
Ŕ periodica polytechnica

Electrical Engineering
52/3-4 (2008) 145–152

doi: 10.3311/pp.ee.2008-3-4.03
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Test component assignment and
scheduling in a load testing
environment
Levente Erős / Ferenc Bozóki

Received 2008-07-22

Abstract
In this paper we introduce two major problems from the field

of load (or performance) testing and our solutions for them.
When testing the performance of a device (System Under Test –
SUT), the test environment executes many software entities (the
so-called test components) on the hosts of the test environment
(testing hosts). Our goal is to maximize the load on the testing
hosts by assigning the test components to them closely to opti-
mal. The first problem to be solved is, thus, a special case of the
task assignment problem for which many algorithms have been
developed. Our solutions presented in this paper are, however,
optimized for distributing load testing traffic in the case of which
the possibilities and restrictions to be taken into account are
very different from those of the classical task assignment case.
The other problem we deal with is how to schedule test compo-
nents running on the same testing host. Most of the papers writ-
ten on scheduling focus on the characteristics of the generated
load, but not on the way of generating it. These papers usually
assume that the load can be generated by improving hardware
resources. In this paper, however, we introduce a model and an
algorithm which improves the efficiency of scheduling in a load
testing environment with way less hardware resources. The al-
gorithm is based on our novel concept of virtual threads. Our
simulations have shown that by applying our solutions, the effi-
ciency of load testing can be significantly increased.

Keywords
load testing · task assignment · scheduling

Acknowledgement
This work was supported by our supervisor, Tibor Csöndes

PhD of Ericsson Hungary Ltd.

Levente Erős

BME, Hungary
e-mail: eros@tmit.bme.hu

Ferenc Bozóki

Test Competence Center, Ericsson Hungary Ltd., Hungary
e-mail: ferenc.bozoki@ericsson.com

1 Introduction
Nowadays testing is becoming a more and more important

phase of the development process, since the earlier a fault is
found in a product, the easier and less expensive it is to correct
it. Many different kinds of tests can be applied to a device. A
conformance test checks whether the System Under Test (SUT)
corresponds to its functional specifications, that is, whether it
implements the theoretical state machine it should according to
its specifications [1]. During a conformance test the test envi-
ronment simulates a single user connected to the SUT. Once the
SUT is found to be corresponding to its functional requirements,
it has to be tested by another important aspect, that is, whether
it can deal with all the load it has to handle once it is placed and
starts to operate in its latter real-life environment. This kind of
testing is called load (or performance) testing [2]. A load test
simulates the real-life environment of the SUT containing many
users, pushes the generated load up to the maximal level the
SUT has to be able to handle and examines the behavior of the
SUT in this extreme situation. Fig. 1 illustrates the differences
between the number of users in a conformance testing and in a
load testing environment.

2 Levente Erős, and Ferenc Bozóki

the test environment simulates a single user connected to the SUT. Once the SUT
is found to be corresponding to its functional requirements, it has to be tested by
another important aspect, that is, whether it can deal with all the load it has to
handle once it is placed and starts to operate in its latter real-life environment. This
kind of testing is called load (or performance) testing [2]. A load test simulates the
real-life environment of the SUT containing many users, pushes the generated load
up to the maximal level the SUT has to be able to handle and examines the behavior
of the SUT in this extreme situation. Fig. 1 illustrates the differences between the
number of users in a conformance testing and in a load testing environment.

System Under Test

(SUT)

System Under Test

(SUT)

User

User

UserUserUser

User UserUserUser

User

Figure 1: Conformance and load testing environments

Unfortunately, the number of hosts in the test environment (testing hosts) is
way less than the number of hosts the SUT has to serve in the real-life environment.
Thus, the real-life hosts are emulated by software entities, the so-called test com-
ponents, and each testing host executes more than one test component. At this
point two important questions emerge, namely, how should the test components
be assigned to the testing hosts to be able to simulate the real-life environment
faithfully by as few testing hosts as possible, and inside a testing host, how should
the execution of test components be scheduled to minimize the overhead caused
by context switching. In this paper we discuss and give solutions for these two
problems.

The rest of the paper goes as follows: In Section 2 we discuss the problem of
assigning test components to testing hosts. In Section 2.1 we give a formal definition
for the problem. In Section 2.2 we introduce the main idea our test component
assignment algorithms are based on. In Section 2.3 we introduce our test component
assignment algorithms, and in Section 2.4 we close the discussion of test component
assignment with some simulation results. In Section 3 we discuss our sceduling
algorithm. In Section 3.1 we introduce a new archiecture for generating the desired
load. In Section 3.2 we present the possible bottleneck of the architecture and in
Section 3.3 we are going to describe a practical example to demonstrate the problem
caused by it. Finally, in Section 3.4 we introduce our scheduling algorithm that
solves the problem, and we summarize our results in scheduling in Section 3.5. We
conclude our paper with a few words on our future work in Section 4.

Fig. 1. Conformance and load testing environments

Unfortunately, the number of hosts in the test environment
(testing hosts) is way less than the number of hosts the SUT has
to serve in the real-life environment. Thus, the real-life hosts
are emulated by software entities, the so-called test components,
and each testing host executes more than one test component. At
this point two important questions emerge, namely, how should
the test components be assigned to the testing hosts to be able
to simulate the real-life environment faithfully by as few test-

Test component assignment and scheduling in a load testing environment 1452008 52 3-4

http://www.pp.bme.hu/ee

ing hosts as possible, and inside a testing host, how should the
execution of test components be scheduled to minimize the over-
head caused by context switching. In this paper we discuss and
give solutions for these two problems.

The rest of the paper goes as follows: In Section 2 we dis-
cuss the problem of assigning test components to testing hosts.
In Section 2.1 we give a formal definition for the problem. In
Section 2.2 we introduce the main idea our test component as-
signment algorithms are based on. In Section 2.3 we introduce
our test component assignment algorithms, and in Section 2.4
we close the discussion of test component assignment with some
simulation results. In Section 3 we discuss our sceduling algo-
rithm. In Section 3.1 we introduce a new archiecture for gen-
erating the desired load. In Section 3.2 we present the possible
bottleneck of the architecture and in Section 3.3 we are going to
describe a practical example to demonstrate the problem caused
by it. Finally, in Section 3.4 we introduce our scheduling algo-
rithm that solves the problem, and we summarize our results in
scheduling in Section 3.5. We conclude our paper with a few
words on our future work in Section 4.

2 The test component assignment problem
As mentioned earlier, when assigning test components to test-

ing hosts, our goal is to minimize the number of necessary
testing hosts by assigning the test components to testing hosts
closely to optimal. The task of minimizing the number of test-
ing hosts equals to the task of maximizing the load taken by
them. Carrying out an optimal assignment would, however, be
NP-hard, thus a heuristic algorithm is needed. Fig. 2 shows a
typical load testing environment with many parallel testing hosts
connected to the SUT and with the so-called Main Controller su-
pervising the testing hosts and assigning the test components to
them.

Test Component Assignment and Scheduling in a Load Testing Environment 3

2 The Test Component Assignment Problem

As mentioned earlier, when assigning test components to testing hosts, our goal is
to minimize the number of necessary testing hosts by assigning the test components
to testing hosts closely to optimal. The task of minimizing the number of testing
hosts equals to the task of maximizing the load taken by them. Carrying out
an optimal assignment would, however, be NP-hard, thus a heuristic algorithm is
needed. Fig. 2 shows a typical load testing environment with many parallel testing
hosts connected to the SUT and with the so-called Main Controller supervising the
testing hosts and assigning the test components to them.

Testing

Host

Testing

Host

Testing

Host

SUT

CP

CP

Testing

Host

Main

Controller

Test

Executor

CP CPCP

CP assignment

Testing

Host

Testing

Host

Figure 2: Details of a load testing environment

The problem described above might remind us to task assignment problems of
distributed systems in the field of which many papers have been written [3], [4], [5],
but our case is way more specific, since our algorithm has to take the specialities
of load testing environments into consideration.

In this section we present a heuristic algorithm for the solution of the above
mentioned problem. The presented algorithm works on a formal model, but the
goal of its final version will be to process test source codes written in TTCN-3
(Testing and Test Control Notation - 3) language [11].

2.1 Formal Problem Definition

The task assignment problem can be defined as follows:
TH = {THi|i = 1, ..., m} is the set of testing hosts. Each one of the testing

hosts is described as follows: THi = (TCHi, {FCHt
i |t = 1, ..., tmax}). TCHi is

the total capacity and FCHt
i is the free capacity of THi in time slot t. (A time

slot is the smallest unit of time in our model.) Furthermore, there is an m + 1st

testing host for modeling test component dropping: THm+1 = (∞, {∞, ...,∞}).
This means that test components that get dropped are assigned to an imaginary
testing host with infinite capacity according to the model.

CP = {CPi|i = 1, ..., n} is the set of test components. A test component
is described as follows: CPi = (FSCi, LCCi, T IDCi, RCCi), where FSCi is the
starting time, LSCi is the ending time of test component i, TIDCi identifies the
type of the test component, while RCCi is its required capacity. The type of the
component is the type declared in the TTCN-3 source code of the load test. Test

Fig. 2. Details of a load testing environment

The problem described above might remind us to task assign-
ment problems of distributed systems in the field of which many
papers have been written [3], [4], [5], but our case is way more
specific, since our algorithm has to take the specialities of load
testing environments into consideration.

In this section we present a heuristic algorithm for the solu-
tion of the above mentioned problem. The presented algorithm
works on a formal model, but the goal of its final version will

be to process test source codes written in TTCN-3 (Testing and
Test Control Notation - 3) language [11].

2.1 Formal problem definition
The task assignment problem can be defined as follows:
T H = {T Hi |i = 1, ..., m} is the set of testing hosts.

Each one of the testing hosts is described as follows: T Hi =

(T C Hi , {FC H t
i |t = 1, ..., tmax }). T C Hi is the total capacity

and FC H t
i is the free capacity of T Hi in time slot t . (A time

slot is the smallest unit of time in our model.) Furthermore, there
is an m +1st testing host for modeling test component dropping:
T Hm+1 = (∞, {∞, ...,∞}). This means that test components
that get dropped are assigned to an imaginary testing host with
infinite capacity according to the model.

C P = {C Pi |i = 1, ..., n} is the set of test compo-
nents. A test component is described as follows: C Pi =

(F SCi , LCCi , T I DCi , RCCi), where F SCi is the starting
time, L SCi is the ending time of test component i , T I DCi iden-
tifies the type of the test component, while RCCi is its required
capacity. The type of the component is the type declared in the
TTCN-3 source code of the load test. Test component instances
of the same type have similar charasteristics, for example, very
similar (in our simple case, identical) capacity requirements, and
similar running times.

Our objective is to make single-valued C P → T H (test
component to testing host) assignments, so that the largest
possible load is generated by the test environment, formally,
tmax∑
t=1

m∑
i=1

(T C Hi − FC H t
i) is maximal. When making the as-

signments, there are two constraints. First, testing hosts cannot
be overloaded, formally FC H t

i ≥ 0, where i = 1, ..., m and
t = 1, ..., tmax . The second constraint is the following: each
test component can only be assigned to one testing host, so it is
not possible to reassign a component during its execution. The
reason for this is that if a test component is reassigned during its
execution the authencity of the simulation of the real-life envi-
ronment would be at stake, since a time gap would appear in the
execution of the reassigned component.

2.2 Main idea
Since the goal is to stress the SUT by the maximal load it has

to be able to handle, several test components are needed to be
run in parallel. Consequently, the running time of test compo-
nents is long compared to the time elapsed between their execu-
tion, since by many components starting and ending all the time,
the load generated by the test environment could not be pushed
up to its desired level. In a more abstract way, once the running
components can produce the desired load, no other components
are executed "for a while", thus components are rather running
"together". Fig. 3 illustrates a load testing traffic pattern.

Based on this property, the time can be splitted up into time
frames with length W and consider the problem as a series of
bin packing problems [6], regarding testing hosts as the bins and

Per. Pol. Elec. Eng.146 Levente Erős / Ferenc Bozóki

4 Levente Erős, and Ferenc Bozóki

component instances of the same type have similar charasteristics, for example, very
similar (in our simple case, identical) capacity requirements, and similar running
times.

Our objective is to make single-valued CP → TH (test component to test-
ing host) assignments, so that the largest possible load is generated by the test

environment, formally,

tmax∑

t=1

m∑

i=1

(TCHi − FCHt
i) is maximal. When making the

assignments, there are two constraints. First, testing hosts cannot be overloaded,
formally FCHt

i ≥ 0, where i = 1, ..., m and t = 1, ..., tmax. The second constraint
is the following: each test component can only be assigned to one testing host, so
it is not possible to reassign a component during its execution. The reason for this
is that if a test component is reassigned during its execution the authencity of the
simulation of the real-life environment would be at stake, since a time gap would
appear in the execution of the reassigned component.

2.2 Main Idea

Since the goal is to stress the SUT by the maximal load it has to be able to
handle, several test components are needed to be run in parallel. Consequently, the
running time of test components is long compared to the time elapsed between their
execution, since by many components starting and ending all the time, the load
generated by the test environment could not be pushed up to its desired level. In a
more abstract way, once the running components can produce the desired load, no
other components are executed ”for a while”, thus components are rather running
”together”. Fig. 3 illustrates a load testing traffic pattern.

W

Figure 3: Load testing environment

Based on this property, the time can be splitted up into time frames with length
W and consider the problem as a series of bin packing problems [6], regarding
testing hosts as the bins and test components starting in the same time frame as
the goods to be assigned to bins. However, the CP → TH assignments for time
frame k can be first made at the end of the time frame when the parameters of all
the components of time frame k are known. Thus, the actual execution of the test
components has to be delayed at least until the end of the time frame, but to keep
the original shape of the load testing traffic pattern, the starting times of each of
the test components of time frame k (and the entire time axis) will be delayed by
W (see Fig. 4).

Fig. 3. Load testing environment

test components starting in the same time frame as the goods to
be assigned to bins. However, the C P → T H assignments
for time frame k can be first made at the end of the time frame
when the parameters of all the components of time frame k are
known. Thus, the actual execution of the test components has to
be delayed at least until the end of the time frame, but to keep
the original shape of the load testing traffic pattern, the starting
times of each of the test components of time frame k (and the
entire time axis) will be delayed by W (see Fig. 4).

CP1
CP2

CP1
CP2

Demand

Execution

W

W

Fig. 4. Delayed execution of test components

There is one more thing left to be mentioned. Unlike the clas-
sical bin packing problem, the free capacity of testing hosts is
not constant within a time frame, as formerly started test com-
ponents can terminate and new components are started in the
time frame. Thus, when applying a bin packing algorithm to a
time frame, this property has to be taken into consideration.

The above described test component assignment method can
only be applied, if three constraints are met. The first constraint
is that delaying the execution of all the test components does
not affect the outcome of the test. This constraint is true if the
outcome of the execution of one component does not affect the
execution of another component. The second constraint requires
us to know the running times of test components, while the third
constraint assumes that the capacity requirements of the differ-
ent component types are known (with component instances of
the same type having identical capacity requirements).

2.3 Two possible solutions for the task assignment problem
In this section we are going to introduce two solutions for

the problem defined above, both based on the time framing ap-
proach.

2.3.1 The bin packing-based approach
The first solution regards test components starting in the same

time frame as goods to be packed into bins (testing hosts). It ex-
tends already existing bin packing algorithms. We tested this

solution using the First Fit Decreasing [6] algorithm for assign-
ing test components to testing hosts within a time frame.

Let us now look at how the test component algorithm works
in time frame k. The algorithm has three inputs, the required
capacities of test components starting in time frame k, the ca-
pacities of the testing hosts for each time slot in time frame k,
and the bin packing algorithm, the FFD in our case. First, the
test components of frame k are ordered by their required capac-
ities in descending order. Then the test component (let it be test
component i) with the largest required capacity is assigned to
the first testing host the free capacity of which is larger or equal
than the required capacity of test component i , in each of the
time slots of time frame k (when test component i is active).
The test component assignment algorithm goes on with the test
component that has the second largest required capacity, and so
on to the test component with the smallest capacity.

It is important to note, that when seeking for a testing host
with enough capacity the "next" testing host is the next testing
host among testing hosts 1 to m. Host m + 1 is only chosen if
there are no other testing hosts the component fits into.

2.3.2 The binary programming-based approach
The second solution describes the test component assignment

problem with a series of binary programming problems (one for
each time frame). But before going on with introducing this
solution the following variable and matrices have to be defined:

ACv
u = 1, if F SCi ≤ v ≤ L SCi , 0 otherwise, that is ACv

u
indicates, whether C Pu is active in time slot v, or not.

RCaptmax ×n
= [ruv], where ruv = ACu

v , that is, this matrix
stores the required capacities of test components for each time
slot (and stores 0s where the corresponding test components are
inactive).

Seln×(m+1)
= [suv], where suv = 1, if test component u is

assigned to testing host v, 0 otherwise.
TCaptmax ×(m+1)

= [fuv], where fuv = T C H j , that is TCap
stores the total capacities of testing hosts.

FCaptmax ×(m+1)TCap − RCap · Sel, that is FCap stores the
momentary free capacities of testing hosts. (This matrix has to
be recalculated each time the assignments of a time frame are
made - see more on this later.)

The matrices defined above are all global, that is they are used
for keeping some kind of a global state of the execution of the
test component assignment algorithm, that is, the effects of the
assignments that have already been made. This global state of
the algorithm will become clear later.

The algorithm works as follows:
First, suv := 0 for all of the elements of Sel. Consequently, in

the beginning, FCap = TCap. As we will see, Sel and FCap
will be formed time frame by time frame along the execution of
the algorithm.

As mentioned earlier, test components starting in the same
time frame are handled and assigned together. This means that
the algorithm consists of d

tmax
W e iterations.

Test component assignment and scheduling in a load testing environment 1472008 52 3-4

In the kth iteration, that is, when processing the kth time
frame, or more precisely, the test components that are executed
in time frame k, three "local" matrices are defined in addition to
the global ones defined earlier:

RCapk
= [rk

uv] and rk
uv = ruv , where (k − 1) · W + 1 ≤ u <

k · W and v : T Hv ∈ {Z Hz |(k − 1) · W + 1 ≤ F SCz < k · W },
that is RCapk is a sub-matrix of RCap containing the time slots
in time frame k and the test components that have to be started
in time frame k. The dimensions of the matrix are, therefore, W
rows (at maximum, since in the last time frame it is tmax mod
W) and as many columns, as many test components have to be
started in time frame k. Let the set of these test components be
denoted by C Pk .

Selk = [sk
uv] is a matrix that contains the test component to

testing host assignments of time frame k. The dimensions of the
matrix is |C Pk

| × (m + 1). As we will see shortly, the rows of
Sel that correspond to the test components to be started in time
frame k will be defined by the rows of Selk .

FCapk
= [f k

uv], where f k
uv = fuv and (k − 1) · W + 1 ≤ u <

k · W and v = 1, ..., m + 1, that is FCapk contains those rows
of FCap which correspond to the time slots of time frame k.

Let us denote the number of time slots in time frame k by W ′.
(As mentioned earlier, W ′ equals to W, except in the last time
frame, where it can be less.)

Among the global matrices, thus, there are two input matrices,
namely RCap and FCap. In each iteration we take the sub-
matrices of these two, namely RCapk and FCapk , as described
above, and compute Selk , which is the output matrix of time
frame k by solving the binary programming problem with the
following objective function:

min
Selk

W ′∑
u=1

m∑
v=1

(FCapk
− RCapk

· Selk)uv (1)

and the following constraints:

RCapk
· Selk ≤ FCapk (2)

[1...1] · Selk
T

= [1...1] (3)

sk
uv = {0, 1} (4)

The objective function (Eq. 1) formalizes our desired goal, that
is, minimizing the free capacity on testing hosts 1 to m (but not
for testing host m + 1, as it has an infinite capacity and is used
for collecting dropped test components). Constraint (Eq. 2) for-
bids the overloading of testing hosts, constraint (Eq. 3) ensures
that each testing host is assigned to exactly one testing host (to
testing host m + 1 if dropped). Constraint (Eq. 4) limits the
values of the elements of Selk to 0 or 1.

Once the binary program is solved, that is Selk defining the
assignments made in time frame k is calculated, the correspond-
ing rows of the global matrix Sel are updated by the rows of

Selk . Then the global matrix FCap is recomputed, so it is go-
ing to contain the remaining free capacities of testing hosts (the
capacities of testing hosts that the still active test components
assigned in time frames 1 to k left free). This way, when getting
FCapk+1 from FCap for the next time frame and assigning the
test components of time frame k + 1, the effects made by pre-
viously assigned, but still running test components on the free
capacities of testing hosts will be taken into consideration.

Test components that were originally meant to be started in
time frame k are going to be started in time frame k + 1 with a
delay of W , and similarily, the test components assigned in time
frame k − 1 were started in time frame k with a delay of W .

The algorithm goes on like this until the last time frame. One
might wonder why time frames are used in this binary program-
ming approach, since we could define the whole problem with
the global matrices, solve the global problem and get a solution
that is closer to optimal than the one we get by solving smaller
problems in each of the time frames. This global solution has
unfortunately two drawbacks. First, it would mean a delay by
tmax which is not too much desirable. Second, the complexity
of solving the global problem is huge compared to that of the
smaller problems solved in each time frame, even if using an
efficient method for solving the binary program. In the case of
the binary programming approach, therefore, the most impor-
tant factor of adjusting the time frame size (window size) is the
complexity of the assignment.

2.4 Results
For examining our task assignment heuristics we imple-

mented a simulator. In this section we introduce the simulation
results of the bin packing-based algorithm.

We examined the algorithm by comparing the average load
level on testing hosts with different window sizes to that of the
naive test component assignment algorithm. The naive algo-
rithm assigns each incoming test component to the first host with
enough free capacity. Fig. 5 shows the simulation results, that
is the average utilization of testing hosts (vertical axis) for dif-
ferent window sizes (horizontal axis).

8 Levente Erős, and Ferenc Bozóki

assigned, but still running test components on the free capacities of testing hosts
will be taken into consideration.

Test components that were originally meant to be started in time frame k are
going to be started in time frame k + 1 with a delay of W , and similarily, the test
components assigned in time frame k− 1 were started in time frame k with a delay
of W .

The algorithm goes on like this until the last time frame. One might wonder
why time frames are used in this binary programming approach, since we could
define the whole problem with the global matrices, solve the global problem and
get a solution that is closer to optimal than the one we get by solving smaller
problems in each of the time frames. This global solution has unfortunately two
drawbacks. First, it would mean a delay by tmax which is not too much desirable.
Second, the complexity of solving the global problem is huge compared to that of
the smaller problems solved in each time frame, even if using an efficient method
for solving the binary program. In the case of the binary programming approach,
therefore, the most important factor of adjusting the time frame size (window size)
is the complexity of the assignment.

2.4 Results

For examining our task assignment heuristics we implemented a simulator. In this
section we introduce the simulation results of the bin packing-based algorithm.

We examined the algorithm by comparing the average load level on testing hosts
with different window sizes to that of the naive test component assignment algo-
rithm. The naive algorithm assigns each incoming test component to the first host
with enough free capacity. Fig. 5 shows the simulation results, that is the aver-
age utilization of testing hosts (vertical axis) for different window sizes (horizontal
axis).

0,6

0,62

0,64

0,66

0,68

0,7

0,72

2

1
7

3
2

4
7

6
2

7
7

9
2

1
0
7

1
2
2

1
3
7

1
5
2

1
6
7

1
8
2

1
9
7

2
1
2

2
2
7

2
4
2

Window size

A
v
e

ra
g

e
 u

ti
li
z
a

ti
o

n

Figure 5: Simulation results of the bin packing-based task assignment algorithm

The naive solution for test case assignment corresponds to the window size of 1

Fig. 5. Simulation results of the bin packing-based task assignment algo-
rithm

The naive solution for test case assignment corresponds to
the window size of 1 at which the average utilization is 64%.

Per. Pol. Elec. Eng.148 Levente Erős / Ferenc Bozóki

By selecting an appropriate window size, the average utilization
can be significantly raised compared to this naive solution.

3 Scheduling in a load testing environment
Most of the papers that are written in the field of scheduling

mostly focus on scheduling in an environment where the cost
of context switching is not negligible [9], [10]. Many operat-
ing system schedulers use binary balanced trees to optimize this
task but still, all of these algorithms assume that before and after
switching, different contexts have to be loaded in order to have
the very same environement as it was during the previous exe-
cution period. Some of these schedulers are preemptive, that is,
they can interrupt the execution of a particlar thread to switch to
another one. There are, however, many threads that can not be
interrupted, so a non-preemptive algorithm might be needed. In
our case the cost of the context switching is zero since the con-
text is stored in a common data structure, and the threads can
not be preempted. In the following we introduce an algorithm
that works with these two restrictions.

3.1 The architecture
The SUT is usually an element of a telecommunication net-

work. It can be a network node in a GSM network [7]. In our
example it is a Mobile Switching Center (MSC). The challenge
in this case is to create an optimal architecture which is able to
emulate numerous users with a minimal resource usage. Dur-
ing the conformance testing phase most of the users are realized
by POSIX threads, and the operating system’s scheduler (OS
scheduler) schedules them. The one user – one thread approach
works fine for a couple of users, but when it comes to load test-
ing, where there are usually tens of thousands of users, most of
the OS schedulers will spend as much time with context switch-
ing between the different users’ processes as with the execution
of the useful code. Thus, a smarter solution is needed, where a
single thread is able to emulate numerous users. This way the
emulation of, for example, 10000 users could be done with only
10 threads, each one handling around 1000 users. The multiple
users – one thread architecture is based on the Finite State Ma-
chine theory [8]. Each emulated user is realised by an FSM (Fi-
nite State Machine). Each FSM can be described by a quadruple
(see Eq. 5).

F SM = (s0, S, E, F) (5)

Where

• s0 is the initial state

• S is the set of states

• E is the set of events

• F is the set of transition functions.

When an event ez ∈ E occurs the FSM changes its state from
sx ∈ S to sy ∈ S and executes a transition function fh ∈ F . In
our case the transition functions are sequences of actions (send

a message, etc.). When an event occurs, the sequence of ac-
tions assigned to it is executed. This sequence cannot be inter-
rupted by other actions. To avoid the blocking of the thread,
and thus, all of the FSMs, it is not allowed to use any block-
ing statements here (e.g. blocking while waiting for a message).
Every thread has a database storing all the relevant information
about the users on the thread (each record of this database be-
longs to a user, or more specifically, the context of a user). This
way context switching is reduced to changing an index. Each
thread contains an event queue as well (see Fig. 6). It stores
all the incoming messages in the order of reception. Each mes-
sage contains some information that is necessary to associate
the message with the destination user. Processing such events
means dispatcing them to the users they are destined to, while
these destination users execute the corresponding actions.

10 Levente Erős, and Ferenc Bozóki

When an event ez ∈ E occurs the FSM changes its state from sx ∈ S to sy ∈ S

and executes a transition function fh ∈ F . In our case the transition functions are
sequences of actions (send a message, etc.) When an event occurs, the sequence
of actions assigned to it is executed. This sequence cannot be interrupted by
other actions. To avoid the blocking of the thread, and thus, all of the FSMs, it
is not allowed to use any blocking statements here (e.g. blocking while waiting
for a message). Every thread has a database storing all the relevant information
about the users on the thread (each record of this database belongs to a user, or
more specifically, the context of a user). This way context switching is reduced to
changing an index. Each thread contains an event queue as well (see Fig. 6). It
stores all the incoming messages in the order of reception. Each message contains
some information that is necessary to associate the message with the destination
user. Processing such events means dispatcing them to the users they are destined
to, while these destination users execute the corresponding actions.

Thread 0

User a Data 1

Data 1User b

Data 2

Data 2

Data 1User c Data 2

Event

Queue

Timer

Queue

Secondary

Queue

Event

Dispatcher

LA

User bUser a User c

Figure 6: Architecture of the test system

3.2 The Bottleneck of This Approach

In our environment the cost of context switching is close to zero, but the users
still need to be scheduled somehow. Many OS schedulers handle regular threads,
but in their case the cost of context switching is not even close to zero [9], [10].
Most of the telecommunication standards contain timing restrictions and in this
environment all of the timing restrictions are handled by the timer queue. When
a thread needs to use a timer, it places a timer event in this queue and when
a timer expires in the queue, it dispatches an event to the corresponding user.
Therefore we must distinguish between two different types of timers. One serves as
a wait function, instructing the user to wait some time before moving on with the

Fig. 6. Architecture of the test system

3.2 The bottleneck of this approach
In our environment the cost of context switching is close to

zero, but the users still need to be scheduled somehow. Many
OS schedulers handle regular threads, but in their case the cost
of context switching is not even close to zero [9], [10]. Most
of the telecommunication standards contain timing restrictions
and in this environment all of the timing restrictions are han-
dled by the timer queue. When a thread needs to use a timer, it
places a timer event in this queue and when a timer expires in the
queue, it dispatches an event to the corresponding user. There-
fore we must distinguish between two different types of timers.
One serves as a wait function, instructing the user to wait some
time before moving on with the execution. The other serves as a
guard timer. If there are no incoming messages within a speci-
fied time, an error handling method should be invoked. Usually
the timer queue contains multiple timer events ordered by the
remaining values of the timers, thus the one to expire first is al-
ways the first in the queue. When a timer expires it dispatches
an event, which is interpreted by the FSM to whom it belongs.
Sometimes the action associated with a timer event takes too

Test component assignment and scheduling in a load testing environment 1492008 52 3-4

much time to serve and the rest of the process is delayed. We
also would like to avoid the situation when the SUT had sent the
response in time, but because of the internal structure of the test
system, it is processed too late resulting in a false outcome (or
verdict) of the test.

3.3 A practical example
In this section we present an example related to the GSM

world. The example is an extract of some longer transac-
tions. Let us suppose that we are testing the Base Station Sys-
tem Application Part (BSSAP) protocol of a Mobile Switch-
ing Center (MSC) [7]. We emulate 10 Mobile Stations (MS),
5 of which initiate a Location Update (LU) and the other 5
of which terminate a mobile call (MTC). Let us suppose that
during the transactions we have reached a point when the LU
users send a ChiperMode_Complete message, and wait for the
TMSI_Reallocation_Cmd to arrive within 100 milliseconds. To
respond they send a TMSI_Reallocation_Complete message in
50 milliseconds, etc. The other five users send out a Pag-
ing_Response message and wait for an authorization request to
arrive. If the authorization request (Auth_Req) arrives within
one second they count and send the authorization response
(SRES). The latter definitely takes more resources and time. In
case of success the SUT will send Chiper_Mode_Cmd message,
within one second, etc. We have 10 FSM instances to realize the
users, five for the first group and five for the second group. The
first group of FSMs has the following two events:

• received_TMSI_reallocation_cmd,

• timer_expired.

They have two sequences of actions:

• send_ChiperMode_Complete,
place_TMSI_timer_to_the_timer_queue,

• send_TMSI_reallocation_complete.

The other types of FSMs also have two events:

• received_auth_request,

• timer_expired,

and two sequences of actions:

• send_paging_response, place_authtimer_to_the_timer_queue,

• count_ SRES, send_auth_response.

Supposing that we have reached the described session of the
communication, five FSMs send a ChiperMode_Complete mes-
sage, five send a paging response, and all of them place their
timer events in the timer queue. The timer queue will con-
tain five entries for 100 milliseconds, and five for one sec-
ond. All the responses of the SUT will be delivered to the
event queue. To handle a TMSI_reallocation_cmd event, a
TMSI_Reallocation_Complete message should be dispatched

and the FSM should send out a TMSI_Reallocation_Complete
message. On the other hand, to handle an Auth_Request
message, a received_auth_request event should be dis-
patched, and the FSM should count the SRES and send a
BSSMAP_Auth_Response message to the SUT. The latter one
definitely takes more time. If there is an auth_request event in
the queue it will delay the processing of all the other events lo-
cated after it with at least 100 milliseconds. Since there is no
rearrangement in the queue an FSM could cause a serious delay
for the others.

According to the POSIX threads, we have introduced the no-
tion of virtual threads. Every FSM, their context in the local
database, and their events in the queues belong to a virtual thread
and our task is to find the best way to schedule them. A thread
could hold back many other virtual threads mainly if the sched-
uler always looked ahead with only one place (only the next
event) in the queue. To avoid this case, the scheduler has to look
ahead by more events. To measure this anticipation we intro-
duce the Look Ahead factor (LA) as the number of events in the
queue that are taken into consideration by the dispatcher. If the
LA has a value of two, the dispatcher counts with the first two
elements of the event queue, allowing the second event to be
served sooner than the first one, if the first event suffered a de-
lay. To measure the efficiency of the scheduling algorithms we
also introduce a metric, which is the sum of the delays suffered
by all the virtual threads in the test system (see Eq. 7).

md(t) =

∑
A

delaya(t) (6)

Where

• A is the set of virtual threads,

• delaya(t) is the delay of virtual thread a (a ∈ A).

The greater value md(t) has, the less optimal the particular
algorithm is. We consider this function as our target function to
be minimized. We can shift serving a virtual thread if its timer
entries in the timer queue allow us to. To measure the flexibility
of this shifting we define the notion of Laxity, which indicates
the maximal time we can use to shift the processing without
causing actual delays:

Lax (t) = tax · deadline-tax · eventreceived (7)

Where

• ax ∈ A is a particular virtual thread,

• tax · deadline is the deadline of processing the next event be-
longing to thread ax ,

• tax · received is the time of reception of that event.

According to this, in our example five FSMs place their timer
entries in the timer queue with one second and five other with
100 milliseconds. If an authorization request (Auth_Req) mes-
sage arrives within 100 milliseconds, it means that the Laxity of

Per. Pol. Elec. Eng.150 Levente Erős / Ferenc Bozóki

that virtual thread is 900 milliseconds, so we can handle other
threads with a smaller Laxity.

The Look Ahead factor determines the number of events
taken into account while the Laxity of the particular events sug-
gests some kind of priority. We have extended the test system
with a secondary buffer, having a size identical to the look ahead
factor. To process an event from the event queue, the Laxity is
calculated first and if it is a positive number it is placed in the
secondary queue and the next event is taken. If it is zero or neg-
ative, there is no other choice but to handle the event.

The events in the secondary queue are ordered by their Laxity,
the event with the smallest Laxity is located on the top. The key
question is the size of the secondary queue. If it is too small we
will not have any advantages, but if it is too large it will increase
the overall delay in the system. There are two extreme cases:

• Every event is moved to the secondary queue without process-
ing them, causing the size of the queue and the Look Ahead
factor to increment continuously.

• The length of the queue remains zero.

The value of the Look Ahead factor should adapt to the behav-
ior of the SUT, and so, to the size of the secondary queue. Our
algorithm dynamically calculates the optimal LA value and con-
trols the length of the queue. If a virtual thread holds the oth-
ers back, the Look Ahead factor should be increased in greater
steps. Since the metric is the sum of the individual delays, the
more virtual threads are held up, the steeper the target function
will be. In the following we propose a parameter that indicates
the growth of the secondary queue (see Eq. 8).

k(t) =
d
dt

md(t) (8)

3.4 The improved scheduling method
In the beginning, the size of the secondary queue is zero and

the events are taken from the event queue. When the first de-
lay occurs, the growth parameter of the queue is evaluated and
the Look Ahead factor is increased according to the growth pa-
rameter. When the next event is taken, the value of its Laxity
is calculated. If it is a positive number, the event is placed in
the secondary queue. If the Laxity is zero or negative the event
is served and the next one is analyzed. This step is repeated
multiple times according to the value of k. Every time before
placing a new event into the secondary queue the elements with
zero Laxity in the secondary queue are served. By the end of
the previous step at least some of the delayed threads will be
served, and k will be decremented by one. If the value of Laxity
is still a positive number, the process is repeated. In normal cir-
cumstances when there is no delay in the system, the first event
from the event queue is compared to the event located on the top
of the secondary queue. The element with the smallest laxity
is served and the other is placed into the secondary queue. The
Look Ahead factor is not incremented in this case. When the

Laxity of an element in the secondary queue reaches the value
of zero, it is served and the length of the secondary queue will
be decreased. See Fig. 7 for the algorithm.

14 Levente Erős, and Ferenc Bozóki

repeated multiple times according to the value of k. Every time before placing a
new event into the secondary queue the elements with zero Laxity in the secondary
queue are served. By the end of the previous step at least some of the delayed
threads will be served, and k will be decremented by one. If the value of Laxity
is still a positive number, the process is repeated. In normal circumstances when
there is no delay in the system, the first event from the event queue is compared
to the event located on the top of the secondary queue. The element with the
smallest laxity is served and the other is placed into the secondary queue. The
Look Ahead factor is not incremented in this case. When the Laxity of an element
in the secondary queue reaches the value of zero, it is served and the length of the
secondary queue will be decreased. See Fig 7 for the algorithm.

Start

md(t)>0
Le. queue.first(t)>

Ls. queue.first(t)

Ls. queue.first(t)>0

place to s. queue

k=1

decrement k

serve serve e.queue.first

serve s.queue.first

true

false

true

false

false

false

true

true

Figure 7: The scheduling algorithm

3.5 Results

In Section 3 we have presented a new FSM-based approach for load testing. Our
aim was to reduce the number of delays introduced by the test system but not
by the SUT. For this purpose we have presented an improved architecture and an
algorithm, that reduces the number of delays caused by the late processing of an
event, that arrived in time to the test system. We have implemented the model in
a TTCN-3-based test environment, and we applied it to some theoretical examples.
The examples indicated that the algorithm was able to reduce the delay introduced
by the test environemnt significantly.

Fig. 7. The scheduling algorithm

3.5 Results
In Section 3 we have presented a new FSM-based approach

for load testing. Our aim was to reduce the number of delays in-
troduced by the test system but not by the SUT. For this purpose
we have presented an improved architecture and an algorithm,
that reduces the number of delays caused by the late processing
of an event, that arrived in time to the test system. We have im-
plemented the model in a TTCN-3-based test environment, and
we applied it to some theoretical examples. The examples indi-
cated that the algorithm was able to reduce the delay introduced
by the test environment significantly.

4 Future Work
In the future we are going to eliminate the constraints of need-

ing to know the exact running times of test components by ap-
proximation. As the running time of a test component highly
depends on how much the SUT is stressed, a simple approxima-
tion for the running time of a test component is the actual run-
ning time of the latest test component of the same type. We are
going to approximate the required capacities of test components
from the TTCN-3 source. We are also going to make our algo-
rithm capable of handling different capacity requirements (e.g.
CPU load, memory usage, number of messages per second) by
which we expect even better results, and develop methods for
approximating the optimal time frame size. We also intend to
adjust the scheduling algorithm according to several other load
generation algorithms.

References
1 Framework on Formal Methods in Conformance Testing, 1997. ITU-T Rec-

ommendation Z.500.

Test component assignment and scheduling in a load testing environment 1512008 52 3-4

2 Din G, Tolea S, Schieferdecker I, Distributed Load Tests with TTCN-3,
TestCom 2006. Proceedings, 2006, pp. 177-196.

3 Saledo-Sanz S, Xu Y, Yao X, Hybrid Meta-heuristics Algorithms for Task

Assignment in Heterogenous Computing Systems, Computers & Operations
Research 33 (2006), 820-835.

4 Salman A, Ahmad I, Al-Madani S, Particle Swarm Optimization for Task

Assignment Problem, Microprocessors and Microsystems 26 (2002), 363-
371, DOI 10.1016/S0141-9331(02)00053-4.

5 Ucar B, Aykanat C, Kaya K, Ikinci M, Task Assignment in Heteroge-

nous Computing Systems, Journal of Parallel and Distributed Computing 66
(2006), 32-46.

6 Garey M R, Graham R L, An Analysis of Some Packing Algorithms, Com-
binatorial Algorithms, New York: Algorithmics Press (1973), 39-47.

7 Digital Cellular Telecommunications System (Phase 2+) Mobile Switching

Centre - Base Station System (MSC-BSS) interface Layer 3 specification

3GPP TS 48.008 version 7.12.0 Release 7, 2008.
8 Wagner F, Modeling Software with Finite State Machines: A Practical Ap-

proach, Auerbach Publications, 2006.
9 Audsley N, Burns A, Real-Time System Scheduling, Vol. 134, University of

York - Department of Computer Science Report, YCS, 1990.
10 Chetto H, Chetto M, Some Results of the Earliest Deadline Scheduling Al-

gorithm, IEEE Transactions Software Engineering 15 (October 1989), no. 10,
1261-1269.

11 The Testing and Test Control Notation Language, version 3; Part 1: TTCN-3

Core Language, ETSI, 2005.

Per. Pol. Elec. Eng.152 Levente Erős / Ferenc Bozóki

	Introduction
	The test component assignment problem
	Formal problem definition
	Main idea
	Two possible solutions for the task assignment problem
	The bin packing-based approach
	The binary programming-based approach

	Results

	Scheduling in a load testing environment
	The architecture
	The bottleneck of this approach
	A practical example
	The improved scheduling method
	Results

	Future Work

