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Abstract

Since the application of lead-free soldering has become oblig-

atory in the electronic industry by the 1st of July 2006, the in-

depth analysis of the soldering process is more important than

ever. The small chip components of the present days demand

very accurate component placement machines to prevent com-

mon reflow failures such as skewing or tombstoning. The ability

of components to be self-aligned during soldering works against

these failures, therefore it matters to what extent the solder pro-

motes this effect. Dynamic behaviour of SMT (Surface Mount

Technology) chip components during lead-free reflow soldering

will be demonstrated in the paper. A force model has been intro-

duced with the five main forces which determine the movement of

the chip component during reflow soldering, namely: the force

originating from the surface tension, the forces originating from

hydrostatic and capillary pressure, the force of gravity, and the

force of dynamic friction.

The self-alignment of 0603 size chip components has been

investigated by real experiments. SM chip components are

misplaced intentionally by semi-automatic pick&place machine,

and before and after reflow soldering the exact location of com-

ponents was measured. The results have shown that the self-

alignment of components does occur even in the case of 400-500

µm lateral misplacements. The explanation of the equations of

the applied theory and the results of the experiments are pre-

sented in the paper in details.
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1 Introduction

Nowadays the most widespread assembling technology of

electronic circuit modules applies reflow soldering. This tech-

nology basically consists of three steps. At first the solder paste

(which contains flux and the solder alloy) is deposited onto the

pads of the printed wiring board (PCB). The second step is the

component placement, where surface mounted (SM) compo-

nents are placed into the deposited solder paste by automated

placement machines. Then the third step is remelting of the sol-

der alloy in a reflow oven, where the solder joints are formed.

The small chip components of these days (size 0201 to 01005

– 600x300 µm to 400x200 µm) demand very accurate com-

ponent placement machines in order to prevent common reflow

failures such as skewing or tombstoning. Fortunately the com-

ponents have ability to be self-aligned during reflow soldering

(Fig. 1) due to the forces originating from the molten (liquid)

solder. The component self-alignment works against the above

mentioned reflow failures; therefore it matters to what extent the

solder promotes this effect.

 
a. b.

Fig. 1. The self-alignment of SM chip component, a. misplaced component

in the solder paste before soldering, b. soldered component
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1.1 Theoretical background of the component self-

alignment

Among the forces, which have effect on the chip compo-

nents during reflow soldering, the force originating from sur-

face tension is the most robust, mostly it forces the components

to move. The balance of the surface tension in a three-phase

system, where liquid-solid-gaseous phases coexist, can be de-

scribed by the Young’s equation (1) as illustrated by Fig. 2.

 
Fig. 2. Surface tension of a three-phase system

γSG = γLS + γLG · cos θ (1)

γ LG – surface tension of the liquid-gas boundary

γ SG – surface tension of the solid-gas boundary

γ LS – surface tension of the liquid-solid boundary

θ – contact angle

1.1.1 Former force models – the Wassink-Verguld model

At the early stage of reflow soldering technology simple force

models have been created in order to study the motion of chip

components during reflow soldering. The first force model has

been described by Wassink and Verguld [9]. It is a simple two

dimensional force model, which purpose is to determine the mo-

ment acting on the chip component during soldering in order to

prevent the tombstoning of component (Fig. 3). The model takes

the following forces into consideration:

– Force due to gravity (rotates the component counter-

clockwise)

– Force due to the surface tension of the solder under the

component: Fγ 1= γ 1·d (rotates the component counter-

clockwise), where d is the width of the component

– Force due to surface tension of the solder on the face of the

component:

Fγ 2= γ 2·d (rotates the component clockwise)

The model assumes that there is no solder on the left face

of the component and it considers the solder fillet as a straight

line instead of a curve. In addition the model, due to its simple

manner, does not take into consideration the hydrostatic pres-

sure of the liquid solder. Therefore complex motions of SM

chip components during reflow soldering cannot be treated by

the Wassink-Verguld model because of its above mentioned de-

ficiencies.

 
Fig. 3. The Wassink-Verguld model [9]

1.1.2 The Ellis-Masada model

A more complex model has been described by John R. Ellis

and Glenn Y. Masada [3], which takes into consideration the hy-

drostatic and capillary pressure of the molten solder and consid-

ers the solder fillet as a curve (Fig. 4), however it is a two dimen-

sional model as well as the Wassink-Verguld model. The model

comprises further simplifications; it assumes that the component

is brick-shaped (i.e. rectangle in two-dimensional model) and its

mass centre is in the geometrical centre of the body. In addition

the model supposes that the P point is always in contact with the

soldering surface (pad) and the component rotates around that P

point.

The moment balance is taken about the pivoting end of the

chip component (P point) as illustrated by Fig. 4. A counter-

clockwise moment is considered positive. The net moment act-

ing on the component can be described by the following equa-

tions based on the model. The model considers the moments as

uniform in z direction, and the expressions are related to a small

dz length of the component width (d) in direction z, the mo-

ments divided by unit length
[

N
m

]
are denoted with upper index∗.∑

M∗p =M∗
t1 + M∗

p1 + M∗
t2 + M∗

p2 + M∗w is the net moment,

where the terms are the followings.

– M∗
t1 is the moment originating from the surface tension of the

solder under the component:

M∗t1 = γW sin θ1 (2)

which can be derived by the following way:

d

dz
d(z) · γ ·W sin θ1 =

d · γ ·W sin θ1

d
= γW sin θ1 (3)

– M∗
p1 is the moment originating from the hydrostatic pressure

acting on the bottom metallization of the component:

M∗p1 = −
Fp1

d
wc (4)
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Fig. 4. The Ellis-Masada model [3]

– M∗
t2 is the moment originating from the surface tension of the

solder on the face of the component:

M∗t2 = −γ h sin θ2 (5)

– M∗
p2 is the moment originating from the hydrostatic pressure

acting on the face metallization of the component:

M∗p2 = −
Fp2

d
hc. (6)

– M∗w is the moment due to the gravitational force:

M∗w = mg

[
L

2
cosα −

H

2
sinα

]
1

d
, (7)

where:

– mg cosα and mg sinα are the force components of the m Eg

vector perpendicular and parallel to the longer side of the

component respectively, and mg sinα has a minus sign be-

cause the moment due to it rotates the component clockwise,

– L
2

and H
2

are the distances of force components from P point.

The forces due to hydrostatic pressure (Fp1 and Fp2) can be

calculated by the principle of pressure continuity (section 1.2.1)

by the aid of expression (11):

Fp1 = (1P0 − ρg
W

2
sinα) · A = (1P0 − ρg

W

2
sinα) ·W · d,

Fp2 = (1P0 − ρg
h

2
cosα) · h · d, (8)

where 1P0 is Psolder − Patmosphere at the end of the solder pad.

The distances (hc and wc) of the forces due to hydrostatic

pressure (Fp1, Fp2) from the P pivoting point are computed us-

ing a model of a flat plate submerged into a liquid [3]:

wc =
w

2
−
ρg sinα · w3d

12Fp1

hc =
h

2
−
ρg cosα · h3d

12Fp2

(9)

Based on the above described expressions the force balances

on the chip in x and y directions are the following:

∑
Fx = γ [sin (θ2 − α)− cos (θ1 − α)]+

F1 sinα − F2 cosα − bẋc = mẍc, (10)

∑
Fy = −mg − γ [cos (θ2 − α)+ sin (θ1 − α)]+

F1 cosα + F2 sinα + N = mÿc, (11)

where b is the viscous friction coefficient between the solder and

chip metallization [Newton-seconds] and N is the normal force

acting on the chip component at the contact point (Newtons).

Although the model includes many specific details; the

meniscus of the solder is not considered to be a straight line,

the force due to hydrostatic pressure is taken into consideration

and the chip component is allowed to be displaced along its pad

length to illustrate the effect of component misplacements, it is

still a two dimensional model and three dimensional motion of

the components cannot be described. Newer models describe

mainly the motion of IC packages such as BGAs or Flip-chips

[4, 5, 11] and there is no complex 3D force model for SM chip

components. However, the size reduction of SM chip compo-

nents made concern about the component self-alignment during

reflow soldering, therefore we decided to create a three dimen-

sional model to determine the motion of SM chip components.

1.2 Theoretical background of determining the shape of the

solder fillet

First of all the topic of predicting the dynamic behaviour of

chip components during reflow soldering should be divided into

two parts. The first issue is to determine the shape of the molten

solder fillet, while the second issue is to calculate the forces,

which are acting on the component, by the known fillet. There

are two main theoretical approaches for determining the shape

of the molten solder; calculating the equilibrium shape by min-

imizing the energy [6–8] of the system or applying the pressure

continuity principle [3].

1.2.1 Predicting the solder fillet by applying the principle of

pressure continuity

The principle of the pressure continuity is that in a static sol-

der fillet, no pressure gradients exist horizontally and the pres-

sure in the vertical direction changes proportionally to the dis-

tance from the liquid surface (i.e. proportionally to the height of

liquid coloumn). Consequently, since the fillet profile decreases

in height in the function of distance from the chip component, a

continuously changing pressure difference must exist along the

profile as illustrated by Fig. 5.

To find the pressure drop across the fillet,1P, Laplace’s equa-

tion is used to relate the pressure drop and the fillet surface ge-
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Fig. 5. Pressures in the solder fillet [3]

ometry. In its most general form the equation is:

1P = γ ·

(
1

r1

+
1

r2

)
, (12)

where r1 and r2 are the radii of curvature of the fillet measured

normal to the surface of the component face metallization. For

two-dimensional models equation (11) will be simpler, r2 can be

equal to infinity (no curvature), thus 1/r2 is zero. Therefore:

1P = γ ·
1

r1

(13)

The definition of curvature for a two-dimensional curve y =

y(x) is:

κ =

d2 y

dx2[
1+

(
dy

dx

)2
]3/2
=

1

−r
(14)

Using the bottom of the fillet as a datum, and1P0 at the bottom

of the fillet as the reference point for calculation of the pressure

and applying the y function to describe the fillet profile, 1P0

can be written as:

1P0 = 1P + ρgy, 1P = 1P0 − ρgy (15)

since an increase in height decreases the pressure across the sol-

der fillet and the Patmcan be withdrawn, because it does not

change in any direction in the case of small bodies like the sol-

ders or components.

Substituting (13) and (15) into (14) and solving for (d2y/dx2):

d2y

dx2
=

1

γ
(ρgy −1P0) ·

[
1+

(
dy

dx

)2
]3/2

(16)

Eq. (16) is a second-order nonlinear differential equation whose

solution defines the fillet profile. Once the correct profile is

known, the points at which the surface tension forces and pres-

sure forces act can be computed. In this approach two boundary

conditions are needed (i.e. the solder wets until the end of the

pad and the height of the solder fillet is equal to the height of the

component) and1P0 is an unknown, but for a three dimensional

force model this principle cannot be used to determine the fillet

profile.

1.2.2 Predicting the solder fillet profile by minimizing the

energy of the system

The equilibrium shape of a liquid meniscus at a liquid-gas

phase boundary of a system - in which solid, liquid, and gaseous

phases coexist - is given by a balance of forces acting on the

system. In the case when the boundary condition is that the

solder wets until the end of the metallization and the contact

angle depends on the volume of the solder, the energy of the

system which should be minimized is given by Eq. (17) [5–7]:

E = ES + EG (17)

ES – energy due to surface tension =
LS,LG,SG∑

i

∫
A

γi dS

EG – energy due to gravity =
∫
V

ρ · g · z · dxdydz

γ i – surface tension coefficient

ρ – solder density

g – gravitational constant

A – surface of the fillet

V – volume of the solder

When the boundary condition is that the end of the pad is not

reached by the solder, thus the contact angle is equal to the wet-

ting angle, as can be seen in Fig. 6, Eq. 18 forms as the following

[10]:

ES =

LS,LG,SG∑
i

∫
A0

γi dS +

LS,LG,SG∑
i

∫
A1

−γi · cos θ1dS

+

LS,LG,SG∑
i

∫
A2

−γi · cos θ2dS (18)

A0 – boundary area of the solder and the gas

A1 – boundary area of the solder and the pad

A2 – boundary area of the solder and the component metalliza-

tion

θ1– wetting angle on the contact line of solder and the pad

θ2– wetting angle on the contact line of solder and the compo-

nent

Actually Eq. (18) is separated form of Eq. (17), where the

surface of the solder is separated into three parts. The contact

line of the solder is moving on the soldering surfaces toward

inside of the solder, decreasing the total energy of the system.

Hence the second and the third term have to be subtracted from

the first term in Eq. (18). Since only that component of force

(force originating from the surface tension), which is parallel to

the contact line movement, acting on the system, γ i in second

and third term has to be multiplied by cos θ .

By solving Eq. (17) with any of the boundary conditions the

shape of the molten solder can be determined. Since the solder

joints are quite small, the dominant term in Eq. (17) is the first

one, i.e. the energy due to the surface tension. The forces which

are acting on a component can be calculated by the known fillet

profile.
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Fig. 6. Boundary surfaces of the molten solder

2 Experimental analysis concerning self-alignment of

SM chip components

Mainly five forces are acting on a chip component during re-

flow soldering. The force originating from surface tension is

acting on the boundary contact line of the three phases i.e. sol-

der, gas, and component metallization. The forces originating

from hydrostatic and from capillary pressure are acting on the

area of the metallization of the component; while the force orig-

inating from dynamic friction depends on the mass of the liquid

solder which should be actuated. The fifth force is the gravita-

tional force.

2.1 Description of the three dimensional force model

In the case of component misplacements (due to the place-

ment machine inaccuracy) the main force, which promotes the

self-alignment, is originating from the surface tension of the liq-

uid solder. In a three-phase system, where gaseous-solid-liquid

phases coexist (Fig. 2); the balance between the surface tensions

(γ LG , γ SG,γ LS) can be described by the Young’s equation (1).

The force, which is originating from the surface tension, acts on

the appointment place of the solder, gas, and component metal-

lization. In general case the appointment place of a three-phase

system is a space curve, which is called as contact line in solder-

ing technologies. Therefore the net force originating from the

surface tension can be obtained by integrating the terms due to

surface tension along the contact line (18), which is determined

by the previously calculated solder fillet:

EFst =

LS,LG,SG∑
i

∫
v

γi dEl (19)

The forces, originating from hydrostatic- and capillary pressures

of the molten solder, push the component out from the solder.

These forces are acting on the vertical face- and bottom side

metallization of the component as illustrated by Fig. 7 (Fh

and Fc). The capillary pressure is the pressure difference be-

tween the two sides of a curved liquid surface. The pressure

drop across the fillet (1P), can be determined by the Laplace’s

Eq. (11). The hydrostatic pressure inside a liquid can be de-

scribed by Eq. (19) in general form:

Ph = ρl · g · h (20)

ρl – density of the liquid

g – is the gravitational constant

h – the height of the liquid column

The principle of the pressure continuity is that in a static sol-

der fillet, no pressure gradients exist horizontally and the pres-

sure in the vertical direction varies proportionally to the dis-

tance from the liquid surface [3], thus it likes as though the h

height of the liquid column is balanced by the1P capillary pres-

sure. Therefore for example the capillary pressure at s line can

be calculated by any point, which takes place above the s line

(ni ∈ A1), as illustrated by Fig. 8. The s line is infinitesimally

close to the bottom side metallization of the component.

 
Fig. 7. Forces due to hydrostatic- and capillary pressures

The force originating from hydrostatic- and capillary pres-

sures (F p) can be determined by integrating pressure values

along the surface of the component metallization (20):

EFp =

∫
Acs

(ρsg · h(Er))d ES+

∫
Acs

(
γLG

(
1

r1(b(Er))
+

1

r2(b(Er))

))
d ES

(21)

Acs – surface of component metallization

ρs – density of the molten solder

h(Er) – height of the liquid column, which is infinitesimally

close to the point designated by the Er vector on the Acs

surface

b(Er) – point on the top of the liquid column, where the capil-

lary pressure should be calculated

 
Fig. 8. Principle of pressure continuity
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The dynamic friction between the liquid and the solid phases

slows the movement of the liquid phase. Hence the dynamic

friction of a liquid is actually the viscosity of that liquid. In our

case the dynamic friction reduce the self-alignment of the com-

ponent. The liquid (molten solder) can be imagined as a series of

horizontal layers. The top layer in the molten solder is infinites-

imally close to the bottom side metallization of the component,

and its speed is equal to the speed of the component movement.

The speed of bottom layer is 0, equal to the speed of the pad

(Fig. 9). Anywhere inside the molten solder, the speed of an

upper layer is higher than the speed of a lower layer; microscop-

ically the molecules of the upper layer are colliding with the

molecules of the lower layer and a part of the faster molecules

kinetic energy transforms to heat energy.

 
Fig. 9. Speed of a liquid in the function of distance from the fixed z plane

The force, originating from the dynamic friction between a

solid and a liquid phase, can be described by the Newton equa-

tion (21) [1, 2]:

F = η · A
dv

dz
(22)

In our case, when the component is moving in the molten solder,

the solid phase is the metallization of the component; therefore

the surface of the metallization should be taken into considera-

tion. Thus the decelerating force (22) of the component can be

written as the following:

EFv =

∫
Acs

ηs · (Ev − Ev0)

d(Er)
dS (23)

Acs – surface of the component metallization

ηs – viscosity of the molten solder

Ev – speed vector of the component movement

Ev0 – speed of the point at d distance, which is 0 if it is on

the pad, and not 0 if the point is on the surface of the

molten solder

d(Er) – distance between the pad or the surface of the solder

and the point under investigation, which is designated

by the
⇀
r vector on the Acs surface

Consequently the net force (24) acting on the component during

reflow soldering, is the sum of the above described forces and

the gravity force:

EFsum = EFst + EFp − EFv + EFgrav

EFsum =

LS,LG,SG∑
i

∫
v

γi dEl +

∫
Acs

(ρsg · h(Er))d ES+

∫
Acs

(
γLG

(
1

r1(b(Er))
+

1

r2(b(Er))

))
d ES

−

∫
Acs

(
ηs · (Ev − Ev0)

d(Er)

)
dS +

∫
Vcomp

ρcomp Eg · dV

(24)

2.2 Pilot experiment concerning component self-alignment

In our experiment the self-alignment of 0603 size (1.5 ×

0.75 × 0.4 mm) chip resistors were investigated. The compo-

nents were misplaced intentionally in x and y directions and θ

offsets (0˚, 10˚, 20˚) were applied as well. Usually the directions

are defined in the case of misplacement as follows:

– x direction is parallel to the shorter side of the component,

– y direction is parallel to the longer side of the component.

The exact position of the SM resistors before and after soldering

can be measured by the guidelines of the IPC-9850 standard.

It advises placing fiducial points around the solder pads as it is

illustrated by Fig. 10. In order to determine the position of the

SM component the distance between the fiducial points and the

corners of the component package should be measured.

 
Fig. 10. Determining the position of the component

The x , y and θ offsets can be calculated by the following ex-

pressions (25):

xof =
dx1 − dx2

2
, yof =

dy1 − dy2

2
,

θof = arctan

(
dx

dy

)
− arctan

(
dx − dx1 − dx2

dy − dy1 − dy2

)
(25)

The placement offsets in x direction were 0 to 900 µm in

100 µm steps, while the y placement offsets were 0, 280 and

380 µm.
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Lead-free (type 3, SAC305) solder paste and 150 µm thick,

laser-cut, stainless steel stencil was used for the experiment;

while the applied reflow profile is illustrated by Fig. 11.

By evaluating the results it can be said, that the self-alignment

of chip resistors has occurred even in the case of 500µm x direc-

tion misplacement. When large y direction- and θ offsets were

applied, the self-alignment of components has occurred only in

the case of lower x direction misplacement, as expected.
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Fig. 11. Reflow profile of the experiment

Fig. 12 shows the x misplacement ranges (up to 500 µm)

where self-alignment occurred with given y and θ offset param-

eters. Another observation can be stated on the base of the ex-

periment, that the SM chip resistors have moved less distance in

y direction than in x direction. The average distance which is

travelled by the component in x direction is 249 µm, while the

average distance in y direction is 75 µm. For an example posi-

tion of five components before and after soldering is illustrated

by Fig. 13.
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Fig. 12. Occurrence of component self-alignment in the case of different x ,

y and θ offsets

2.3 Confirmation of the experiment results by the three di-

mensional force model

The result of pilot experiment have shown that the SM chip

resistors travel less distance in y direction than in xdirection dur-

ing reflow soldering. This can be explained by the three dimen-

sional force model in the following way.

– In the case of x direction misplacement the forces originat-

ing from the surface tension of both solder joints aid the self-

alignment symmetrically as it is illustrated by Fig. 14.
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Fig. 13. Position of five components before and after soldering

– In the case of y direction misplacement the system is not sym-

metrical to its shorter side, the shapes of molten solders are

different on the two faces of the component and the force due

to hydrostatic pressure is greater on the face where the fillet of

the joint is concave as it is illustrated by Fig. 15 (Fp1<Fp2).

The solder on the right face of the component pushes the re-

sistor out from itself and aids the y direction self-alignment.

The forces due to surface tension are different on the two faces

as well as the force originating from hydrostatic and capillary

pressure. Unfortunately the forces on the two faces are oppo-

site to each other therefore only the difference of them makes

the resistor to move. This is the reason why the degree of

resistor self-alignment is lower in y direction than in x direc-

tion.

 
Fig. 14. Leftview and topsection of the system in the case of x direction

misplacement

2.4 Proposing the shape of component metallization in or-

der to improve y direction self-alignment on the base of the

three dimensional model

It has been discussed in section 2.2. that if the end of the met-

allization is not reached by the liquid solder the contact angle is
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Fig. 15. Leftsection and topsection of the system in the case of y direction

misplacement

equal to the wetting angle, but in the case when the end of the

metallization is reached by the liquid solder the contact angle

depends on the volume of the solder. Besides even if the volume

of the solders (V1 = V2) is equal the contact angle depends on

the locations of the bodies (metallization) to be wetted as it is

illustrated by Fig. 16 (θ1 < θ2).

 
Fig. 16. The wetting angle in the case of different locations of metallizations

Therefore it can be predicted theoretically that if the met-

allization presents on the sidewalls of the component also the

forces due to surface tension on the contact lines of sidewall

metallizations will point to the same direction in the case of y

direction misplacement (Fig. 17). The forces due to hydrostatic

pressure will be formed as it is illustrated by Fig. 15. Naturally

after some self-alignment, when the system is nearly symmetri-

cal, the Fst1 and Fst2 forces will be opposite to each other.

Real experiment was made as well to prove that the degree

of y direction self-alignment is larger if metallization presents

on the sidewalls of the component according to the above de-

scribed theoretical model. Two types of commercially available

SM chip components (chip resistor and chip capacitor) were

compared together from the aspect of y direction self-alignment.

Both components are 0603 size (1.5x0.75 mm) but the chip ca-

pacitors have metallization on their sidewalls too in opposition

to the chip resistors (Fig. 18). Since the chip capacitor is nearly

three times heavier than the chip resistor (mass of capacitor is

3.2 mg, mass of chip resistor is 1.4 mg) the term of specific dis-

 
Fig. 17. The wetting angle in the case of different locations of metallizations

placement [µm·mg] is introduced for better comparing, which

is the multiplication of the component mass and the distance

travelled by the component during reflow soldering. The com-

 
a.) 

 
b.) 

 
Fig. 18. The components used for the experiment: a. chip resistor, b. chip

capacitor

ponents were misplaced intentionally in y direction by 200 µm

and 400 µm. The positions of the components were measured

before and after reflow soldering as well as in the pilot experi-

ment and the same equipments were used too:

– Type 3, SAC305, lead-free solder paste

– 150 µm thick, lasercut, stainless steel stencil

– Same reflow profile as illustrated by Fig. 11

– 90 chip resistors and 90 chip capacitors were used for the ex-

periment

– The results are averaged by 18 components.

By evaluating the results it can be said that the y direction self-

alignment of chip capacitors with metallization nearly same as

the proposed one is significantly better. The results are illus-

trated by Fig. 19, where the vertical axis is the specific displace-

ment (the distance travelled during reflow soldering multiplied

by the mass of the component) while the horizontal axis is the

misplacement in micrometers before reflow soldering. The chip

resistors are represented by the blue marks, while the chip ca-

pacitors are represented by the red marks. The distance travelled

by the component is larger at both components in the case of

greater misplacement. This fact can be explained by the symp-

tom that the balance between the forces (Fh and Fst ) forms
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later thus the deceleration of the component movement mani-

fests later as well in the case of greater misplacements.
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Fig. 19. The y direction specific movement of the components in the func-

tion of y direction misplacement

3 Conclusion

A three dimensional kinematical model has been created in

order to describe the motion of SM chip components during re-

flow soldering. The self-alignment of chip resistors has been

investigated by experiments. By evaluating the results it can be

said, that the self-alignment of chip resistors has occurred even

in the case of 500 µm x direction (lateral) misplacement. An-

other observation can be stated on the base of the experiment,

that the SM chip resistors have moved less distance in y direc-

tion than in x direction. The average distance which is travelled

by the component in x direction is 249 µm, while the average

distance in y direction is 75 µm. The explanation by the kine-

matical model of that observable fact is that in the case of x

direction misplacement surface tension of both solder joints aid

the self-alignment, while in the case of y direction misplace-

ment the system is not symmetrical to its shorter side, forces

due to hydrostatic pressure and surface tension on the two faces

of the component are opposite to each other therefore only the

difference of them makes the resistor to move.

It has been proposed on the base of the kinematical model that

if metallization presents on the sidewalls of the component then

the y direction self-alignment of components can be improved.

The proposal has been confirmed by real experiments as well.

Surface mounted chip resistors and chip capacitors have been

compared from the viewpoint of y direction self-alignment. The

chip capacitor has a shape of metallization nearly the same as

the proposed one. On the base of the results it can be stated

that the y direction self-alignment of chip capacitors with met-

allization nearly same as the proposed one is significantly better.

Hence the three dimensional kinematical model has been proved

to be right, however in the future we would like to extent our re-

searches by simulations.
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