periodica polytechnica

Electrical Engineering

52/3-4(2008)[133H162]

doi: 10.3311/pp.ee.2008-3-4.04
web: hitp:/www.pp.bme.hu/ee
(© Periodica Polytechnica 2008

RESEARCH ARTICLE

Abstract

Reverse engineering tools analyze the source code of a soft-
ware system and produce various results, which usually point
back to the original source code. Such tools are e.g. design
pattern miners, duplicated code detectors and coding rule vio-
lation checkers. Most of the time these tools present their results
in different formats, which makes them very difficult to compare.

In this paper, we present work in progress towards implement-
ing a benchmark called BEFRIEND (BEnchmark For Reverse
englnEering tools workiNg on source coDe) with which the out-
puts of reverse engineering tools can be easily and efficiently
evaluated and compared. It supports different kinds of tool fam-
ilies, programming languages and software systems, and it en-
ables the users to define their own evaluation criteria. Further-
more, it is a freely available web-application open to the com-
munity. We hope that in the future it will be accepted and used
by the community members to evaluate and compare their tools
with each other.

Keywords
Benchmark - reverse engineering tools - tool evaluation - code
clones - design patterns

Acknowledgement

This research was supported in part by the Hungarian na-
tional grants RET-07/2005, OTKA K-73688, TECH_08-A2/2-
2008-0089 and by the Jdanos Bolyai Research Scholarship of the

Hungarian Academy of Sciences.

Lajos Jeno Fulép
University of Szeged, Department of Software Engineering, Hungary
e-mail: flajos @inf.u-szeged.hu

Péter Hegediis
Rudolf Ferenc
University of Szeged, Department of Software Engineering, Hungary

BEFRIEND — a benchmark for
evaluating reverse engineering tools

Lajos Jend Fiilop / Péter Heged(s / Rudolf Ferenc

Received 2008-07-22

1 Introduction

Nowadays, the development of large software systems com-
prises several steps. The general tendency is that due to the tight
deadlines programmers tend to leave certain steps out of the de-
velopment process. This usually means omitting the appropri-
ate system documentation, which can make the maintenance and
comprehension of the software rather difficult. This problem can
be alleviated with the automatic recognition of certain source
code characteristics. The design pattern [12] recognizing tools —
which by recognizing design patterns can make the source code
more comprehensible and transparent — are good examples of
this. Several of these tools have been introduced in literature,
and so far they have proved to be rather efficient. Despite all this,
it would be difficult to state that the performance of design pat-
tern recognizing tools is well-defined and well-known as far as
accuracy and the rate of the recognized patterns are concerned.
In order to obtain more information about these characteristics,
the results of the tools require in-depth evaluation. So far, this
has been quite difficult to achieve because for the comparison
of different tools a common measuring tool and a common set
of testing data are needed. To solve this problem, we developed
the DEEBEE (DEsign pattern Evaluation BEnchmark Environ-
ment) benchmark system in our previous work [10].

The current work introduces the further development of the
DEEBEE system which has become more widely applicable by
generalizing the evaluating aspects and the data to be indicated.
The new system is called BEFRIEND (BEnchmark For Reverse
englnEering tools workiNg on source coDe). With BEFRIEND,
the results of reverse engineering tools from different domains
recognizing the arbitrary characteristics of source code can be
subjectively evaluated and compared with each other. Such tools
are e.g. bad code smell [9] miners, duplicated code detectors,
and coding rule violation checkers.

BEFRIEND largely differs from its predecessor in five ar-
eas: (1) it enables uploading and evaluating results related to
different domains, (2) it enables adding and deleting the eval-
uating aspects of the results arbitrarily, (3) it introduces a new
user interface, (4) it generalizes the definition of sibling relation-
ships [[10]], and (5) it enables uploading files in different formats

BEFRIEND — a benchmark for evaluating reverse engineering tools

2008 52 3-4 153

http://www.pp.bme.hu/ee

by adding the appropriate uploading plug-in. BEFRIEND is
a freely accessible online system available at http://www.inf.u-
szeged.hu/befriend/.

We will proceed as follows: In the following section, we will
provide some background needed to understand the main con-
cepts behind BEFRIEND. In Section 3] we will describe the use
of the benchmark on concrete examples and scenarios. Next,
in Section 4}, we will show the results of a small experiment
demonstrating the usefulness of the benchmark. Afterwards, in
Section [5] we will discuss some works that are related to ours.
We will close our paper with conclusions and directions for fu-
ture work in Section [6]

2 Background

In this section, we present the theoretical concepts that are in-
dispensable for the understanding of BEFRIEND. BEFRIEND
serves the evaluation of tools working on source code, which
hereafter will be called fools. The tools can be classified into
domains. A domain can be a tool family searching e.g. for de-
sign patterns, code clones and bad smells, or rule violations.
Without the sake of completeness, design pattern searching tools
are e.g. DPD [7], Columbus [2] and Maisa [8]], and dupli-
cated code searching tools are e.g. Bauhaus [3|], CCFinder [6]]
and Simian [19]. The tools in a given domain produce differ-
ent results which refer to one or more positions in the analyzed
source code. We refer to these positions as result instances.
The found instances may include further elements in certain do-
mains. These are called participants. For example, in the case
of a Strategy design pattern instance, several ConcreteStrategy
participants may occur. In each instance, the participants can
be typed according to roles. In the case of the Strategy design
pattern, the roles are Context, Strategy, and ConcreteStrategy.
For the evaluation of tools several evaluation criteria can be de-
fined. With the help of the evaluation criteria, we can evaluate
the found instances of the tools.

Many times it may happen that several instances can be
grouped, which can largely speed up their evaluation. For ex-
ample, if two clone detecting tools together find 500 clone pairs
(most clone detecting tools find clone pairs), then by grouping
them, the number of clone pairs can be reduced to a fraction of
the original instance number. In another case, if one of the clone
detectors finds groups of instances (e.g. 30), and the other one
finds clone pairs (e.g. 400), the reason for the latter tool to find
more instances is that its output is defined differently. Relying
on this, it can be said that without grouping, the interpretation
of tool results may lead to false conclusions.

However, grouping is a difficult task since the tools very
rarely label the same source code fragment. This can have a
number of reasons, e.g.:

e The tools use different source code analyzers, which may
cause differences between the instances.

e One tool gives a wider scale of instances than the other. For

example, in the case of code clone searching tools, one tool
finds a whole class as one clone, while the other finds only
two methods in the class.

e One tool labels the opening brackets of a block, while the
other does not.

2.1 Siblings

In order to group instances, their relation needs to be defined.
If two instances are related to each other, they are called siblings.
Basically, three facts determine the existence of the sibling rela-
tion between two instances:

o the matching of their source code positions
e the minimal number of matching participants
e domain dependent name matching

By using these three facts, instances can be connected. In the
followings, we examine these three cases in detail.

Source code positions Sibling relations are mostly deter-
mined by the matching of the source code positions. The con-
tained, the overlap and the ok relations defined by Bellon et
al. [4] can be well applicable for matching. We adopted the
contained and ok relations with a little modification as a contain
relation, because these two relations had originally been used to
compare clone instances where every instance contained exactly
two participants.

Let P and Q be participants with the same roles. If the roles
are not the same then, for example, a ConcreteStrategy partici-
pant could be incorrectly connected with a Context participant.
So, the contain and the overlap relations are defined between P
and Q in the following way:

contain(P, Q) = max(lplngl ’ |P|;|QI
overlap(P, Q) = %

where P - role = Q - role

In the case of the contain and the overlap relations, the set
operations between the participants are applied to the source
code lines of P and Q. These two relations use the positions
of the participants, they will be used together in the following as

matchpy:
match, (P, Q) = contain(P, Q) @ overlap(P, Q)

In the case of match,, we denote either the contain or the
overlap relation (exclusive or). The match,, relation has a value
between 0 and lﬂ The match,,, relation denotes if P and Q

Twe project this value into the interval from O to 100 on the graphical user
interface for the sake of easier understanding and use.

154 Per. Pol. Elec. Eng.

Lajos Jend Fiilop / Péter Hegediis / Rudolf Ferenc

have a match,, value above a given bound or not:

matchpp (P, Q, bound) =

1 if match, (P, Q) > bound
0 otherwise

With the use of the match ,, relation, the match; relation be-
tween the instances can be defined. The match; relation denotes
how many times the match p;, relation has the value of 1 for P
and Q for a given bound. The match; relation is defined as
follows:

match; (I, J, bound) =
Z Z match pp(P, Q, bound)

Pel QeJ

where [and J are two instances.

Minimal number of matching participants. Sometimes it is
not enough to match only one participant between two instances.
For example, in the case of design patterns, the Abstract Factory
pattern should have two participants, Abstract Factory and Ab-
stract Product, for matching. For this reason, it is important to
determine the minimal number of common participants between
two siblings. Let us denote the minimal number with m. The
sibling relation between two instances / and J with parameters
m and bound is defined in the following way:

sibling(1, J, bound, m) =
true if match;(I, J, bound) > m

false otherwise

The instances can be grouped based on the sibling relation.
A group contains instances that have a true sibling relation in
couples. By using groups, the evaluation of the tools is easier,
and the statistical results are better. In BEFRIEND the users can
customize the sibling relations by choosing between the contain
and the overlap relations arbitrarily, giving the bound and m pa-
rameters, and optionally selecting the roles for matching.

Domain dependent name matching. In certain domains,
the roles are not so important (e.g. code duplications have only
one role called clone). However, if a domain contains several
roles, some roles can be more important than the others. For
example, in the case of a Strategy design pattern, basically the
Strategy participant determines an instance and therefore, the
sibling relation should be based on this participant. In the case
of such domains the match ; relation has to be modified. Let
roles be a set that denotes the roles that are the basis of the sib-
ling relations between the instances. The match,;, is redefined
as matchppy:

matchpy (P, Q, bound, roles) =

matchpy (P, Q, bound)
0 otherwise

if P - role € roles

In the case of domains where roles are important, the match
relation has to be replaced with match,; in the formula of
match;.
Extensions. With the previous definitions, it is possible that
a group contains two or more instances which are not siblings
because the contain and the overlap relations are not transitive.
Now, we do not allow these cases, the groups have to be transi-
tive. After all, it can distort the statistics and the comparison be-
cause some instances can be repeated across the groups. There-
fore, we want to deal with this problem in the future in more
detail. Several solutions, for example, a second bound parame-
ter which would denote the minimal rate of the sibling relations
between each instance in a group, might be introduced.

3 Scenarios of use

In this section, we present the use of the system with the help
of some scenarios illustrated with pictures. In each case, first
we give a general description about the discussed functionality,
and afterwards we demonstrate it with a concrete example. The
examples are continuous, they are built on each other, and they
present the use of the benchmark.

3.1 Setting up the database

In this scenario, we present how the user can create a new
domain and evaluation criterion, how he can upload data in the
system, and how he can set siblings. The functions that help to
do the necessary settings can be found under the Settings and
Upload menus.

Creating a new domain. As a first step, a new domain has to
be created according to the data to be uploaded. For the creation
of a new domain, the Domain settings panel has to be used.

Select active domain: | Duplicated Code j

Create

Create new domain;

Fig. 1. Creating a new domain

Example: We will upload the results of a duplicated code de-
tecting software. First, with the help of the Domain settings
panel, we create a new domain which is called Duplicated Code
(see Fig.[I). As a result, the actual domain is set to the newly
created Duplicated Code. If we have created more than one do-
main, we can select the domain we would like to activate from
the Select active domain drop-down list.

Creating new evaluation criteria. In order to be able to
evaluate the uploaded data, appropriate evaluation criteria are

BEFRIEND — a benchmark for evaluating reverse engineering tools

2008 52 3-4 155

needed. The user can create an arbitrary number of criteria for
every domain. On the basis of this, the uploaded instances can
be evaluated. In one evaluation criterion, one question has to be
given to which an arbitrary number of answers can be defined.
Similarly to the domain, we can create a new criterion under
the Sertings menu. When creating a new criterion, the following
data should be given:

o The title of the evaluation criterion (Title).
e The question related to the criterion (Question).

e The possible answers to the question (Choice). To each an-
swer a percentage ratio should be added to indicate to what
extent the given question is answered. Relying on the answers
of the users, the benchmark can calculate different statistics
on the basis of this ratio.

e Should the precision and recall values be calculated?

How correctis it?

I am sure that it is a real duplicated code class.(100%)

I think that it is a real duplicated code class.(66%)

I think that it is not a real duplicated code class.(33%)

I am sure that it is not a real duplicated code class.(0%)

Compute precision and recall values for this cniteria, I\.fes vI

Delete | Madify |

Fig. 2. Correctness criteria

Example: We will create an evaluation criterion, Correctness,
for the previously created Duplicated Code domain. Write num-
ber 4 (meaning that we will have four possible answers) in The
number of choices within the created criteria field in the Evalu-
ation criteria panel and click on the Create new criteria button.
After filling out the form that appears, by clicking on the Submit
button the criterion appears on the setting surface (see Fig. [2).
The Correctness criterion is used to decide to what extent a code
clone class comprises cloned code fragments. For the criterion,
we have also set that the precision and recall values should be
calculated.

During the evaluation, we will use two other criteria: One
of them is Procedure abstraction with the related question: Is
it worth substituting the duplicated code fragments with a new
function and function calls? And the possible answers are:

e Yes, we could easily do that. (100%)

e Yes, we could do that with some extra effort. (66%)

e Yes, we could do that but only with a lot of extra effort. (33%)
e No, it is not worth doing that. (0%)

With this, we define how much effort would be needed to
place the duplicated code fragments into a common function.
The easier it is to introduce a function, the more useful the found

instance is on the basis of this criterion. This is an important in-
dicator because a tool that might not be able to find all the clones
but is able to find most of the easily replaceable ones is worth
much more regarding refactoring.

The third criterion is Gain with the related question: How
much is the estimated gain of refactoring into functions? The

answers:
e The estimated gain is remarkable. (100%)
e The estimated gain is moderate. (50%)

e There is no gain at all. (0%)

It is important to evaluate how much benefit could be gained
by placing the code fragments into a function. It might occur
that something is easily replaceable, but it is not worth the trou-
ble since no benefit is gained.

Tool: I Bauhaus-clones j
Software: IJUnit4.1 j
Language: I Java j

Source: @ http

svn

ocvs
url root: vawvfucu.cumf’src j
File: |D\smence\uploﬁds\CE Browse I

Upload
Fig. 3. Upload

Uploading data into the benchmark. When the user has
created the appropriate domain and the required evaluation cri-
teria, he has to upload the instances produced by the tools to
be evaluated. The upload page can be found under the Upload
menu. The format of the files to be uploaded is completely arbi-
trary, the only condition is that the evaluated tool should provide
a BEFRIEND plug-in to perform the uploading. The benchmark
provides a plug-in mechanism where by implementing an inter-
face the output format of any tool can be uploaded. Currently,
the benchmark has plug-ins for the output formats of the follow-
ing tools: Columbus, CCFinderX, Simian, PMD and Bauhaus.

For uploading, the following data are needed: the name of
the tool, the name and programming language of the analyzed
software. If a data has not occurred earlier, we can add the new
data to the list by selecting the New item. The uploaded data
refer to a certain source code, so it is important to give some kind
of access to these sources. Currently, the benchmark supports
two access methods, Attp and svn (cvs will also be implemented
in the near future).

Example: As the continuation of the evaluation process, we
upload the results produced by the clones command line pro-
gram of the Bauhaus tool into the system. First, click on the Up-
load menu, which will take you to the upload page (see Fig.[3).
After giving the required data and the path of the file containing
the results, click on the Upload button to perform the uploading.

156 Per. Pol. Elec. Eng.

Lajos Jend Fiilop / Péter Hegediis | Rudolf Ferenc

Sibling setting. Siblings can enable that the instances with
similar properties are handled together during evaluation. Set-
tings can be done under the Settings menu, on the Siblings set-
tings panel (see Fig.[3). The user can choose the Contain or the
Overlap relation. In the Path matching bound field, the mini-
mum matching bound of the participants should be given, while
in the Min. number of matching participants field, the number
of participants whose matching we demand from two sibling in-
stances should be given. All setting configurations should be
named; the system saves the different settings. Thus, if we want
to use an already saved setting in the future, we can load it by
selecting it from the Load shortcut menu. The system will not
rerun the sibling grouping algorithm.

Shortcut basic settings:
Path matching type: @ Contain

& OQverlap
Path matching bound: 90 %

Mirn. number of matching participants: 1

Domain dependent name matching:

Instance type: ICIDnEInslance 'l

M clone

Load shortcut: IMDderate 'l

Save/overwrite shortcut as:

Save

lModerate
Fig. 4. Sibling settings

Example: As the last step of the scenario, we set the sibling
parameters for the uploaded results (see Fig.[5). For linking, we
use the Contain relation where the matching bound is set at 90%.
The reason for choosing this bound is that this way the instances
can be linked even in the case of short code clones (10 lines).
The ratio of the Min. number of participants to match is 1, which
means that it is enough to have two matching participants to link
two clone instances. We save this configuration as Moderate.

3.2 Data evaluation

The basic task of the benchmark is to enable the visualization
and evaluation of the uploaded data. In this section, we summa-
rize these functions.

Query view. The uploaded instances can be accessed
through the Evaluation menu. As a first step, the Query view
appears (see Fig. [0), which helps the user define the aspects on
the basis of which the uploaded instances are listed. There are
four possible aspects: Tool, Software, Language and the active
domain (e.g. Duplicated Code). At the bottom of the view, there
is a Connect siblings check box. If this box is marked, the in-
stances appear in groups, not individually.

To every aspect, different values deriving from the data of the
already uploaded instances can be added. For example, when se-
lecting one particular tool from the tool menu only the instances
found by the given tool will appear.

1. aspect: | Software =] [dunitar =]
2. aspect: |Toal MRET =l
3. aspect: |Naone I REE

4. aspect: [None = [an=]

[¥i Connect siblings

Go to results view

Fig. 5. Query view

With further settings, even narrower instance sets can be de-
fined. If the user would like to skip an aspect when filtering, that
aspect should be set to the None value. If he would like to see
all the items related to the selected aspects, the All value should
be used. The sequence order of aspect selection is arbitrary.

Example: Select the Evaluation menu. The Query view page
appears (see Fig. [6). In the Fig.[6] the first aspect is Software
whose value is set to JUnit4.1. The second aspect is Tool whose
value is All, the third and fourth aspects are not used. We have
also activated the Connecting siblings check box. By clicking on
the Go to results view button, we will get to the view of instances
satisfying the given aspects (see Fig. [6).

Results view. The columns of the table correspond to the as-
pects defined in the Query view, with the exception of the last
column. Here, the instance identifiers can be seen. By clicking
on the identifiers, the Individual instance view or the Group in-
stance view appears depending on whether the user has set the
grouping of siblings in the Query view.

Example: In the first column of the table, JUnit4.1 can be
seen according to the aspects set in the Query view previously
(see Fig.[6). Since all the tools were selected, the second col-
umn of the table contains every tool found in the database. The
third column comprises the identifiers of the duplicated code in-
stances found by the tools. It can be seen that not all identifiers
are present in the table since we have set the grouping of siblings
in the Query view, so here the groups appear with the smallest
instance identifiers.

Group instance view and Individual instance view. The
Instance view is used to display and evaluate instances. BE-
FRIEND supports two kinds of instance views, Group instance
view and Individual instance view. While the Group instance
view can display more instances simultaneously, the Individual
instance view displays the participants of only one instance in
every case. Apart from this difference, the two views are basi-
cally the same.

In the Results view, the Instance view can be accessed by
clicking on an instance identifier. If the user has set the grouping
of siblings in the Query view (see Fig.[6), the system automati-
cally applies the Group instance view. Otherwise it applies the
Individual instance view.

Group instance view: The Participants table comprises the

BEFRIEND — a benchmark for evaluating reverse engineering tools

2008 52 3-4 157

|Sofhva_re| Tool |Duplicated Code ids

[Unit4.1 |[Bauhaus-clones|[#2 |[#4 [#5 [#6 [#7 [#8 [#9 [#10 [#15[#16
| | [#17 |[#18 [#19[#21 |[#22 [#23 [#24 [#25 [#26]#28
| | [#29 |[#31 [#32]#33 [#34 [#40 [#43 [#44 [#45|#46
| | [#49 ([#50 [#51[#52 |[#53 [#54 [#3 [#59 |#60[#62
| | [#41 [#64 [#69

| [Simian [#31 |[#7

| [PMD [#7 |[#60 [#31[#17 |[#45

| [CCFinderx [#31 |[#17 |[#43|#588|#589|#44 [#33 [#593[#34[#23
| | [#23 |[#610[#60[#614|#18 [#619[#57 [#623[#4 [#69
| | [#29 |[#63 [#52#50 |#626]#7 [#640[#641[#15]#54
| | [#644

| [Columbus [#624 [#646|#17[#7

Fig. 6. Results view

Duplicated Code Instance Information

Junit4.1
Clonelnstance

Software
Duplicated Code

Participants

clone
clone

clone *

Show criteria...

/JUnit4.1/org/junit/tests
[ForwardCompatibilityPrintingTest.java(68)

String expected= expected(new String[] { ".E", "Time: =

"Errors here", """, "FAILURES!!!",
"Tests run: 1, Failures: 0, Errors: 1", "" });
ResultPrinter printer= new TestResultPrinter(new Print<
@Override
public void printErrors(TestResult result) {
getWriter().printIn("Errors here");

}

runner.setPrinter(printer);

runner.doRun(new JUnit4TestAdapter(ATest.class));
assertEquals(expected, output.toString());

¥

private String expected(String[] lines) {
OutputStream expected= new ByteArrayOutputStream(]
PrintStream expectedWriter= new PrintStream(expectec

for (int i= 0; i < lines.length; i++)

aynactadWritar nrintinflineclil}: =

Al | o

Fig. 7. Group instance view

participants of the instances; the different participants of all the
siblings appear. The table has as many columns as the number
of instances in the group. Each column corresponds to a given
instance whose identifiers are indicated at the top of the column.
In the intersection of a row of participants and a column of in-
stances, either a green / or ared x symbol appears. The green
»/ means that the instance in the given column comprises the
participant in the row. The x symbol means that this particu-
lar instance of the group does not comprise such a participant.
By clicking on the green ./ with the right mouse button, a pop-
up menu appears with the help of which the participant’s source
code can be displayed. It can be selected from the menu whether

#31 #91 #256 #259

vV VvV VvV %
vV vV VvV V
v

x x

/JUnit4.1/junit/tests/runner
[TextFeedbackTest.java(86)

String expected= expected(new String[] =
{".E", "Time: 0", "Errors here", "", "FAILURES!!!", "Tests run: 1, Fa
ResultPrinter printer= new TestResultPrinter(new Print<
@Override
public void printErrors(TestResult result) {
getWriter().printin("Errors here");

runner.setPrinter(printer);
TestSuite suite = new TestSuite();
suite.addTest(new TestCase() { @Override
public void runTest() throws Exception {throw new
runner.doRun(suite);
assertEquals(expected, output.toString());
¥

private String expected(String[] lines) {
OutputStream expected= new ByteArrayOutputStream(;
PrintStraam avnactadWritar= napw PrintStraam/(avnactag:

the source code should be displayed on the left or on the right
side of the surface under the table. This is very useful because
e.g. the participants of the duplicated code instances can be seen
next to each other.

The evaluation criteria and, together with them, the instance
votes can be accessed by clicking on the Show criteria... link
under the table of participants (see Fig.[7). The statistics of the
instances can be accessed by clicking on the staf link above the
evaluation column corresponding to a given instance. By mov-
ing the mouse above any of the green 4/ symbols, a label appears
with the source code name of the given participant (if it has one).
Comments can also be added to the instances. An instance can

158 Per. Pol. Elec. Eng.

Lajos Jend Fiilop / Péter Hegediis | Rudolf Ferenc

be commented by clicking on the instance identifier appearing
above the Participants table. This window even comprises the
information that reveals which tool found the given instance.

Example: Click on instance #31 in the Results view created
in the previous example (see Fig.[6). The Group instance view
appears (see Fig. . Right-click on any of the green ./ symbols,
and select Open to left in the appearing pop-up menu. Right-
click on another green / symbol, and select Open fo right in the
menu. This way the source code of two clone participants will
be displayed beside each other. After examining the participants
of all the four instances belonging to this group, the evaluation
criteria can be displayed by clicking on the Show criteria... link.
Here, the instances can be evaluated.

Statistics view. This view can be reached from the Query
view by clicking on a link other than an instance identifier. Here,
relying on the structure seen in the Results view, the user gets
some statistics according to the evaluation criteria, based on the
previous user votes (see Fig. [§). One table that comprises the
vote statistics referring to all of the concerned instances belongs
to each evaluation criterion. In the first column of the table,
the instance identifiers appear. The identifier of the grouped in-
stances is red, while that of the others is blue. All categories can
be set on the user interface; how to aggregate the statistics of the
grouped instances: on the basis of the average, maximum, min-
imum, deviation or median of the group instance ratio. Beside
the identifiers, five columns can be found where the five pre-
viously mentioned statistics of the instance votes can be seen.
These five values are also calculated for each column (that is for
each statistics value). If we have set in the Settings menu that
the precision and recall values should be calculated, they will
also appear under the table corresponding to the criterion.

Aspect Mean Deviation Iir Max Median |
#32 66.0% 0.0% 66.0% 66.0% 66.0% L
#33 83.0% 24,04% 66.0% 100.0% 83.0%
#34 33.0% 46.67% 0.0% 66.0% 33.0%
#40 83.0% 24,04% 66.0% 100.0% 83.0%
#43 16.5% 23.33% 0.0% 33.0% 16.5%
#4d A3.0% 460 67 % 0.0% f6. 0% A43.0% LI
Mean 52.1%(13.39%| 42.63% | 67.88% 92.1%
Deviation| 26.92%| 16.69% | 31.85%| 18.67% | 26.92%
Min 0.0% 0.0% 0.0% 33.0% 0.0%
Max 100.0%| 46.67%| 100.0%%0| 100.0%| 100.0%
Median 66.0% 0.0% 66.0% 66.0% 66.0%
Summary
Mumber of instances: 43
Mumber of evaluated instances: 43
Murmber of instances above the threshold: 27
Pracision: 62.79%
Total number of instances: &6
Total number of evaluated instances: &6

Total number of instances above the threshold: 32

Recall: 84.38%

Fig. 8. Bauhaus correctness statistics

Example: After having evaluated all the instances found by
the tools, we examine the statistic value we get for the votes of

each tool. Let us go back from the Group instance view (see
Fig.[7) to the Results view (see Fig.[6) by clicking on the Back
to previous view link. Here, we get the statistic values of all
the tools by clicking on *JUnit4.1’. According to the 3 crite-
ria, three tables belong to each tool. In the Correctness table of
the Bauhaus-clones tool, the statistics of the instance votes can
clearly be seen (see Fig. [§). Furthermore, it can also be seen
that some instances are grouped; these are marked in red by the
system. Under the table the precision and recall values are also
displayed. The Number of instances shows the number of in-
stances found by the tool. The Number of evaluated instances
is the number of evaluated instances, while the Number of in-
stances above the threshold is the number of instances whose
votes are above the set threshold. This threshold can be con-
trolled by setting the Threshold for calculating precision and
recall value, which is by default 50%. This value determines
which instances can be accepted as correct instances. On the ba-
sis of this, we can calculate the precision value, which is 62.79%
in this case. The Total number of instances is the total number
of instances found by all tools, the Total number of evaluated
instances is the total number of evaluated instances, while the
Total number of instances above the threshold is the number of
instances with votes above the threshold. Relying on these val-
ues, the recall value can be calculated, which is 84.38% in the
case of Bauhaus.

Comparison view. The system comprises yet another inter-
esting view, the Comparison view. In order to make this view
accessible, we have to start from a statistics view that comprises
several tools. The comparison view compares the instances
found by each tool. For all the possible couplings, it defines
the instance sets found by two tools, and the difference and in-
tersection of these sets. This view helps to compare the tools
with each other.

& = JUnit4.1/Bauhaus-clones
B = JUnit4,1/CCFinders

s w23 [#5 #e0 [#17 [#10f#31 [re |[#2of#se [eas
#52 |[#50 [#4c [#7 [ezaffrar [#40 [e1g]#1e [#2q

| [#53 [[#18 [#32 e [#2glf#si [[#4

B |[#20 [#e0 [#15 [#s4 [#33][#e4q]#cas]#s2][#e10]#sa0
#s0 |[#7 |[#17 w4z [#4 [#31 [#e10

s -B[#a0 [#23 [#5 [#o0 [#1g[eas [#o4 [wes[ecy [#16
#10 [#32 [#c1 [#41 [#a [#c3

o - & [#edal[#5oz][#e10][#sg0]r4z]#e10

& 8 pl[#2a [[#e0 [#sa [[e33 [wszlf#1s [#so [[#7 [ei7 [[#4
#31

Fig. 9. Comparison view

Example: In the Statistics view loaded in the previous exam-
ple, click on the Switch to comparison view and the Comparison
view will appear (see Fig.[0). The comparison of tools is carried
out in couples, and here, we also have the opportunity to link
siblings the same way as in the other views (here the grouped
instances are marked in red as well).

BEFRIEND — a benchmark for evaluating reverse engineering tools

2008 52 3-4 159

4 Experiment

In this section, we summarize the results of the experiment
made with BEFRIEND. We would like to emphasize that the
aim of the experiment was the demonstration of the capabil-
ities of our system rather than the evaluation of the different
tools. During the evaluation five duplicated code finder tools
were assessed on two different open source projects, JUnit and
NotePad++. The tools used in the experiment were Bauhaus
(clones and ccdiml), CCFinderX, Columbus, PMD and Simian.

More than 700 duplicated code instances were evaluated by
two of us. For the evaluation, three evaluation criteria were used:
Correctness, Procedure abstraction and Gain (see Section @])
The results of the tools on the two software are shown in Table[]]
and Table 2]

Tab. 1. Results on NotePad++

Criteria Bauhaus Columbus PMD Simian
ccdiml

Precision 100.0% 96.15% 62.5% 61.43%

Recall 5.06% 28.09% 64.61% 48.31%

Proc. abstr. 62.87% 65.59% 48.16% 48.12%

Gain 55.95% 53.37% 33.88% 34.88%

The precision and recall values presented in the tables are
calculated based on the Correctness criteria. In the rows of Pro-
cedure abstraction and Gain, the average values derived from
the votes given for the instances are shown according to the cri-
teria. We would like to note that a threshold value is needed
for calculating the precision and recall. The instances above
this threshold are treated as true instances (see Section [3.2)). We
used the default 50% threshold value, but the threshold can be
adjusted arbitrarily. For example, in case of three voters, if two
of them give 66% to an instance, while the third one gives 33%,
the average of the three votes is 55%. In such cases, it is rea-
sonable to accept the instance as a true instance since two of the
three voters accepted it, while only one rejected it.

Tab. 2. Results on JUnit

Criteria Bauhaus CCFinder Colum- PMD Simian
clones bus

Precision 62.79% 54.84% 100.0% 100.0% 100.0%

Recall 84.38% 53.13% 125% 15.63% 6.25%

Proc. abstr. 48.31% 44.23% 79.0% 73.0% 66.25%

Gain 29.36% 30.98% 62.5% 62.5% 62.5%

CCFinderX is missing from Table [I] because it produced a
very high number of hits with the parameters we used (it found
over 1000 duplicated code instances containing at least 10 lines).
Due to the lack of time, we were able to evaluate only the four
other tools on NotePad++.

We had some important experience during the evaluation. In
the case of JUnit, PMD and Simian produced a very similar re-
sult as Columbus but our experience is that in general, the token
based detectors (Bauhaus-clones, CCFinderX, PMD, Simian)

produce substantially larger number of hits than the ASG based
tools (Bauhaus-ccdiml, Columbus). This is partly due to the fact
that while the ASG based tools find only the instances of at least
10 lines, which are also syntactically coherent, the token based
detectors mark the clones that are in some case shorter than 10
lines in such a way that they expand the clone with several of
the preceding and succeeding instructions (e.g. with ’}’ char-
acters indicating the end of the block). On the grounds of this
experience we would like to expand the evaluation with a new
criterion in the near future. The new criterion would apply to the
accuracy of the marking of a clone instance. It would also define
what portion of the marked code is the real clone instance.

Based on the Gain and Procedure abstraction values of cer-
tain tools, we can say that the ASG based detectors find less but
mostly more valuable and easily refactorable clone instances.
On the contrary, the token based tools find more clone instances
producing a more complete result.

We would like to note that we also imported the design pat-
tern instances we had evaluated with DEEBEE in our previous
work [10] into our system. Besides these, the system contains
coding rule violation instances found by PMD and CheckStyle
as well. The evaluation of these instances is also in our future
plans.

5 Related work

In this section, first we introduce Sim’s work and later we
analyze the evaluating and comparing techniques related to the
different domains.

Sim et al. [17] collected the most important aspects, prop-
erties and problems of benchmarking in software engineering.
They argued that benchmarking has a strong positive effect on
research. They gave a definition for benchmarking: “a test or set
of tests used to compare the performance of alternative tools or
techniques.” A benchmark has preconditions. First, there must
be a minimum level of maturity of the given research area. Sec-
ond, it is desirable that diverse approaches exist. The authors
defined seven requirements of successful benchmarks: accessi-
bility, affordability, clarity, relevance, solvability, portability and
scalability. Sim gives a more detailed description and examples
in her Ph.D. thesis [[18]].

Nowadays, more and more papers introducing the evaluation
of reverse engineering tools are published. These are needed be-
cause the number of reverse engineering tools is increasing and
it is difficult to decide which of these tools is the most suitable
to perform a given task.

Design patterns. Petterson et al. [[13]] summarized problems
during the evaluation of accuracy in pattern detection. The goal
was to make accuracy measurements more comparable. Six ma-
jor problems were revealed: design patterns and variants, pattern
instance type, exact and partial match, system size, precision
and recall, and control set. A control set was “the set of correct
pattern instances for a program system and design pattern.” The

160 Per. Pol. Elec. Eng.

Lajos Jend Fiilop / Péter Hegediis | Rudolf Ferenc

determination of the control sets is very difficult, therefore so-
lutions from natural language parsers are considered. One good
solution is tree banks. Tree banks could be adapted by estab-
lishing a large, manually validated pattern instances database.
Another adaptable solution is the idea of pooling process: “The
idea is that every system participating in the evaluation con-
tributes a list of n top ranked documents, and that all documents
appearing on one of these lists are submitted to manual rele-
vance judgement.” The process of constructing control sets has
the following problems. They are not complete in most software
systems, and on a real scale software system a single group is not
able to determine a complete control set. They stated that com-
munity effort is highly required to make control sets for a set of
applications.

Duplicated code. Bellon et al. [4] presented an experiment
to evaluate and compare clone detectors. The experiment in-
volved several researchers who applied their tools on carefully
selected large C and Java programs. The comparison shed
light on some facts that had been unknown before, so both the
strengths and the weaknesses of the tools were discovered. Their
benchmark gives a standard procedure for every new clone de-
tector.

Rysselberghe et al. [[16] compared different clone searching
techniques (string, token and parse tree based). For the compar-
ison, they developed reference implementations of the different
techniques instead of using existing tools. During the evalu-
ation, they used certain questions, some of which were corre-
sponding to the criteria introduced in BEFRIEND. Such a ques-
tion was e.g.: “How accurate are the results?”. The different
techniques were tested on 5 small and medium size projects by
using the evaluating questions. In another article, they compared
the reference implementations of the clone searching techniques
on the basis of refactoring aspects [15]]. These aspects were the
following: suitable, relevance, confidence and focus.

Burd et al. [5] evaluated 5 clone searching tools on the uni-
versity project GraphTool. They also faced the problem of how
to link the instances. For this purpose, they used a simple over-
lap method. For evaluation, they used the well-known precision
and recall values. In addition, they presented different statistics,
some parts of which are even now supported by BEFRIEND
(e.g. intersection, difference).

Coding rule violations. Wagner et al. [21]] compared 3 Java
bug searching tools on 1 university and 5 industrial projects. A
5-level severity scale, which can be integrated into BEFRIEND,
served as the basis for comparison. Based on the scale, "Defects
that lead to a crash of the application” is the most serious one,
while "Defects that reduce the maintainability of the code" is the
less serious one. The tools were compared not only with each
other, but with reviews and tests as well. We note that both the
reviews and the tests can be loaded into BEFRIEND by writing
the appropriate plug-ins. In two other articles [20,22]] they also

examined the bug searching tools.

Ayewah et al. [1]] evaluated the FindBugs tool on three large
scale projects, SUN JDK 1.6, Google and GlassFish. During the
evaluation they applied the following categories in the case of
JDK 1.6: Bad analysis, Trivial, Impact and Serious.

Rutar et al. [[14] evaluated and compared five tools: FindBugs,
JLint, PMD, Bandera and ESC/Java. The evaluation was carried
out on 5 projects (Apache Tomcat 5.019, JBoss 3.2.3, Art of [llu-
sion 1.7, Azureus 2.0.7 and Megamek 0.29). They observed that
the rate of overlap among the tools was very low, the correlation
among the hits of the tools was weak. This leads to the conclu-
sion that rule violation searching tools are in a serious need of
such an evaluating and comparing system as BEFRIEND.

A tool demonstration about BEFRIEND [11]] was accepted
by the 15th Working Conference on Reverse Engineering. It
was only a short report of two pages, which was not enough to
introduce BEFRIEND completely. This paper is a big exten-
sion of the tool demonstration: sibling connections are detailed,
BEFRIEND is presented with concrete scenarios and some ex-
perimental results are also shown, etc.

6 Conclusion and future work

We have developed BEFRIEND from the benchmark for eval-
uating design pattern miner tools called DEEBEE. During the
development of BEFRIEND, we were striving for full general-
ization: an arbitrary number of domains can be created, the do-
main evaluation aspects and the setting of instance siblings can
be customized, etc. For uploading the results of different tools,
the benchmark provides a plug-in mechanism. We already ap-
plied BEFRIEND for three reverse engineering domains: design
pattern mining tools, code clone mining tools, and coding rule
violation checking tools. The evaluation results stored in DEE-
BEE have been migrated to BEFRIEND, and in the code clones
domain we have demonstrated the benchmark with further ex-
amples.

In the future, we would like to examine further reverse engi-
neering domains, prepare the benchmark for these domains and
deal with the possible shortcomings. There are also a number of
possibilities for the further development of BEFRIEND. With-
out the sake of completeness, some of these are: instance group-
ing according to further aspects, e.g. in the case of design pat-
terns, creational, structural and behavioural patterns [[12f], in the
case of code clones, the Type I, Il and III [4], while in the case of
coding rule violations, e.g. General and Concurrency [14]. Cre-
ating further statistic views and querying instances on the basis
of the statistic results.

Ayewah et al. [1] mentioned that “there is not significant
agreement on standards for how to evaluate and categorize warn-
ings.” This statement can easily be extended to every domain.
We often face this problem in the case of reverse engineering
tools. In the long term, BEFRIEND could offer a solution to
this problem, this is why we would like to see more and more

BEFRIEND — a benchmark for evaluating reverse engineering tools

2008 52 3-4 161

people using it. As a result, a standard evaluation method could
be created.

This work is the first step to create a generally applica-
ble benchmark that can help to evaluate and compare many
kinds of reverse engineering tools. In the future, we will need
the opinion and advice of reverse engineering tool develop-
ers in order for the benchmark to achieve this aim and satisfy
BEFRIEND is freely available and public on the
link http://www.inf.u-szeged.hu/befriend/

all needs.

References

1 Ayewah N, Pugh W, Morgenthaler J, Penix J, Zhou Y, Evaluating static
analysis defect warnings on production software, Paste *07: Proceedings of
the 7th acm sigplan-sigsoft workshop on program analysis for software tools
and engineering, ACM, 2007, 1-8, DOI 10.1145/1251535.1251536, (to ap-
pear in print).

2 Balanyi Z, Ferenc R, Mining Design Patterns from C++ Source Code,
Proceedings of the 19th international conference on software maintenance
(icsm 2003), IEEE Computer Society, September 2003, 305-314, DOI
10.1109/ICSM.2003.1235436, (to appear in print).

3 The Bauhaus Homepage, available at http://www.bauhaus-stuttgart.
de.

4 Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E, Comparison and
Evaluation of Clone Detection Tools, leee transactions on software engineer-
ing, September 2007, 577-591, DOI 10.1109/TSE.2007.70725.

5 Burd E, Bailey J, Evaluating clone detection tools for use during preven-
tative maintenance, Proceedings of the 2th international workshop on source
code analysis and manipulation (scam 2002), IEEE Computer Society, 2002,
36-43, DOI 10.1109/SCAM.2002.1134103, (to appear in print).

6 The CCFinder Homepage, available athttp://www.ccfinder.net/,

7 The Design Pattern Detection tool Homepage, available at http://java.
uom.gr~nikos/pattern-detection.html,

8 Ferenc R, Gustafsson J, Miiller L, Paakki J, Recognizing Design Pat-
terns in C++ programs with the integration of Columbus and Maisa, Acta
Cybernetica, 15, (2002), 669-682.

9 Fowler M, Beck K, Brant J, Opdyke W, Roberts D, Refactoring: Improv-
ing the Design of Existing Code, Addison-Wesley Pub Co, 1999, ISBN ISBN
0-201-48567-2.

10 Fiilép L J, Ferenc R, Gyimothy T, Towards a Benchmark for Evaluating
Design Pattern Miner Tools, Proceedings of the 12th european conference
on software maintenance and reengineering (csmr 2008), IEEE Computer
Society, April 2008, DOI 10.1109/CSMR.2008.4493309, (to appear in print).

11 Fiilép L J, Hegediis P, Ferenc R, Gyiméthy T, Towards a Benchmark
for Evaluating Reverse Engineering Tools, Tool demonstrations of the 15th
working conference on reverse engineering (wcre 2008), October 2008, DOI
10.1109/WCRE.2008.18, (to appear in print).

12 Gamma E, Helm R, Johnson R, Vlissides J, Design Patterns : Elements
of Reusable Object-Oriented Software, Addison-Wesley Pub Co, 1995, ISBN
ISBN 0-201-63361-2.

13 Pettersson N, Lowe W, Nivre J, On evaluation of accuracy in pattern
detection, First international workshop on design pattern detection for re-
verse engineering (dpd4re’06), 2006 October, http://cs.msi.vxu.se/
papers/PLN2006a.pdf.

14 Rutar N, Almazan C B, Foster J S, A comparison of bug finding tools
for java, Issre *04: Proceedings of the 15th international symposium on soft-
ware reliability engineering, IEEE Computer Society, 2004, 245-256, DOI
10.1109/ISSRE.2004.1, (to appear in print).

15 Rysselberghe F V, Demeyer S, Evaluating clone detection techniques,

Proceedings of the international workshop on evolution of large scale

industrial software applications, 2003., 2003, citeseer.ist.psu.edu/
vanrysselberghe®3evaluating.html.

16 , Evaluating clone detection techniques from a refactoring per-

spective, 19th international conference on automated software engineering
(ase’04), IEEE Computer Society, 2004, 336-339.

17 Sim S E, Easterbrook S, Holt R C, Using Benchmarking to Advance Re-
search: A Challenge to Software Engineering, Proceedings of the twenty-fifth
international conference on software engineering (icse’03), IEEE Computer
Society, 2003May, 7483, DOI 10.1109/ICSE.2003.1201189, (to appear in
print).

18 Sim S E, A theory of benchmarking with applications to software reverse
engineering, Ph.D. Thesis, 2003.

19 The Simian Homepage, available at http://www.redhillconsulting.
com.au/products/simian/,

20 Wagner S, Deissenboeck F, Aichner M, Wimmer J, Schwalb M, An
evaluation of two bug pattern tools for java, Proceedings of the st ieee in-
ternational conference on software testing, verification and validation (icst
2008), ACM, 2008, 1-8, DOI 10.1109/ICST.2008.63, (to appear in print).

21 Wagner S, Jurjens J, Koller C, Trischberger P, Comparing bug finding
tools with reviews and tests, In proceedings of 17th international conference
on testing of communicating systems (testcom’05), Springer, 2005, 40-55,
DOI 10.1007/11430230-4, (to appear in print).

22 Wagner S, A literature survey of the quality economics of defect-detection
techniques, Isese *06: Proceedings of the 2006 acm/ieee international sym-
posium on empirical software engineering, ACM, 2006, 194-203, DOI
10.1145/1159733.1159763, (to appear in print).

162 Per. Pol. Elec. Eng.

Lajos Jend Fiilop / Péter Hegediis | Rudolf Ferenc

http://www.bauhaus-stuttgart.de
http://www.bauhaus-stuttgart.de
http://www.ccfinder.net/
http://java.uom.gr~nikos/pattern-detection.html
http://java.uom.gr~nikos/pattern-detection.html
http://cs.msi.vxu.se/papers/PLN2006a.pdf
http://cs.msi.vxu.se/papers/PLN2006a.pdf
citeseer.ist.psu.edu/vanrysselberghe03evaluating.html
citeseer.ist.psu.edu/vanrysselberghe03evaluating.html
http://www.redhillconsulting.com.au /products/simian/
http://www.redhillconsulting.com.au /products/simian/

	Introduction
	Background
	Siblings

	Scenarios of use
	Setting up the database
	Data evaluation

	Experiment
	Related work
	Conclusion and future work

