminations, since these features do not produce X-ray ab-

sorption differences. In Fig. 6. SAM and X-ray micrographs of

two QFPs can be seen. This component needs extensive cooling,

thus its bottom is soldered to a rivet, and the solder joint areas

are indicated by the circles. The darker region in the middle is

the rivet itself, while the solder joint is larger in diameter.

The component shown above (Fig. 6a, b) passed the load test,

while the one below (Fig. 6/c, d) failed due to overheating. The

X-ray images do not show significant difference between the two

components, while the C-scan acoustic micrographs reveal the

reason of the insufficient cooling of the lower component. The

solder joint is delaminated from the bottom of the component,

which is indicated by the bright area in the middle.
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3.4 Insufficient through-hole solder joints

The optical microscopic inspection (Fig. 7a.) showed no sol-

der fillet at one of the three pins of a through-hole component.

The X-ray analysis revealed that the solder is missing from the

whole length of the hole, since a very bright area can be seen

where it is marked by the arrow in Fig. 7b.

SEM-EDX analysis showed significantly higher amount of

organic material on and around the non-wetted pin as at the oth-

ers. Based on this one could suspect that the wetting problem

was caused by contaminations. However this cannot explain

why no solder can be found inside the half of the hole. Observ-

ing other pins on the same PCB solder flags can be discovered as

in Fig. 7/c. The presence of these solder flags indicates that the

separation from the selective solder wave was not optimal, thus

it could not only form such spikes but could also suck back too

much solder from the defective pin, even removing most of the

solder from inside the via. The detected organic contamination

is most probably flux residue.

4 Conclusions

Besides the research of long term reliability of solder joints,

the analysis of failures arising during the manufacturing pro-

cess is also necessary. The failures can be filtered out in the

production line by AOI, AXI and ICT. For in depth analysis to

understand the failure and its root cause further techniques are

needed. The methodology applied by the authors is:

1 Optical microscopic inspection to localize, characterize and

document the failure.

2 X-ray microimaging to non-destructively inspect the shape,

solder and void amount of hidden and not hidden joints.

3 SAM can be applied when delaminations or cracks are sus-

pected to be present.

4 SEM-EDX analysis can reveal problems that can be deduced

to contaminations, oxidations or other compositional failures.
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