
Ŕ periodica polytechnica

Electrical Engineering

52/1-2 (2008) 45–57

doi: 10.3311/pp.ee.2008-1-2.06

web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Embedded thick-film resistors applied

in low temperature co-fired ceramic

circuit substrates

Eszter Horváth

Received 2008-07-22

Abstract

The materials that are used to create low temperature co-

fired ceramics (LTCC) circuits (produced from green tape and

various pastes) can be processed by the equipment of the con-

ventional thick-film technology (screen printing machine, drying

and burning ovens). The equipment needed to produce multi-

layer boards (sinter press, tools, punching machine or Nd-YAG

laser) can be purchased with a little investment. At the same

time the high temperature co-fired ceramics (HTCC) technology

requires completely new equipment, so the changeover is harder

and more expensive. An LTCC test-circuit was designed and

realized by using the thick-film technology equipment at the De-

partment of Electronics Technology, BME. The surface and em-

bedded resistors were made from thick-film paste. In the course

of the realization and with circuit measurements it could be de-

termined what have to be considered at the pre-calculation of

the resistor values.
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1 Introduction

Nowadays the integration and miniaturization of passive cir-

cuits have lagged significantly in developments in electronic cir-

cuits.

There was a growing need of a technology, where – as in

the HTCC (High Temperature Co-fired Ceramics) technology

– multilayer routings and ceramic structures could be made, but

at the same time the equipment of thick-film technology could

be used for production. LTCC technology evolved from HTCC

technology combined the advantageous features of thick-film

technology. The aim was to produce a low loss, high opera-

tional speed and highly integrated carrier with the equipment of

thick-film RC circuits. That is how the LTCC (Low Temperature

Co-fired Ceramics) technology came into existence.

Since the mid 1990s LTCC have successfully entered the mar-

ket. The LTCC technology has provided a much needed advance

in the miniaturization of devices, however materials used in the

past required firing temperatures that were too high to allow the

use of highly conductive and low loss materials essential for

superior performance. In addition, a serial processing was re-

quired in the circuit construction, resulting in long manufactur-

ing times. Hence LTCC materials found limited applications.

In the last few years the increase in the level of functions re-

quired of wireless communications has necessitated the use of

higher frequency ranges. Also demands of consumers for faster,

smaller, and cheaper communication devices have put pressure

on the wireless communications market to integrate passive ele-

ments and resulted in significant advances in manufacturing and

properties of 3D LTCC circuits. All layers can be now processed

in parallel, reducing the production cost and time [1, 2].

Currently, thick film printing is still the most commonly used

technique to pattern LTCC substrates. Thick film printing is a

well-established technology that is suitable for high volume pro-

duction at relatively low cost.

The base materials of the green tape (raw ceramic sheet) are

∼45% aluminium-trioxid (Al2O3); ∼40% cordierite (2MgO2-

Al2O3-5SiO2), or MgO mixed with SiO2 and∼15% Pb2O5 and

Ba2O3 additives, in other words the recrystallized glass and ad-

ditives have appeared along ceramic dust. These materials have
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Fig. 1. Main steps of LTCC manufacturing [6]

greater permittivity compared to other organic materials. The

ingredients containing glass are responsible for the density of

the substrate after co-firing. Too little glass causes reduction of

the density, too much glass results in bubble-formation in the

course of firing organic materials.

The low firing temperature of the glass ceramics allows the

construction of conductive materials (Au; Ag; PdAg; CuO), re-

sistive and dielectric composition into embedded layers. The in-

organic ingredients of the compositions dissolve into the green

sheet in a sort in the course of firing and the green sheet shrinks.

The manufacturers fit their compositions to the thermal expan-

sion of their own green sheets, so at sintering they shrink to-

gether.

LTCC allow three-dimensional circuits to be constructed

within a ceramic block that enables burying of passive elements:

resistors; inductors and capacitors; in addition it is possible to

create thick-film circuits on their surface. The process flow is

similar to the manufacturing technology of hybrid integrated

RC circuits, the equipment used for thick-film process can be

used for LTCC production after minor modifications. Fig. 1

shows the main steps of the LTCC manufacturing, Fig. 2 shows

the structure of a complex circuit realized with the technology

[3–5].

The LTCC substrate can be fired at a relative low tempera-

ture (T≈850 ˚C) in an oxygen-rich environment due to low al-

kali glass dust, so thick-film pastes and materials can be used

that are not applicable to HTCC boards because of the high

firing temperature. The manufacturing of LTCC substrate is

almost equal to manufacturing of thick-film substrate and the

changeover does not need a huge investment. Unlike in the

thick-film technology – where the different layers have to be

printed and fired after each other – the LTCC technology allows

all of the layers to be processed at the same time before lami-

nation. Pastes using to LTCC technology are usually colloidal

structures and consist of three main components:

– Functional phase dust

– Dust using adhesives: glass (pl. borosilicate-glass) or metal-

 
Fig. 2. Complex LTCC circuit structure [7]

oxide

– Organic compound adapting pastes to screen-printing (dissol-

vent and organic adhesives such as terpineol and texanol) [8]

The main requirements to embedded resistors in LTCC technol-

ogy are electrical and mechanical parameters. The parameters

above of the resistive layers on green sheet depend on the sort

of printing process, and drying and firing profile.

Conductive materials in resistive paste

At an early stage pastes were made of mostly the mixture of

Pd and Ag. In this case the heat profile had to be kept accurate

otherwise the ratio of phases (specific resistivity as well) seri-

ously changed. The specific resistivity of Pd-Ag resistive pastes

in a mildly reduced atmosphere changes too, the resistance-

range is limited and the thermal coefficient of film resistors is

rather high.

Ruthenium oxide based pastes took out Pd-Ag functional

phase pastes. The oxides of ruthenium have semiconductive

characteristics, however the thermal coefficient is positive which
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refers to metallic conduction. In resistive compositions NiCr,

CrSi, NiP, TaN are used beyond RuO2.

Along the common resistive compositions a paste based on

Pyrochlore (DuPont) appeared, it is more stable and has lower

ESD sensitivity than RuO2[8, 9]. Table 1. shows the main pa-

rameters of inorganic conductive materials of LTCC resistivity.

Resistive compositions

The resistive compositions developed for the LTCC technol-

ogy are produced in decadic scales of its sheet resistance (1 �,

10 �, . . . , 100 k�, 1 M�). Often there is a need of an interme-

diary value. This can be achieved by the appropriate mixture of

the consecutive composite decades. If the composition sequence

is made by two different materials, the manufacturer has to tell

the margin of the two materials to avoid the mixture of them.

There are some resistive compositions that cannot be fired in

an oxygen-rich environment (Table 1). Currently DuPont and

Ferro deal with making resistive compositions for LTCC tech-

nology.

2 Designing and implementing LTCC circuit containing

buried resistors with thick-film equipment

The equipment available for the technological process is the

following:

– THEME product, TES/S25 type screen printing automata de-

vice

– Collin P200E press

– DEK 248 type stencil printer

– AVIA 4500-355 Coherent product laser

Before the topological design the following technical parame-

ters have to be fixed: the size of the circuit, the placing of the

positioning apertures and the preliminary computing of the film

resistance. First, an alignment device was designed, which is

suitable to aligning the green glass-ceramic sheets in the course

of pressing. Fig. 3 shows the dimensions of the device.

The material of the alignment device is Al-Si-Mg hard alloy,

which is easy to work. The surface of the plates was polished

in order to avoid the damage of the raw glass-ceramic substrate

during the lamination of the aligned green sheets. The two plates

were drilled together, 8 pieces of 15mm height and 3mm diam-

eter taps were fixed in the holes of either plate. For the correct

positioning markings were scratched in both plates.

Four distinct test circuits were placed on a raw substrate of

60.5×60.5 mm dimensions. The designed structure has three

layers: the upper contains the test points and the middle layer

contains the buried resistors. The bottom layer is a so-called

sacrificed layer which has significance in the process of lami-

nating and co-firing.

2.1 Planning of resistors

After choosing a paste with the adequate sheet resistance, the

value of the resistor is determined by the shape of the compo-

sition carried up (the width, the length and the thickness). In

general, the paste properties are specified for a layer-thickness

of 18-25 µm. If this thickness is kept, the value of the resistance

can be estimated with certain tolerance after co-firing.

In general, in the course of planning the resistance values are

designed below their final desired value of about 40-70%, be-

cause increasing the value of the film resistance is much easier

than decreasing it with subsequent adjustment. The value of the

buried resistance can be calculated with scheme (1):

R = δ ·
l

d · v
= Rsq ·

l

d
[ohm] (1)

where δ is the specific resistance [ohm·mm]; l is the length of

the paste, [mm]; d is the paste width, [mm]; v is the paste thick-

ness and Rsq = δ/v is the sheet resistance. Another important

parameter of the film resistors is the thermal coefficient (TCE):

T C E =
1

R
·

d R

dT
[1/oC], (2)

where R is the resistance value at 25˚C, dR is the difference

between the resistance values measured at the highest and the

lowest temperature, and dT is the difference of the measuring

temperatures. For the expected correct functioning of the LTCC

substrates, frequently a small or a given value of TCE in the R

network is necessary. The TCE values of the film resistances are

determined by the heat-dilatation of the layer and substrate. The

dependence of the resistance value by the potential is expressed

with potential factor (VK):

V K =
1

R
·

d R

dU
[1/V], (3)

where R is the resistance value at a given potential, dR is the

difference between the resistance values measured at the highest

and the lowest potential, and dU is the difference of the measur-

ing potentials. One important functional parameter is the stabil-

ity of the resistors, which gives the fluctuation of the resistance

with time (%). The dependence of this factor with the time is

nonlinear, because this fluctuation caused by the oxidation and

the changes in the structure of the layers.

One characteristic of the layer resistors is the power den-

sity (power per surface unit), what determines the temperature

of the layer for a given substrate, then it can decisively influ-

ence the stability of the resistors. If the power parameters are

known (Eq. (1)) the longer size of the resistors is determined

with Eq. (4), while the shortest size with Eq. (5):

l =

√
P · Ri

q · Rsq

[mm], (4)

d =
d · Rsq

Ri
[mm], (5)

P

P f

= l · d, (6)
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Tab. 1. Inorganic conductive materials of LTCC resistivity [10]

Material Burning Resistivity/sq; Thermal Specific resistivity

atmosphere Resistivity/sq; [ohm] Thermal coefficient [ppm/˚C] of conductors; (25 ˚C) [ohm]

Ag/Pd(PdO) Air 1 – 1 M ±250 − ±300 4·10−5

RuO2; IrO2 Air 10 – 10 M ±50 − ±300 4·10−5

Pb2Ru2O6;

SrRuO3; Air 10 – 1 M ±50 − ±300 2.3·10−2

Bi2Ru2O7

LaB6 Nitrogen 10 – 10 K ±100 1.7·10−5

SnO2 Nitrogen 5 – 1 M ±250 n.a.

Fig. 3. Alignment device a. plan; b. side-view; c.

perspective

 

where d is the shorter size of the resistor, l is the longer size, P is

the dissipated power of the resistor at environment temperature,

P f is the specific power, Ri is the unadjusted value of the resis-

tance, Rsq is the sheet resistance, q is the surface power density

at the maximal environment temperature. If the values of l or

d are below the technical minimum (in case of screen printing

this minimum is 200 µm), these values have to be increased at

least to this minimum, and after it the other parameter too. For

size greater than 5 mm, the morphology of the substrate is im-

portant too. The dimensions of the resistor are optimal, if l/d is

near 1, and the shortest size is between 1 mm and 3 mm. The

minimal dimensions depend on thermal considerations and the

carrying-up technology of the layers [8, 11, 12].

DuPont 2031 paste with sheet resistance of 1 kohm was cho-

sen. The recommended thickness of the paste after firing is 27

µm. The manufacturer recommends Ag/Pt or Ag/Pd conduct-

ing paste to decrease the undesirable reactions which can occur

at overlapping. The designed film resistances have simple rect-

angle and cylindrical shapes. The resistance values were calcu-

lated previously providing a fixed film thickness of 27 µm. In

case of rectangle resistors l/d was kept between 0.2 and 0.5,

while in case of the cylindrical resistors this interval was ex-

ceeded. The scale of post adjustment can be much bigger for

the cylindrical resistors than the rectangle resistors. The unad-

justed values of the cylindrical resistors were calculated using

expression (7):

R

Rsq

=
l − lt

d
+

lt

d + dt

+

2

π
·

[
2d · (d + dt )+ d2

t

d · (d + dt )
· ln

(
1+ 2

d

dt

)
− 2 ln

4d · (d + dt )

dt · (2d + dt )

]
(7)

where l is the longer size of the rectangle resistor without cylin-

der, d is the shortest size of the same, lt is the height of the

cylindrical part, dt is width of the cylindrical part. The third

component of the above formula gives the variation of the num-

ber of effective squares caused by the inhomogeneous current

distribution caused by size jumping.

Trimmed intervals were calculated for all resistor shapes. In

case of the cylindrical resistors the maximal number of the

equivalent squares at the M-shaped cutting was calculated. In

case of the Y-shaped cutting of the rectangle resistor equations

(8) and (9) belong to Fig. 5 were used, where the cutting size is

maximized to 2/3 of the width of layer. Fig. 4 shows the calcu-

lations in detail [8].

R = Rn ·
wL

π
=

Rn

π
· arch

2 ch(π · L/d)+ 1− cos(π · b/d)

1+ cos(π · b/d)
(8)

1N =
1

π
· arch

2 ch(π · L/d)+ 1− cos(π · b/d)

1+ cos(π · b/d)
−

L

d
(9)

The disadvantage of perpendicular trimming is that longer

trimming causes extreme resistance sensitivity. In case of laser
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Fig. 4. The equivalent square numbers of the trimmed film resistors

 
Fig. 5. Change of sheet resistance in the function of the parameters of laser

trimming

trimming, the value of resistance can only be increased, and the

tolerance is below ±0.25%. The laser beam damages the ma-

terial in addition the channel current is constricted. This fact is

important at the reliability analysis.

2.2 Making a test circuit

The unburnt glass-ceramics worked by laser

The intended topology was created on DuPont 951 type green

glass-ceramic substrate. The next phase of the implementa-

tion was parceling these unburnt sheets and the punching of the

necessary positioning holes, windows and via apertures. The

green sheet was punched with AVIA 4500-355 Coherent product

frequency-tripled Nd:Yag laser [13]. Before working the test cir-

cuit, a test punching was made at diverse adjustments. In Fig. 6

there are 180 test-punching with 200 µm diameter examined the

shape and the edge of these pieces by an optical microscope.

The parameters of the laser during the test cutting are the fol-

lowing:

– Repetition frequency (10 kHz, 50 kHz, 100 kHz)

– Drift speed of the beam (10 mm/s, 100 mm/s, 1000 mm/s)

– Repetition number of the impulse (1×. . . 20×)

The exaggeratedly high frequency of the impulse causes consid-

erable melting of the glass-dust in the LTCC substrate, on the

 
Fig. 6. Vias made by laser at diverse adjustments

a. 10 kHz repetition frequency b. 50 kHz repetition frequency c. 100 kHz

repetition frequency

other hand the fast drift of the beam do not cut deep enough in

the material. On Fig. 6. in the left row the drift speed was 10

mm/s, in the middle row was 100 mm/s and in the right row, the

speed was 1000 mm/s. From 180 holes only 73 were adequate.

(The hole is circle, the laser totally cut across the material, the

roughness of the edge is within ±10 µm and the melted glass-

dust does not decrease the diameter of the hole.) The good holes

are prepared with the following parameters (Fig. 7):

– Repetition frequency: 50 kHz

– Drift speed of the beam: 10 mm/s

– Repetition number of the impulse: 3

– Power: 4.2 w

– Thermal track parameter: 3200 K

Experiences show that using laser, the top and the bottom side

diameters of the holes are distinct (the difference is ∼50 µm).

This difference arises from the focusing of laser. (This fact is

important because in case of∼100 µm diameters the bottom di-

ameter is only 50 µm) [14]. The green sheets were fixed to the

work-table with metal frame. The polyester of the substrate was

not removed, because it protects the substrate against the depo-

sition of the arising fine impurities during the working. Fig. 8

shows the state of the sheets after the working.

The sheet labeled 1 is the upper layer. Via connections are

on this layer between the pads and the interior resistance (and

conducting) layers, the positioning and trimming apertures. The

buried resistors and wires will be printed on the sheet labeled

2. On this layer and on the sacrificed (labeled 3) layer only the

positioning holes had to be punched. Fig. 7 shows the test holes

of adequate quality.

The eight positioning holes are of 3 mm diameter, the di-

ameters of the vias are of 600 µm, while the windows size is

6.2×4.2 mm. It was important, that the width of the window

was at least the width of the parallel connected tophat resistors

and the length of the window was at least the longer size of the

film resistor (the maximal width is 6 mm, the longer resistor is

4 mm).
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Fig. 7. Results of laser punching with proper parameters a.) Plan of 200 µm

diameter hole, lighted from above; b.) Plan of the same hole, lighted from under;

c.) worm’s-eye view of 200 µm hole, lighted from under; d.) Raggedness of the

edge of 200 µm diameter hole

 
Fig. 8. Plan of green sheets after laser punching

Via filling with stencil printing

The next technological step was via filling. In this process via

holes formed in the green sheet are filled with the conductor. In

general, a squeegee is used to fill the holes with the conductor.

It is desirable to fill via holes in the green sheet uniformly with

the conductor. DEK 248 stencil printer was used for via filling

and the DuPont 6141 paste. In the process of via filling it is de-

sirable to take into account the squeegee pressure, the squeegee

speed, the squeegee angle and the squeegee-substrate distance.

In Table 2 the LTCC technological prescriptions of printing, our

best adjustments and the maximal parameters of the DEK 248

stencil printer were compared.

The third column of the table shows that the original squeegee

angle does not conform to the technological prescription of the

angle consequently the squeegee had to be modified. Using the

planning files, apertures were made on the stencil mask with

the Nd:Yag laser, nevertheless my apertures were 20% greater

than the apertures of the substrate, therefore the imprint became

greater and in this way much more paste got through the aper-

tures.

On the vacuum table of the DEK 248 stencil printer there are

6 air-vacuum tubes, by which the paste satisfactorily fills the via

holes. On the test circuit there are 36 holes to fill, so the suction

effect of the vacuum tubes must be concentrated to these holes.

Hence, a vacuum table shown in the Fig. 9 was created.

The bottom FR4 isolating sheet contains 6 holes, which fit

in the 6 tubes of the stencil table. On the table there are two

FR4 isolating frames. The three FR4 substrates were attached

together and the inner part was filled with cellulose without

threads in order to avoid arising dent in the sieve and the sub-

strate by the vacuum. The texture of the sieve was previously

stretched on the upper frame [16]. The substrate was fixed to

the table with special glue (3M 8952). The glue had to be thin,

not too strong but hard enough to keep the sheet at its place. Af-

ter some attempt, with the above devices the holes were filled,

and after it the substrate was put into the stove according to the

prescriptions of the paste. Fig. 10 shows the filled via holes.

Printing the conducting and resistive layers

After the process of via filling, the next step in the LTCC

technology is the printing of the conductive and resistive layers.

For this, a screen printing machine used in thick-film technology

was used for printing the wiring pattern on the green sheet.

Screen printing

The screen printing is a method in which a gap is set between

the mask and the green sheet and when the squeegee passes over

the mask, the conductive paste is pushed through the openings

in the mask onto the green sheet. The squeegee pushes the paste

through the openings of the mask so that the paste is applied to

the green sheet. At the same time moving along the squeegee,

the bolting-cloth is released from contact with the substrate.

THIEME product TES/S25 type automata printer was used for

screen printing.

The mask determines the surface shape and the thickness of

the printed layer. Using the three films of topological plan an

emulsion layer was carried up on the polyester sieve [16]. Dur-

ing screen printing the layers which are not actually needed

were covered with glue. To forming masks SAAT product di-

rect emulsion was used. The emulsion over mesh (EOM) was 20

µm. The mesh number of the texture was 305. The thread thick-

ness of the polyester texture was ∼35 µm, while the squared

opening size was about 42 µm×42 µm. The thickness of the

sieve together with the emulsion was averagely 84 µm. Thick-

ness of the printed layer is hardly influenced by the thickness of

the mask. This thickness was calculated according to Fig. 11.

The figure shows, that in case of polyester threads intersect each

other have to calculate not with 2·d, but with 1.6·d, due to the

deformation of polyester texture. The gap between the used di-

rect emulsion and the substrate was 20 µm (EOM, in the figure

“e”), and the emulsion thickness on the other side of the mask

was h – 1.6·d – e = 8 µm. The theoretical thickness is: a·d + e

= 76 µm.
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Tab. 2. Parameters of stencil printing

Recommended setup Own setup DEK 248 printer

Squeegee pressure 0.17 kg/cm 14 kg (0.46 kg/cm) 0 – 15 kg

Aperture-carrier distance < 150µm 0 (contact printing) 0 – 1000 µm

Squeegee press-angle < 45 degrees ∼ 40 degrees 90 - 60 degrees

Printing speed 50 – 150 mm/s 50 mm/s 7 – 70 mm/s

Fig. 9. Structure of vacuum table

 
Fig. 10. Filled via holes on testboard

 

Printing

In the LTCC technology the green glass-ceramic substrates

are spooled and in this form are transported and stored. During

the fabrication, the glass-ceramic mixture is carried up on the

thin (∼30 µm) polyester foil. This foil protects the substrate

against rupture before using it. Moreover, the foiled side of the

raw substrate is less rough and impure than the free side, because

during the fabrication the glass-ceramic mixture is ductile about

2 weeks and thus in the adequate position the material filled to-

tally the gap between it and the polyester foil [17]. Before screen

printing the foil from the substrate was removed and was put on

the vacuum table of the screen printer. The margins of the sub-

strate were fixed with adhesive tape. The positioning was done

manually, with the help of the 16 positioning symbols and the

8 positioning holes each of 3 mm diameter. Table 3 illustrates

the adjustments suggested by the literature, the best adjustments

found and the maximal parameters of the device. After print-

ing the substrate was dried for 10 minutes in the stove at 120˚C

temperature.

DuPont 6145 type conductive paste based on Ag was used for

the test circuit. First, the conductive layer was printed (Fig. 8,

2nd substrate) on the middle layer, then – after drying it – the re-

sistive layer was printed, which was followed again by a drying

phase. The pad layer was printed on the substrate after laminat-

ing, because the process of laminating can damage the printed

conductive material on the upper layer.
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Fig. 11. Calculating of paste thickness from pa-

rameters of emulsion and bolting-cloth

 

Tab. 3. Parameters of screen printing

LTCC technology Own setup TES/S25 printer

Squeegee pressure 0.17 kg/cm 3 bar 0-7 bar

Bolting-cloth-carrier distance < 1000 µm 800 µm 0-7000 µm

Squeegee press-angle ∼ 60 degrees ∼ 60 degrees ∼ 60 degrees

Printing speed 50-150 mm/s 50 mm/s 10-300 mm/s

The thickness of the buried resistors was one of the important

parameters, so the thickness of a single printing was examined

by an optical microscope. Fig. 12a shows the printed conductive

and resistive layers, while Fig. 12 b shows the printed pad layer

on the upper layer.

On the vacuum table of the screen printer the positioning was

helped by the positioning symbols on the polyester foil. After

the printing of the conductive layer on the substrate, the posi-

tioning of the resistive layer was helped by 16 “x” positioning

symbols. The positioning was precise, when the brown sym-

bols of the conductive layer were totally covered by the black

symbols of the resistive layer. The wiring patterns and resistive

imprints were controlled by microscope.

Fig. 13a shows the imprints of the conductive and the resistive

layer in the case of a cylindrical resistor. Because the viscosity

and the content of the DuPont 2031 resistive paste (the black

layer) differs from the DuPont 6145 conductive paste (the grey

layer), consequently the printed layers differ too. The conduc-

tive paste distribution is uniform, whereas the resistive layer is

not there. It can be seen in the enlarged parts: the resistive paste

has ribbed margin, while the conductive paste has linear mar-

gin. During the printing process the paste with small viscosity

produces blank regions at the crossings of the texture (this is the

so-called pinhole effect).

Fig. 13b shows the thickness of the single printed conduc-

tive and resistive layers before laminating and co-firing. The

thickness of the single printed conductive layer is 15 µm (±5

µm), while the average thickness of the resistive layer is 24 µm

(±5 µm). These values differ from the calculated values, be-

cause practically the paste gets stuck in the texture of the sieve

(the sort of stucking depends on the viscosity of the paste). The

EOM value of the direct emulsion (20µm) approaches better the

real thickness, but this is not homogeneous on the total surface

of the bolting-cloth.

The thickness of the resistive layer in case of single printed

imprint was not thick enough, because during the laminating

process the substrate is shrinking in the Z direction, and during

the firing this process intensifies further. In the course of co-

firing process the glass components of the substrate diffuse into

the material of the resistor, which decrease also the real thick-

ness of the resistive layer, and increases the value of the sheet

resistance. For this reason, another test circuit was made which

is similar to the original, the only difference is that after the first

printing-drying phase another layer was printed on the resistive

layer. In this way, the pinhole effect was eliminated and the

thickness of the resistive layer was increased.

Another important effect is the deformation of geometry dur-

ing the printing process. It can be seen on Fig. 14. The green

rectangle indicates the aperture. In the course of printing the re-

sistive layer, the surface of the substrate is not uniform due to the

already printed conductive layer. The height of the bolting-cloth

was adjusted to the substrate, but the conducting layer (because

of its thickness) came nearer to the sieve. As a result of it, the

resistive layer is defective above the conductive layer (1). As the

squeegee passes over the conducting layer, it arrives at a cave of

15 µm depth, which can not be followed by neither the device
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Fig. 12. Results of screen printing a. wiring and

resistors on middle layer; b. pad layer on via holes of

laminated structure

 

Fig. 13. Printing examined by microscope a. plan

about the margins of the resistors; b. thickness of im-

prints measured in polished section

 

nor the bolting-cloth. In this place the paste fill the cave, but

here the aperture do not contact the substrate, the filling will not

be regular (2), the geometry get out of shape. The same thing

happened when the squeegee approaches the conducting layer

on the other side. The resistor width suited to the aperture can

be carried out only by convenient distance (>300µm) from the

ends of the resistor (3). The thickness of the layer resistors here

will be suited to the adjustments, also.

Laminating

Collin product, P200E type, uniaxial press was used for lam-

ination. The mechanically prepared and printed substrates were

attached together before laminating with the alignment device.

Fig. 15a shows that three layers of the measuring circuit were

pressed: the 1st layer containing via holes, the 2nd layer with the

resistors and wires and one sacrificed layer. The role of the last

layer is to achieve the adequate thickness of the structure. The

three layers, each of 250 µm thickness, are enough thick for,

that during co-firing the substrate do not undulate in the height

direction. It is important that during the aligning process, the

green glass-ceramic does not contact the material of the align-

ment device. To achieve this, the protecting foil of the bottom

sacrificed layer was not removed, while above the upper layer a

polyester foil with adequate tap openings was put.

The plates of the device before laminating were heated at

70˚C at the pressure of 210 bar, because this is the prescribed

value in the literature. Unfortunately, the value indicated by

the manometer is not the direct real pressure of the plates. Be-

fore laminating the thickness of the aligned LTCC substrate was

about 756 µm, which after laminating became 705 µm, that is

a shrinkage of 6.74 % in the direction of the thickness. (The

thickness was measured in 10 distinct places).

During lamination, the phenomenon of delamination can take

place, which may have the following causes:

– Aligned substrates were not adequately cleaned

– Adhesion of the conducting and resistive layers to the sub-

strate were not adequate

– Plates of the press were not parallel

– Jointing of the alignment device was not good.

One of the most characteristic mistakes – that could be observed

during laminating – was under the upper layer of the trimming

windows. This was caused by the fact that the contact of the

substrate and the alignment device was only one-sided during

pressing in this place. The solution of the problem is to use

water-pillowed plates to pressing the substrate.

The laminated structure was checked by X-ray equipment.

The positioning precision during the printing and the aligning

process was acceptable (via holes were above the conducting

layer). After laminating the pads were printed on the upper layer

of the structure.
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Fig. 14. Deformated rectangular film resistor

with dimension of 200 x 1000 µm

 

Fig. 15. Aligning a. layers before aligning; b.

layers on alignment device

 

2.3 Co-firing

The last step of the technology was the co-firing of the sub-

strate. During this process the organic compounds evaporate

from the substrate, moreover the glass-matrix melts and con-

verges, then the substrate shrinks and its structure solidifies. For

the firing of the raw glass-ceramics Denkal 3-K/1160 type stove

was used. The literature prescribed the following technological

conditions:

– Plane and small unevenness firing surface

– Continuous controlling of the temperature

– Maximum 15˚C/min heating speed

Excluding the first condition, the other two parameters are satis-

fied by this stove. The controlling of the temperature was man-

ual. Because the bottom of the stove is not uniform, a special

(with melting point 1280˚C) ceramic plate of 15 cm×20 cm

size was used as firing surface. The temperature of the stove

was measured with an external thermo-element, whose thermal

point was fixed above the LTCC substrate.

For the DuPont Green tape 951 the prescribed heat profile

suggests that in the 12th minute the temperature has to rise

to 50˚C from the ambient value. It has to be followed by a

14˚C/min slanted heating period, which stops at 410˚C. Between

180. . . 415˚C the solvents and other organic components evapo-

rate from the substrate, so adequate air flowing has to be guar-

anteed. In the next 20 minutes the temperature has to be kept

between 410. . . 420˚C, followed a 9˚C/min slanted heating pe-

riod, hence after 50 minutes the temperature achieves 850˚C. It

is important to keep this precisely for 30 minutes, because at

this temperature the glass is melting and the substrate gains his

final size and structure. The last cooling down period was not

kept, but there was not any negative consequence for this in the

literature.

2.4 Post-cut by laser

After co-firing the test circuits were separated with laser (Fig.

16.). In this way, the circuits can be examined separately and a

polished section was prepared for different investigations of the

layer resistance.

 
Fig. 16. Post-cutted test circuit

The parameters of the laser during the cutting of the co-fired
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substrate were the following:

– Repetition frequency: 10 kHz

– Drift speed of the beam: 200 mm/s

– Repetition number of the impulse: 250

– Pumping current: 100 %

– Thermal track parameter: 3200K.

Because the thickness of the co-fired substrate was 700 µm, it

had to be cut in two steps. First, the focus of the laser was

adjusted at 700 µm from the table, after incision this distance

was decreased to 500µm and at this height substrate was incised

again. After cutting the substrate could be carefully snapped.

2.5 The examination of the substrate

Co-firing examination

After co-firing the three-layered structure shrunk 15.4% (from

60.5 mm to 51.183 mm) in the X-Y direction and the thickness

shrunk 19.1% (from 755 µm to 610 µm). This corresponds to

the prescribed interval given by the literature (12%-16% for X-Y

direction and 15%-25% for the thickness shrinking). On the one

circuit single resistive layer was printed, on the other structure

double resistive layer were printed. In the last case the double

printed layers were squeezed through.

The examined width of the resistive layers was about 520 µm

before co-firing, after co-firing became 448 µm, which means

13.85% shrinking. After co-firing polished sections of resistive

layers were prepared and the thickness could be measured. In

case of the single printed resistors, the thickness was about 13

µm (±3 µm), while in case of the buried resistors the thickness

was about 10 µm (±3 µm). The problem was the dispersion of

the buried resistors. The thickness of the double printed, co-fired

resistive layer was 33 µm (±5 µm), which approaches the value

of the literature. The thickness of the co-fired conducting layer

was about 13 µm (±5 µm), on the overlapping places also. In

the case of double printing the thickness was also 13 µm (±5

µm), hence the overlapping does not influence the thickness of

the conducting layer. The average thickness of the overlapping

in the single printing case was 30 µm (±10 µm), while in the

double case it was 50 µm (±10 µm).

Measuring the values of the film resistance

After co-firing the film resistance was measured with Agilent

product 4338B resistance measuring device. Fig. 17 summarizes

the average values of the cylindrical resistors, while the Fig. 18

summarizes these values for rectangular resistors.

The measurements show that where a window was opened

above the resistive layer, the value of resistors approached to

the previous calculated value. Without a window, the values

of the resistors significantly deviated from the Graddy-HYDE

program calculated values. It has happened because of the melt-

ing and convergence of the glass component into the DuPont

2031 paste during co-firing, interrupting this way the conduct-

ing net. If the resistive layer is buried between raw glass-ceramic

sheets, the conducting layer reacts with the melted glass on both

sides, the real functional thickness of the layer decreases and the

sheet resistance increases: the insulating particles get in between

the greater granular resistive particles and in this way interrupt

the conduction in the layer [15]. DuPont 2031 resistive paste

is not satisfactory for realization of the buried resistors in the

LTCC substrate, although if it is considered, that the value of

the embedded resistors will be eight or nine fold of the calcu-

lated value, this paste can be useable for it. Among resistive

pastes recommended for the LTCC technology this effect can be

moderately observed.

The increasing of the resistance value during co-firing is an

important fact in case of planning buried resistive layers. Dur-

ing the screen printing process if the double of the prescribed

thickness is printed, then after co-firing the reached value of the

resistance approaches the calculated value. Exaggeratedly thin

(<15µm) resistive layer causes thermal and electrical instabil-

ity of the resistance, on the other hand exaggeratedly thick layer

(>50 µm) the resistor can break into pieces during the co-firing.

In the case of the double printed (∼34 µm) structure, where

the thickness approaches much better the planned thickness (27

µm), the measured value of the resistance was near the calcu-

lated value and after laser adjustment the stability increased.

3 Conclusion

LTCC technology enables burying of passive elements: resis-

tors; inductors and capacitors. The equipment used for thick-

film process can be used for LTCC production after minor mod-

ifications.

The increasing of the resistance value during co-firing is an

important fact in case of planning buried resistive layers. Dur-

ing the screen printing process if the double of the prescribed

thickness is printed, then after co-firing the reached value of the

resistance approaches the calculated value. In case of embedded

resistors the glass component melts and convergences into the

resistive paste during co-firing, interrupting this way the con-

ducting net. If the resistive layer is buried between raw glass-

ceramic sheets, the conducting layer reacts with the melted glass

on both sides, the real functional thickness of the layer decreases

and the sheet resistance increases: the insulating particles get in

between the greater granular resistive particles and in this way

interrupt the conduction in the layer. Exaggeratedly thin resis-

tive layer causes thermal and electrical instability of the resis-

tance, on the other hand exaggeratedly thick layer the resistor

can break into pieces during the co-firing. In the case of the

double printed structure, where the thickness approaches much

better the planned thickness, the measured value of the resis-

tance was near the calculated value and after laser adjustment

the stability increased.
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Fig. 17. Measured and calculated values of cylin-

drical resistors

2,50
4,55±1,74

1,66±0,68

65,09±5,49

20,51±0,57

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

K
oh

m

calculated 2,50

1xprinted, surface 4,55

2xprinted, surface 1,66

1xprinted, embedded 65,09

2xprinted, embedded 20,51

resistor values

 
Fig. 18. Measured and calculated values of rect-

angular resistors
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