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Abstract
Errors-in-variables models are statistical models in which not

only dependent but also independent variables are observed
with error, i.e. they exhibit a symmetrical model structure in
terms of noise. The application field for these models is diverse
including computer vision, image reconstruction, speech and
audio processing, signal processing, modal and spectral anal-
ysis, system identification, econometrics and time series anal-
ysis. This paper explores applying the errors-in-variables ap-
proach to parameter estimation of discrete-time dynamic linear
systems. In particular, a framework is introduced in which a pre-
liminary separation step is applied to group observations prior
to parameter estimation. As a result, instead of one, two sets
of estimates are derived simultaneously, comparing which can
yield estimates for noise parameters. The proposed approach is
compared to other schemes with simulation examples.
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1 Introduction
The task of system identification is to build mathematical

models of a system based on available experimental data. A
widely adopted assumption is that the dependent (or output)
variables are observed with errors, whereas noise-free indepen-
dent (or input) variables are available for modeling. However,
this assumption may be violated in practical applications like
computer vision, image reconstruction, control systems, speech,
audio or signal processing, communications, econometrics and
time series analysis where not only the system output but also
the input is a measured set or series of quantities, hence ob-
served with error. In fact, these applications put the focus on
discovering, understanding or parameterizing the internal rela-
tionship between observed quantities rather than on predicting
future outcome.

Errors-in-variables () systems may be static, in which case
there is no coupling between observed variables, or dynamic,
where a quantity at time t may depend on a finite number of
past quantities. Fig. 1 depicts a dynamic single-input single-
output ()  configuration. Observe that only the noise-
corrupted input and output sequences u(t) and y(t) are observ-
able, the original noise-free sequences u0(t) and y0(t) are not,
t = 1, 2, . . . N , N denoting the number of observations. As
far as the additive noise sequences ũ(t) and ỹ(t) are concerned,
in most cases, a white noise model is assumed, which corre-
sponds to noise due to measurement error. Unlike in control
theory, the noise sequence ũ(t) is not fed through the system.
Given this system model, the goal of system identification is to
estimate model (in usual system identification terminology, pro-
cess) as well as noise parameters using the observable noise-
contaminated input and output data.

Provided that the ratio of input and output noise variances is a
priori known, the task of deriving model and noise parameters is
a classical system identification problem. In contrast, a situation
where no such information is available is recognized as a more
difficult one. In fact, it turns out that under general assumptions,
the system is not identifiable, or put alternatively, it produces
many equivalent results. In other words, restrictions are neces-
sary for the identification to produce a unique result [1].
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G(q) = B(q−1)
A(q−1)

u0(t) y0(t)

ũ(t) ỹ(t)u(t) y(t)
ΣΣ

Fig. 1. The basic setup for a discrete-time dynamic errors-in-variables sys-
tem.

The restriction we explore is that it is possible to partition
observations into two not necessarily contiguous sets based on
some varied noise parameter. The goal is to produce two dis-
similar sets from the perspective of an estimation algorithm. In
particular, if the initial assumption for the noise parameter is in-
correct, the estimates over the two sets will differ significantly.
On the other hand, with a correct noise parameter assumption,
the estimates will be close to one another. As a result, it is possi-
ble to arrive at a correct noise parameter estimate by minimizing
the difference between parameter estimates.

The rest of the paper is structured as follows. The general
setup of a discrete-time dynamic linear errors-in-variables sys-
tem is outlined in Section 2, which also introduces the notations
used throughout this paper. Section 3 explores some inherent
constraints of  systems, while Section 4 surveys related work.
Next, Section 5 describes the generalized Koopmans–Levin al-
gorithm, which we use for separated observations to derive pa-
rameter estimates. Section 6 discusses the main idea of the pa-
per, that is, the data separation methods and the metrics using
which estimates are compared. Finally, Section 7 illustrates the
feasibility of the outlined approach with some comparative sim-
ulation results before concluding with Section 8, which summa-
rizes the key points of the paper.

2 Setup and notations
Consider the  errors-in-variables system in Fig. 1. As the

system G(q−1) is linear, it is described by the linear autoregres-
sive moving average () difference equation

A(q−1)y0(t) = B(q−1)u0(t) (1)

where q−1 denotes the backward shift operator such that
q−1u(t) = u(t − 1) and

A(q−1) = 1 + a1q−1
+ · · · + amaq−ma

B(q−1) = b1q−1
+ · · · + bmbq−mb.

Given the aforementioned system description, we may now in-
troduce the model parameter vector θ as well as its autoregres-
sive and moving average components, θa and θb, respectively:

θ = [ a1 . . . ama −b1 . . . −bmb ]>

θa
= [ a1 . . . ama ]>

θb
= [ b1 . . . bmb ]>

whose estimates are denoted by θ̂ and whose true values by θ0.
In general, the notation p̂ and p0 will also be applied to other
parameters to indicate the estimated and the true value, respec-
tively.

Similarly, the regressor vector ϕ(t) may be introduced as

ϕ(t) = [ ϕ>
y (t) ϕ>

u (t) ]>

ϕy(t) = [ y(t − 1) . . . y(t − ma) ]>

ϕu(t) = [ u(t − 1) . . . u(t − mb) ]>

hence the system description in (1) can be recast in the compact
linear regression form

y(t) = ϕ>(t)θ + ε(t) (2)

where ε is a stochastic disturbance term ε(t) = ỹ(t) − ϕ̃>(t)θ0

in which ϕ̃ is the noise contribution of the regressor vector.
Without loss of generality, we may assume that m = ma =

mb (or, m = max(ma, mb)), which allows us to use a symmetric
model in terms of parameters.

For some approaches, it is preferable to exploit the symmetry
of models and use an implicit formula rather than the explicit
formula (2). For this end, supplement the model parameters in
θ with additional elements such that

g =

[
a0 a1 . . . am −b0 −b1 . . . −bm

]>

and write
x>(t) g = 0 (3)

where

x(t) = [ x>
y (t) x>

u (t) ]>

xy(t) = [ y(t) . . . y(t − m) ]>

xu(t) = [ u(t) . . . u(t − m) ]>

for t = 0, . . . , N − m where the implicit assumptions a0 = 1,
b0 = 0 have been made to make (3) conform to (2).

In many cases, it is more practical to use matrix notation by
collecting multiple observations into a large vector or matrix.
Notations such as u or y refer to these N -row vectors, while 8

and X collect N − m + 1 and N − m observations of ϕ(t) and
x(t), respectively:

u = [ u1 u2 . . . uN ]>

y = [ y1 y2 . . . yN ]>

8 =


ym . . . y1 um . . . u1

ym+1 . . . y2 um+1 . . . u2
...

...
...

...

yN . . . yN−m+1 uN . . . uN−m+1



X =


ym+1 . . . y1 um+1 . . . u1

ym+2 . . . y2 um+2 . . . u2
...

...
...

...

yN . . . yN−m uN . . . uN−m

 .
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With matrix notation, (2) can be concisely written as an overde-
termined system of equations

y = 8θ + ε.

As far as noise assumptions are concerned, we will assume
white noise for most identification algorithms. The covariance
matrix of white input–output noise is parameterizable with two
scalars: µ corresponding to noise magnitude, and ρ to noise
“direction”, such that

C =

[
σ 2

y 0
0 σ 2

u

]
= µCρ = µ

[
sin2 ρ 0

0 cos2 ρ

]
. (4)

Likewise, observations can be characterized with their sample
covariance matrices. Define the sample covariance matrix and
vector Rϕ and rϕy , as well as their estimates R̂ϕ and r̂ϕy , in a
way that

Rϕ = E
(
ϕ(t)ϕ>(t)

)
rϕy = E (ϕ(t)y(t))

R̂ϕ =
1
N

N∑
t=1

ϕ(t)ϕ>(t) =
1
N

8>8

r̂ϕy =
1
N

N∑
t=1

ϕ(t)y(t) =
1
N

8>Y

where R̂ϕ and r̂ϕy are estimates for Rϕ and rϕy from N sam-
ples. A similar covariance matrix may be introduced for the
observation vector x(t), given in the implicit form (3), which
incorporates the covariance matrix for both ϕ(t) and y(t).

3 Identifiability aspects
Identification of errors-in-variables systems where no a priori

knowledge of the noise ratio is available is not possible with the
assumption of

• Gaussian white input sequence u0(t) and

• Gaussian white input and output noises ũ(t) and ỹ(t),

or, in other words, by being constrained to using at most second-
order characteristics, such as the autocorrelation function in the
time domain or the power spectrum in the frequency domain.
In fact, such problems lead to many indistinguishable solutions
under these conditions. In order to make such systems uniquely
identifiable, additional restrictions have to be imposed either on
the noise-free input signal or the noise characteristics [11]:

• One option is to make distributional assumptions where the
input (or noise) signal is supposed to satisfy some non-
Gaussian (skewed) distribution. Higher-order statistics meth-
ods [13] exploit that either the noise-free input signal (or the
noise) is non-Gaussian distributed and use third- or fourth-
order statistics to identify the system.

• A second, equally feasible option is to make structural as-
sumptions on the systems, e.g. to assume more detailed mod-
els for the noise-free input and the measurement noises, in
particular, modeling them as  processes. For instance,
let the noise-free input signal be generated by an  pro-
cess

D(q−1)u0(t) = C(q−1)eu(t)

where eu(t) is a white noise sequence with unknown vari-
ance. This approach may lead to a unique decomposition of
the observation spectrum into frequencies partly attributable
to noise-free input and partly to measurement noise. An in-
depth analysis of this approach is given in [1].

• A third option is to use repeated experiments in which either
the input signal can be controlled or it changes characteristics
at some point in time while noise properties remain the same
throughout the experiment. Such a setup enables data to be
arranged into disjoint but contiguous sets. With as many sets
as unknown noise parameters, the system can, in principle, be
identified.

4 Related work
There is extensive literature on the identification of parametric

errors-in-variables systems, see [11] for a comprehensive sur-
vey. Methods aiming at simultaneously deriving process and
noise parameters include instrumental variables [4, 12], bias-
compensating least squares [7, 16], the Frisch scheme [3, 6],
structured total least squares [9], frequency-domain [10], pre-
diction error and efficient maximum likelihood [14] methods,
which differ in the noise and experimental conditions they as-
sume, the computational complexity they demand as well as the
statistical accuracy they provide. Below we summarize the key
points of some of these algorithms, which we subsequently com-
pare to our proposed algorithm in Section 7.

4.1 Least squares
The least squares () estimate known from statistical litera-

ture can then be formulated as

θ̂L S = 8† y = (8>8)−18>y (5)

where M† denotes the Moore–Penrose generalized inverse of
M .

However, this identification method gives consistent esti-
mates (i.e. the solution converges to the true parameter vector as
N → ∞) only under restrictive conditions, notably, when only
the output observation is corrupted with noise. Reformulating
(5) using covariance matrices yields

θ̂L S = R̂−1
ϕ r̂ϕy . (6)

Assuming white noise on both input and output sequences, the
covariance matrices may be decomposed into a model part and
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a noise part such that

Rϕ = Rϕ0 + Rϕ̃

rϕy = rϕ0 y0 + rϕ̃ ỹ = Rϕ0 y0θ0

where rϕ̃ ỹ = 0 (the two sequences are not correlated) and
rϕ0 y0 = Rϕ0 y0θ0 from (6), in which case,

Rϕ θ̂L S = (Rϕ − Rϕ̃)θ0

thus θ̂L S is biased due to the term Rϕ̃ .

4.2 Bias-compensating least squares
The principle of bias compensated least squares () meth-

ods is to adjust the  estimate to eliminate the bias due to Rϕ̃ .
Consequently,

θ̂BC L S = (R̂ϕ − R̂ϕ̃)−1r̂ϕy (7)

in which the unknown R̂ϕ̃ , which depends on the noise parame-
ters σ 2

y and σ 2
u , has to be estimated in some way.

It is clear that if the ratio of noise variances is unknown, (7)
contains 2m + 2 unknowns but comprises of only 2m equations,
one for each of the model parameters. Consequently, additional
equations have to supplement the above set of equations. One
relation can be obtained by using the minimum error of the least
squares estimate:

VL S = min
θ
E

(
y(t) − ϕ>(t)θ

)2
= σ 2

y + θ̂>

L S Rϕ̃θ0. (8)

In a practical scenario, the expected value is not known but
is computed using the available samples as well as the current
estimates for θ . This suggests that (unlike  estimation) the
compensated  procedure is iterative.

In order to get a second extra equation, an extended model
structure should be considered. A possible extension is append-
ing an additional −y(t − na − 1) to the regressor vector ϕ(t)
and a corresponding ana+1 parameter to θ (whose true value is
0) and using the extended versions in the formulae of the origi-
nal model in (7):

θ̄ = [ −a1 . . . −ana −ana+1 b1 . . . bnb ]

ϕ̄(t) = [ ϕ̄>
y (t) ϕ̄>

u (t) ]>

ϕ̄y(t) = [ y(t − 1) . . . y(t − ma) y(t − ma − 1) ]>

ϕ̄u(t) = [ u(t − 1) . . . u(t − mb) ]>.

These additional equations allow us to infer estimates for σ 2
u

and σ 2
y . Once these have been estimated, the bias of the least

squares estimate is eliminated to achieve consistent estimates.
In practice, these estimates are often rather crude, which can be
significantly improved by augmenting multiple input or output
parameters. As the number of equations in this case exceeds the
number of unknowns, an overdetermined system of equations
has to be solved in a least squares sense.

The iterative bias-compensating estimation algorithm is
therefore as follows [16]:

1 Set the initial value of θ̂0 to θ̂L S according to (5).

2 Solve (8) and the equation(s) corresponding to the extended
model using the current parameter estimates θ̂k to get esti-
mates for the noise elements ν̂k+1 = [ σ̂ 2

y σ̂ 2
u ].

3 Using (7), compute new parameter estimates θ̂k+1 using θ̂k

and ν̂k+1, and repeat from step 2.

4.3 The Frisch scheme
The Frisch scheme provides a recursive algorithm strikingly

similar to the  approach so that many of its variants may
be interpreted as a special form of , operating on similar
extended models with comparable performance results, see [6].
It is based on the idea that the sample covariance matrix Rx0

of the true values of observations yields the zero vector when
multiplied by the true parameter values. In other words, for the
estimated quantities, it holds that

R̂x0 ĝ = (R̂x − R̂x̃ )ĝ = 0 (9)

where we have used that Rx = Rx0 + Rx̃ where R̂x̃ =

R̂x̃ (σ
2
y , σ 2

u ) is a(n estimated) covariance matrix corresponding
to white noise on both y and u. Similarly to the  case, we
have more unknowns than equations in (9). However, assuming
an estimate of σ 2

u is available, σ 2
y may be computed such that

the difference matrix R̂x − R̂x̃ is singular. This is achieved by

σ 2
y = λmin

(
Ry − Ryu(Ru − σ 2

u Im)−1 Ruy

)
(10)

where Ry and Ru denote the sample covariance matrices belong-
ing to output- and input-related entries in x , respectively, and the
λmin operator denotes the minimum eigenvalue of the operand
matrix.

In order to determine σ 2
u , one of the more robust approaches

is to compute so-called residuals and compare their statistical
properties to what can be predicted from the model [3]. A resid-
ual is defined as

ε(t) = A(q−1)y(t) − B(q−1)u(t).

Additionally, introduce the covariance vector belonging to shift
k = 1 as

r(k) = E(w(t)w(t + k))

and its estimate from finite samples as

r̂(k) =
1

N − k

N−k∑
1

w(t)w(t + k)

The idea is to compute the sample covariance vector using ε(t)
where

ε(t, θ̂ ) = Â(q−1)y(t) − B̂(q−1)u(t)

in which Â(q−1) and B̂(q−1) encapsulate current model param-
eter estimates, and compare it to a theoretical covariance vector,
in which

ε0(t) = Â(q−1) ˆ̃y(t) − B̂(q−1) ˆ̃u(t)
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and ˆ̃y(t) as well as ˆ̃u(t) are independent white noise sequences
with variance as determined by the current estimates σ̂ 2

y and σ̂ 2
u .

The dimension of the covariance vector r (i.e. the maximum
shift k) is a user-supplied parameter.

The entire algorithm runs as follows:

1 Assume an initial value for σ̂ 2
u .

2 Compute an estimate σ̂ 2
y using (10).

3 Compute model parameters based on (9).

4 Determine the residuals ε(t, θ̂ ) using estimated model param-
eters in Â(q−1) and B̂(q−1) as well as observed output and
input sequences y(t) and u(t), and compute the related sam-
ple covariance vector r̂ .

5 Determine the theoretical reference covariance vector using
residuals ε0(t) generated by estimated process parameters and
white noise sequences ˆ̃y(t) and ˆ̃u(t) where

E
(

ˆ̃y(t)
)2

= σ̂ 2
y

E
(

ˆ̃u(t)
)2

= σ̂ 2
u .

Compare the sample and the reference covariance vectors by
setting V = δ>Wδ where δ is a difference vector of covari-
ances and W is a (user-chosen) weighing matrix.

6 Repeat from step 1 minimizing V .

4.4 Instrumental variables
Instrumental variables are a family of methods to give a quick

estimate of model parameters without requiring an iterative ap-
proach. The idea is to choose an instrument vector z(t), which
is uncorrelated with the noise term ε(t) in (2) and as correlated
as possible with ϕ(t). Which elements the vector z(t) is to con-
tain depends on the specific approach. The estimates are then
computed as

θ̂I V =

(
R>

zϕW Rzϕ

)−1
R>

zϕWrzy

where W is a user-selected weighing matrix, often chosen as
W = I . A possible arrangement [12] for the vector z(t) is

z>
y (t) = [ y(t − 1 − dy) . . . y(t − dy − my) ]

z>
u (t) = [ u(t − 1 − du) . . . u(t − du − mu) ]

z>(t) = [ −z>
y (t) z>

u (t) ]

where dy = ma and du = mb, while my and mu determine how
many extra shifted y and u components to take.

4.5 Structured total least squares with data splitting
An estimation scheme described in [9] makes use of the re-

peated experiment approach to employ a structured total least
squares method for system identification. They assume that the
input sequence u0 changes characteristics at a time instant t ,
leading to two sequences of data points that have a different

mean and dispersion. The idea is to use the two sequences to
determine the ratio of input and output noise, i.e. λ in the noise
covariance matrix

C =

[
σ 2

u 0
0 σ 2

y

]
= µ

[
λ 0
0 1

]
.

Once λ has been determined, the noise covariance matrix is
known up to a scaling factor, and hence a structured version
of the total least squares approach [5] can be used to uniquely
identify the system.

Their algorithm thus proceeds as follows:

1 Determine the time instant t at which input characteristics
change and thereby create two disjoint data sequences.

2 Solve a univariate optimization problem to estimate the noise
covariance ratio λ. The optimization problem entails solving
weighted total least squares problems simultaneously for both
sequences and iteratively arriving at a solution by minimizing
an appropriate cost function involving the identified parame-
ters belonging to each respective sequence.

3 Identify the entire system with the estimated λ by means of
the standard generalized total least squares method.

The cost function used in their paper is

λ̂ = arg min
λ

(
(µ1 − µ2)

2
+ c sin2 (6 (θ1, θ2))

)
where c is a scaling constant usually chosen as c = 1, 6 denotes
the angle enclosed by the parameter vectors, and µi and θi come
from a structured total least squares problem. (Notice that both
µ and θ are functions of λ.)

5 The Generalized Koopmans–Levin estimator
The Koopmans method for static systems, and its extension,

the Koopmans–Levin () method [8] for dynamic systems are
classical methods that provide a simple non-iterative way to es-
timate model or process parameters but the estimation variance
is fairly large. Meanwhile, the maximum likelihood () esti-
mation approach, the “best possible” estimator, is much more
robust but is inherently iterative and hence entails a larger com-
putational complexity. In this section, a generalized Koopmans–
Levin () approach that unifies the  and  algorithms will
be developed following [15]. The unified algorithm incorporates
a scaling parameter q that allows us to freely trade estimation
accuracy for efficiency.

Let us first introduce a generalized version of the observation
matrix that has N − q + 1 rows and 2q columns as opposed to
the original observation matrix that had N −m +1 rows and 2m
columns:

Xq =


yq . . . y1 uq . . . u1

yq+1 . . . y2 uq+1 . . . u2
...

...
...

...

yN . . . yN−q+1 uN . . . uN−q+1


(11)
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such that Xm+1 = X (the latter in terms of notation introduced
in Section 2).

Using the notations introduced in Section 2, the process pa-
rameters g of a system can be obtained using the  algorithm
by minimizing the loss function

JK L =
1
2

g>

(∑N
t=m+1 x(t)x(t)>

)
g

g>CK L g

where CK L = Cρ ⊗ Im+1. This can be rewritten in a more
compact form as

JK L =
1
2

g> X>

K L X K L g
g>CK L g

(12)

where X K L = Xm+1.
A practical way to solve the minimization problem above is

to consider the generalized eigenvalue-eigenvector problem

(X>

K L X K L − λCK L)g = 0

where the optimal value gopt will be equal to the eigenvector
corresponding to the smallest eigenvalue. If CK L is factorized
as

CK L = C̄>

K L C̄K L

the optimization problem can be solved by means of generalized
singular value decomposition ().

A similar loss function as in (12) may be derived for  esti-
mation. Define xM L as a 1-by-2N vector such that xM L = X N

and

G =

[
Ga

−Gb

]
in which Ga and Gb are banded Toeplitz matrices of parameters
ai and bi such that x0G = 0 (assuming x0 is the noise-free
equivalent of xM L ):

Ga =



1 0 0 . . . 0 0
a1 1 0 . . . 0 0
a2 a1 1 . . . 0 0
...

...
...

. . .
...

...

am am−1 am−2 . . . 0 0
0 am am−1 . . . 0 0
0 0 am . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . am am−1

0 0 0 . . . 0 am


N ,N−m

and Gb can be constructed in a similar manner.
The likelihood function can then be formulated as

p(xM L | g) ∝ exp
(

−
1
2
(xM L − x0)(CM L)−1(xM L − x0)

)
where CM L is a large matrix CM L = Cρ ⊗ IN .

Taking the constraint x0G = 0 into account, maximizing the
likelihood function is equivalent to minimizing the loss function

JM L =
1
2

xM L G(G>CM L G)−1G>x>

M L . (13)

Comparing (12) and (13), a common form for these loss func-
tions seems likely. Introducing DK L = X>

K L X K L , (12) can be
reformulated as

JK L =
1
2

trace
(
(g>CK L g)−1g> DK L g

)
.

On the other hand,

g> DK L g = g> X>

K L X K L g = e>

K LeK L

in which eK L = X K L g (a column vector) represents the error.
Meanwhile, (13) can be similarly transformed using DM L =

x>

M L xM L to give

JM L =
1
2

trace
(
(G>CM L G)−1G> DM L G

)
where again

G> DM L G = G>x>

M L xM L G = e>

M LeM L .

in which eM L = xM L G (a row vector) is the error.
The striking similarity between the two loss functions leads

us to a joint loss function that includes both the  and the 
approach as a special case. Let us introduce the error matrix Eq

such that Eq = Xq Gq and Dq = X>
q Xq , where Xq is a 2q-

by-N − q + 1 matrix in which q is a scaling parameter between
m + 1 (yielding Koopmans–Levin) and N (yielding maximum
likelihood), and let Gq be a parameter matrix and Cq a noise co-
variance matrix of matching dimensions. The joint loss function
thus has the form

J =
1
2

trace
(
(G>

q Cq Gq)−1G>
q Dq Gq

)
. (14)

6 Estimation with preliminary clustering
We have previously mentioned that it is not possible to

uniquely identify an errors-in-variables system in the absence
of a priori information on the noise ratio without imposing re-
strictions on the system or the experimental setup. Indeed, the
outlined methods have made such implicit assumptions by incor-
porating covariance matrices that have to be invertible (thereby
supposing a sufficient excitation) or by requiring that noise prop-
erties remain the same while the input changes at some point.
The restriction we explore here is that observations (possibly af-
ter subject to some transformation) are separable into groups for
which an estimator yields substantially different parameter esti-
mates. The idea is to vary some parameter of the noise model,
typically the noise “direction” ρ, thereby traversing the noise
space, and compare parameter estimates using some distance
metrics. When the distance is minimum, we may conclude that
the “true” noise model has been found. Once the noise model is
known, the problem reverts to the classical identification case,
and a maximum likelihood estimator can be applied over the
entire set of observations to get “true” model parameters. Our
primary task is therefore to identify efficient separation mecha-
nisms and appropriate distance metrics.
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The fundamental idea behind the aforementioned approach is
that observations have a “hidden knowledge” of the true noise
covariance structure. The aim of the separation step is to par-
tition the set of observations so that they are as far as possible
from the perspective of the noise structure, i.e. they react differ-
ently to various assumptions of noise structure. Consequently,
when the noise “direction” ρ is varied and parameter estimates
are derived for each value of ρ, they are likely to differ sub-
stantially when an incorrect “direction” has been assumed. On
the other hand, if the assumption for ρ matches the true value,
the two sets of observations are likely to behave similarly when
subject to parameter estimation. Notice the underlying assump-
tion that separation should produce sets with sufficiently differ-
ent characteristics. Otherwise, estimates may be close to each
other even if the noise structure is not appropriate, yielding a
false value for noise variances and, in turn, model parameter
values.

6.1 The estimation process
In order to get an insight into the estimation process, suppose

that an appropriate separation mechanism has been selected.
The estimation process then runs as follows:

1 A noise model is assumed. As estimator methods (including
the Koopmans–Levin and the maximum likelihood methods)
often automatically compute noise magnitude given a noise
covariance structure, it is sufficient to parameterize a covari-
ance matrix C in (4) corresponding to white noise with a sin-
gle scalar ρ that represents noise “direction”.

2 Using the noise-polluted observations y(t) and u(t), the ob-
servation matrix Xq in (11) is constructed. q is a parameter
of the user’s choice such that q � m, with higher values (to
a limit) yielding more accurate results at the expense of com-
putational cost.

3 Rows of Xq , each of which represents an observation at time
t , are grouped into two sets by means of a clustering algo-
rithm.

4 The generalized Koopmans–Levin estimator derives parame-
ter estimates for each of the sets independently by minimiz-
ing the joint loss function J in (14) given the chosen noise
model. While we have selected this particular estimator, it is
equally possible to use other types of estimators that need a
noise structure model.

5 Parameter estimates for the two sets are compared using some
distance metrics.

As the value of ρ is within the range [0;
π
2 ] (0 corresponding

to input noise, π
2 to output noise only), minimizing d yields the

“true” value for ρ̂. Once an estimate for ρ is at our disposal,
we may apply an efficient maximum likelihood estimator [14]
to compute “true” model parameters estimates θ̂ as well as the
noise magnitude µ̂, and hence σ̂y and σ̂u .

6.2 Clustering based on principal component analysis
The goal of data clustering is to devise an unsupervised anal-

ysis to partition observations into disjoint sets such that points
belonging to the same set are similar, while those belonging to
different sets are dissimilar. Principal component analysis ()
is a widely used statistical method for dimension reduction. The
basis for dimension reduction is that  picks up the dimensions
with the largest variances. The idea of -based separation is
to compute the singular value decomposition (), which is the
basis for , and inspect one or more of the principal singular
vectors. More specifically, decompose the data matrix D̄ such
that

D̄ = Ū6V̄ >

and denote the columns of Ū as ūi so that the first principal
vector is ū1. A set indicator may then be introduced so that

S1 =
{
i | f (ū pi (i), . . . , ū p f (i)) = 0

}
S2 =

{
i | g(ū pi (i), . . . , ū p f (i)) < 0

}
where f, g : Rp f −pi → R, i = 1 . . . N and p f − pi deter-
mines how many principal components to take into considera-
tion. Conveniently, g is chosen to be the complement of f , such
that S1 ∩ S2 = ∅.

The most natural way to assess the performance of the func-
tions f and g is to compare the covariance matrices R1 and
R2 the separated observations they bring forth would produce.
The aim is to produce characteristically different elements in the
lower (or equivalently, upper) triangle of R1 and R2 calculated
by taking the observations that belong to each of the two respec-
tive sets. The notion characteristically different may be mea-
sured by computing the distance

d = 1 −
〈R1, R2〉

||R1||F ||R2||F
= 1 −

trace (R1 R2)

||R1||F ||R2||F
(15)

where 〈M1, M2〉 is the inner product of matrices M1 and M2,
and ||M ||F denotes the Frobenius norm of the matrix M . As
0 5 〈R1, R2〉 5 ||R1||F ||R2||F , d is in the range [0; 1].

Directly maximizing d in (15) can be a cumbersome en-
deavor. Consequently, computationally simpler alternatives
have to be considered. Choices to f include:

• sgn ū1(i) = 0 where sgn x is the sign function. This is essen-
tially equivalent to performing a k-means clustering on the
data with k = 2 [2].

•
∏p f

k=pi
sgn ūk(i) = 0. If corresponding elements in the co-

variance matrices have opposite signs, it is likely that the esti-
mation algorithm produces similar estimates for the two sets
only in case of correct noise assumption. A natural combina-
tion is to choose pi = 1 and p f = 2.

• ¯|u1|(i) > m1 where m1 is the median of the values in the first
principal vector ū1.
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• ||ū pi ...p f || > m, which is a generalization of the above, where
ū pi ...p f stands for the indexed principal components and m is
the median value of the norm. For a 2-dimensional case with
pi = 1 and p f = 2, this corresponds to a circle in the ū1

vs ū2 plane where observations are grouped whether they fall
inside or outside the circle.

What remains to discuss is the exact matrix to use in place of the
data matrix D̄ that is subject to decomposition. The following
are viable alternatives:

• the extended observation matrix Xq as defined by (11); or

• the components of Xq that correspond to input observations,
which we denote by Uq .

Notice that the observation matrix Xq consists of both input and
output observations, each of which is contaminated with noise
with a different variance σ 2

u and σ 2
y , respectively. Consequently,

it is better to replace the Euclidean distance with the Maha-
lanobis distance that takes the different scalings into account by
incorporating the noise matrix C̄ = Cq in (14) into separation
mechanisms. In accordance, the generalized version of singular
value decomposition () has to be employed instead of 
such that

D̄ = Ū61 X̄>

C̄ = V̄ 62 X̄>

I = 6>

1 61 + 6>

2 62

where Ū and V̄ are unitary matrices and I is the unit matrix.

6.3 Comparing parameter estimates
There are various ways parameter estimates over the sepa-

rated sets can be compared. The most straightforward is to use
the relative distance

d =
||θ̂1 − θ̂2||

||θ̂1|| ||θ̂2||

where θ̂k represents the estimated parameter vector on set k.
It is, however, often more practical to compare autoregressive
() components θ̂a

k of the model only, i.e. parameters ai , which
often produces more accurate results, especially for sequences
with low moving average excitation. Accordingly,

d =
||θ̂a

1 − θ̂a
2 ||

||θ̂a
1 || ||θ̂a

2 ||
.

As a third option, the angle enclosed by the estimated parameter
vectors may be compared, such that

d = 6 (θ1, θ2).

These metrics do not take noise magnitude into account. The
combined distance metrics

d =

(
(µ1 − µ2)

2
+ c sin2 (6 (θ1, θ2))

)
proposed in [9] can be utilized for a possibly more accurate
noise direction estimate where c is a scaling constant, often cho-
sen as c = 1.

7 Simulation results
Finally, we show some simulation results to illustrate the fea-

sibility of the outlined approach and compare its performance to
that of related work.

Consider the discrete linear model described by the
relationship

y0(t) =
B(q−1)

A(q−1)
u0(t) =

0.1q−1
+ 0.05q−2

1 − 1.5q−1 + 0.7q−2 u0(t) (16)

and let N = 1000, ρ = 20◦, µ = 0.1, and define an  input
sequence that is described by the relationship

u0(t) =
1

1 − 0.2q−1 + 0.5q−2 eu(t) (17)

where eu(t) is a white random sequence with variance 1. The
parameters for the input and output sequences have been chosen
to produce a signal-to-noise ratio of approximately 10dB. As far
as the parameters of the identification algorithms are concerned,
set them to q = 6, pi = 1 and p f = 2 in the separation func-
tion

∏p f
k=pi

sgn ūk(i) = 0, D̄ = Xq (for the  algorithm), the
maximum lag to m (for the Frisch algorithm), 4 extra equations
to augment the  estimator, dy = 3, du = 3, my = 4 and
mu = 4 (for the  estimator). Next, perform a Monte–Carlo
simulation of 100 runs. The means and variances of the esti-
mates θ̂ are summarized in Table 1. For the sake of comparison,
the special entry “ with ρ” denotes the theoretical configu-
ration where the identification is performed using a maximum
likelihood estimator with a known noise direction ρ, where vari-
ance asymptotically approaches the Cramér–Rao lower bound.

As seen from Table 1, the performance of the proposed ap-
proach is comparable to other approaches, even if the variances
are somewhat in favor of related work. However, the  input
sequence in (17) was an idealistic assumption. Next, consider
a symmetric square signal with a duty cycle of T = 75 (large
enough for the model parameters to appear in the output) and
an amplitude of A = 1 as an input sequence, which is a less
benign input as it provides little excitation for determining mov-
ing average components in (16). The results are summarized
in Table 2. Apparently, the proposed approach exhibits much
more favorable variances than compared related work. In fact,
some parameters cannot be reliably estimated whatsoever with
the other methods shown.

8 Conclusion
We have investigated an approach to identifying linear dy-

namic errors-in-variables systems with a preliminary clustering
step. We have seen that the aim of the clustering step is to pro-
duce two separate sets which are distant from each other in a
certain sense. In other words, when parameter estimates are de-
rived for each of the two sets, they are likely to be close to one
another only if an initial noise assumption was correct. In fact,
assuming an incorrect noise covariance structure leads to easily
identifiable groups of observations, whereas a correct assump-
tion makes no such distinction of observations possible. As a
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Tab. 1. Comparative performance of estimator algorithms with  input sequence.

θ̂ true  with ρ Frisch   proposed

a1 -1.5 -1.5152 ± 0.0168 -1.4987 ± 0.0286 -1.4641 ± 0.0572 -1.4871 ± 0.0686 -1.4942 ± 0.0640

a2 0.7 0.7087 ± 0.0158 0.6981 ± 0.0269 0.6694 ± 0.0474 0.6903 ± 0.0573 0.6901 ± 0.0568

b1 0.1 0.1059 ± 0.0041 0.1000 ± 0.0066 0.0910 ± 0.0175 0.0925 ± 0.0251 0.1040 ± 0.0062

b2 0.05 0.0564 ± 0.0064 0.0506 ± 0.0095 0.0491 ± 0.0082 -0.1151 ± 0.0226 0.0523 ± 0.0183

Tab. 2. Comparative performance of estimator algorithms with a square signal input sequence.

θ̂ true Frisch   proposed

a1 -1.5 -1.4455 ± 0.2919 -1.4762 ± 0.1162 -1.4514 ± 0.1146 -1.5146 ± 0.0570

a2 0.7 0.6739 ± 0.1707 0.6591 ± 0.0609 0.6793 ± 0.0617 0.7030 ± 0.0366

b1 0.1 0.0481 ± 0.1737 0.0393 ± 0.2035 -0.0746 ± 0.4220 0.1032 ± 0.0297

b2 0.05 0.1053 ± 0.1697 0.0506 ± 0.1497 -0.0987 ± 0.4282 0.0483 ± 0.0469

result, traversing a noise space, the “true” noise model can be
discovered by minimizing the distance between parameter esti-
mates over the two sets.
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