
Ŕ periodica polytechnica

Electrical Engineering
52/3-4 (2008) 163–176

doi: 10.3311/pp.ee.2008-3-4.05
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Static Execute After algorithms as
alternatives for impact analysis
Judit Jász

Received 2008-07-22

Abstract
Impact analysis plays an important role in many software en-

gineering tasks such as software maintenance, regression test-
ing and debugging. In this paper, we present a static method to
compute the impact sets of particular program points. For large
programs, this method is more effective than the slightly more
precise slicing. Our technique can also be used on larger pro-
grams with over thousands of lines of code where no slicers can
be applied since the determination of the program dependence
graphs, which are the bases of slicing, is an especially expensive
task. As a result, our method could be efficiently used in the field
of impact analysis.

Keywords
impact analysis · execute after and execute before relations ·

program slicing

Acknowledgement
The author wishes to thank the co-porative work of Árpád

Beszédes, Tamás Gergely, Tibor Gyimóthy and Vaclav Rajlich.
This work was in part supported by Hungarian National grants
no. RET-07/2005 and OTKA K-73688.

Judit Jász

Department of Software Engineering, University of Szeged, Árpád tér 2, H-6720
Szeged, Hungary
e-mail: jasy@inf.u-szeged.hu

1 Introduction
During software engineering, as a program is evolving it be-

comes more and more complex and hard to predict what other
changes are induced by a simple change. In addition, as the size
of the program is growing it is more expensive to repeat the re-
gression tests responsible for quality after a change. The task of
impact analysis is to discover what other program points are af-
fected by a change of a particular program point, or it can even
be to safely reduce the necessary testing steps by taking into
account the changes and thus making the continually running
regression tests more effective.

A rational solution of impact analysis is determining the set of
instructions impacted by the change with a forward slice starting
from the changed program point1 [12]. However, the methods
that omit the expensive costs of slicing work with smaller and
more easily identifiable dependency graphs, so they are more of-
ten used in practice [2, 10, 19]. This is usually possible because
during impact analysis it is not expected to discover statement
level connections, it is more common to give the results at the
procedure level.

If we only have the call graph, which contains only the rel-
ative easily computable call dependencies, we might have an
unsafe approximation for the set of procedures which may be af-
fected by the change [10]. In addition, there are solutions which
combine these two approaches; they work on a smaller depen-
dence graph and make the results determined on the call graph
more precise with program slicing [20].

Another relevant issue of impact analysis – as of any fields
of software analysis – is whether the results should be deter-
mined by using dynamic or only static information. The main
disadvantage of the static approaches is said to be their con-
servatism because the size of the dependence graphs can grow
dramatically in many cases2. The disadvantages of the dynamic
approaches reside in the process and storage of the execution
traces and in the fact that the results depend on how the traces

1A forward slice of a program point consists of the program points whose
execution is influenced by the given program point.

2For example, in the call graph the ambiguous targets of function pointers
and virtual function calls can increase the size.

Static Execute After algorithms as alternatives for impact analysis 1632008 52 3-4

http://www.pp.bme.hu/ee

can reflect the general behaviour of the given program. On the
basis of the facts described above, the investigation of large pro-
gram systems with dynamic analysis is a very expensive task.
Papers [2, 19, 20] deal with dynamic impact analysis, while pa-
pers [4, 10] deal with static impact analysis.

In this paper, our aim is to give an alternative way to deter-
mine the static impact sets of procedures by applying Static Ex-
ecute After relation among them. The approach is motivated by
Apiwattanapong [2], who introduced the notion of Execute Af-
ter relation and applied it in dynamic impact analysis. We give
a graph representation where a suitable traversal gives this rela-
tion. In addition, we give two algorithms that compute the sets
of these relations. The impact sets of procedures can be approx-
imated by these sets. We prove with experimental results that
the computed sets can approximate the sets of sliced procedures
computed by a precise slicer, and in this way, we can approx-
imate the impact sets as well. Our method approximates the
results of the slicer with high precision, over 80% in most cases.
On average, the precision declines only very slightly, by some
4%. Since the introduced algorithms are based on much less
dependencies than the slicer and they work on a more compact
graph representation, they are more convenient to use especially
in the case of large programs. The use of a slicer is strongly af-
fected by the size of the program. While due to the size of graph
representation the slicing of thousands of lines of code is unre-
alizable, our representation is easy to build and use. Although
the introduced technique is language independent, since it only
needs the call graphs and the control flow graphs of the ana-
lyzed programs, we made our experiments on C/C++ programs
so that the results could be comparable with the results of the
CodeSurfer [13], a commercial program slicing tool marketed
by GrammaTech Inc.

The paper is organized as follows. Section 2 reviews the re-
lated works. The Static Execute After relation is introduced in
Section 3. In this section, we give an appropriate graph repre-
sentation for the computation of this relationship and we give
two algorithms for its computation. In Section 4, we confirm
with experimental results that the impact sets constructed by a
static slicer can be efficiently approximated by the impact sets
determined by the Static Execute After relationship. In addition,
the graph representation needed for the Static Execute After re-
lationship is more compact than the system dependence graph
essential for slicing and in this way its use is more efficient in the
case of large programs. The expected property of our method is
to find all the dependencies found by the slicer and so, the recall
value will be 100%. The fact that this property is not realized
in every forward slice is an interesting by-product of our exper-
imental results. We investigate the reason of this in Section 5.
Section 6 discusses the conclusion.

2 Related works
One of the first methods for calculating impact sets is built

only on the call graph of the program [10]. The impact set of

a modified procedure of the examined program consists of the
procedures which are reachable from that modified procedure
in the call graph. This kind of technique is not only imprecise
but it is also incomplete in the sense that it does not suppose
that the modified procedure can influence the caller procedures.
Although the inaccuracy of this method is evident and criticized
by other researchers [21], there are no practical measurements
to confirm the rate of its inaccuracy.

The algorithm PathImpact by Law and Rothermel [18, 19]
deals with dependence based dynamic impact analysis where
compressed running information is generated by the executions
of the instrumented version of the program. By applying for-
ward and backward traversal on the result, we can create the be-
fore and the after execution sets of a given procedure. These sets
are considered as the impact sets of the procedure. Orso et al.
introduced CoverageImpact analysis [20] where the program
executions affected by the modified procedures are selected first,
then the set of procedures covered by these selected executions
are collected and finally, we determine which procedures are af-
fected by the static forward slicing starting from the modified
procedures. The impact set of the given procedure consists of
the intersection of the set of covered procedures and the set of
procedures inserted into slicing.

Apiwattanapong et al. compared these two methods with a
third one given by them [2]. In the practical comparison they
examined different versions of the programs and they created
the dynamic data with the help of the test suites of these pro-
grams. They classified the methods according to their perfor-
mance and precision only. This resulted in the fact that the
newly introduced method, which is based on the determination
of the execute after relation of the procedures, is at least as pre-
cise as the PathImpact method and at least as efficient as the
ChangeImpact analysis.

Beszédes et al. defined the DynamicFunctionMetric [7]
between procedures with the previously introduced execute af-
ter relation thus giving a more precise way to construct the pro-
cedure level impact sets. Their empirical results show that if
we consider the sets of procedures that are at different DFC dis-
tances from a given procedure, then the set which is closer to
the given procedure more probably contains really dependent
procedures than a farther one. For calculating precision and
completeness values, they used the results of the Jadys dynamic
slicer [23] extended to procedure level.

Badri et al. [4] deal with giving static impact sets built on de-
pendencies. The starting point of their approach is similar to the
one presented by us. To determine the static impact sets they
introduce the control call graph program representation, which
is practically created from the control flow graph and the call
graph by leaving out the nodes that do not influence the execu-
tion of the procedure calls3. Badri’s algorithm determines the

3This representation is very similar to the CCFG representation introduced
by us apart from the difference that we do not keep nodes which represent con-

Per. Pol. Elec. Eng.164 Judit Jász

compact series of procedure calls for each procedure by intro-
ducing different notations for the calls in the iteration and in the
different branches of the conditions. In the practical analysis
of the algorithm, they try to compare the introduced technique
only with the impact sets reachable by the call graph, but it is
not clear how the precision of the results are calculated.

In this paper, we show how imprecise the impact sets given
only by the call graph or by other easily computable graphs are,
but the main part of our work deals with the use of the static
execute after relation. Although similarly to Apiwattanapong
et al. [2], we use the concept of precision to compare the re-
sults, this value does not give the proportion of the impact set
and the real size of the program. Instead, we compare the im-
pact sets given by us with the impact sets given by static slicing
as Beszédes et al. [7] did while examining the relationship be-
tween the DFC metrics and the dynamic slice. We give a static
approach for impact sets, but we confirm our statements with
much more precise results not only by examining selected pro-
cedures like Badri et al. [4] did, but by summarizing the results
of all procedures of the examined programs.

This paper is based on our earlier papers [8, 16], but besides,
it introduces the Static Execute After relations from the point of
view of impact analysis. The main contributions of this paper
are the followings: it

• improves the algorithm introduced by [8],

• gives the formal description of Static Execute After algo-
rithm, which is the pair of the algorithm in [16],

• compares the previously mentioned algorithm types,

• gives the detailed introduction of the Interprocedural Compo-
nent Control Flow Graph,

• supplements the results of [16] with further comparisons,

• demonstrates that the handling of arbitrary control flows in
the slicer requires the modification of both the program graph
representation and the slicing algorithm. Our experiments re-
vealed that the slicing algorithm was imprecise in the forward
slicer used in our measurements. We introduced this bug and
its causes in Section 5. In this paper, we examine the effect of
this conservative slicing method on the results.

3 Computation of SEA
Our work is motivated by the Execute After relation intro-

duced by Apiwattanapong et al. [2]. They used this relation to
determine the dynamic impact sets of procedures. According to
the definition, the procedures f and g are in Execute After rela-
tion if and only if any part of g is executed after any part of f in
any of the selected set of executions of the program.

As a static counterpart of this approach we define the Static
Execute After (SEA) relation. We can say that (f, g) ∈ SEA if

ditions and branches and the given nodes are contracted by their connected com-
ponents.

and only if it is possible that any part of g may be executed after
any part of f 4.

As the notion of the backward slice is the dual of the for-
ward slice, the Static Execute Before (SEB) relation can be de-
termined as a dual counterpart of the SEA. The procedures f
and g are in SEB relation if and only if it is possible that any
part of g may be executed before any part of f .

According to Apiwattanapong et al. [2] and Beszédes et
al. [7] the formal definition of the SEA relation is the follow-
ing:

SEA = CALL ∪ SEQ ∪ RET[∪ID],

where

(f, g) ∈ CALL ⇐⇒ f (transitively) calls g,

(f, g) ∈ SEQ ⇐⇒ ∃h : f (transitively) returns into

h, and after that h (transitively)

calls g

(f, g) ∈ RET ⇐⇒ f (transitively) returns into g

or rather the ID is the identic relation that can optionally be the
part of SEA, since a slice also contains the criterion itself and
every change in a function f can affect any part of f from the
impact analysis point of view.

It is easy to see that the union of the given relations are suit-
able to determine the SEA relation, if we rephrase the above
definition. So (f, g) ∈ SEA if and only if there is a path on
the CFG where any of the fentr y events comes before any of
the gexi t events. If we consider each procedure event in pairs,
where each exit entry is related to a given entry, we get three
cases. The path can contain the event pairs of procedure f and
g in the following sequences5:

• fentr y , gentr y , gexi t , fexi t , in this case procedure f (transi-
tively) calls procedure g.

• fentr y , fexi t , gentr y , gexi t , in this case there is a procedure h,
which first (transitively) calls procedure f and after (transi-
tively) calls procedure g.

• gentr y , fentr y , fexi t , gexi t , in this case procedure f (transi-
tively) returns into procedure g.

Since fentr y always comes before fexi t , the identic relation can
also be the part of the SEA relation.

3.1 The ICCFG graph
We have to build a suitable program representation to deter-

mine the SEA relations. The traditional call graph representa-
tion [22] is not sufficient, since it says nothing about the order

4Entering into a procedure, or leaving a procedure are also the events of the
procedure.

5 fentr y , gentr y , fexi t , gexi t and gentr y , fentr y , gexi t , fexi t are impossible
scenarios.

Static Execute After algorithms as alternatives for impact analysis 1652008 52 3-4

#include <iostream>

#include <math.h>

#include <string>

using namespace std;

typedef struct Func{
string* name;

double (*func)(double);
struct Func* nextFunc;

} *Function;

void init (Function* list){
Function tmp = (Function) malloc (sizeof(struc Func));
tmp->name = new string("sin");

tmp->func = sin;

tmp->nextFunc = NULL;

*list = tmp;

tmp=(Function) malloc (sizeof(struct Func));
tmp->name = new string("cos");

tmp->func = cos;

tmp->nextFunc = *list;

*list = tmp;

}

void deleteName(Function elem){
if (elem->name)
delete(elem->name);

}

void deleteFunctions (Function list){
Function tmp=list;

while (tmp){
Function next = tmp->nextFunc;

deleteName(tmp);

free(tmp);

tmp = next;

}

}

void readInputs(string* inputFunction, double* input){
cout << "What is the selected function? ";

cin >> *inputFunction;

cout << "What is the argument? ";

string arg;

cin >> arg;

*input = atof(arg.c_str());

}

bool checkInputs(Function list, string input, Function* selected){
Function tmp = list;

while (tmp){
if ((*tmp->name).compare(input) == 0){
*selected = tmp;

break;
}

tmp = tmp->nextFunc;

}

return *selected != NULL;
}

int main(int argc, char *argv[]){
Function functionList = NULL;

init(&functionList);

string inputFunc;

Function selectedFunc = NULL;

double input = 0.0;
bool isAnyInput = false;
while (!isAnyInput){
readInputs(&inputFunc, &input);

isAnyInput = checkInputs(functionList, inputFunc, &selectedFunc);

}

cout <<inputFunc <<"("<<input<<")=" <<selectedFunc->func(input)

<< endl;

deleteFunctions(functionList);

}

Fig. 1. Example program

of the procedure calls within a procedure. On the other hand, an
Interprocedural Control Flow Graph (ICFG) [17] contains too
much information that is not connected to procedure calls.

First, we define the intraprocedural Component Control Flow
Graph (CCFG) where only call site nodes are considered. Each
CCFG represents a procedure and contains one entry node and
several component nodes. We get these component nodes, by
determining the strongly connected subgraph of the control flow
graph of the procedure. The components are connected by con-
trol flow edges. We can further reduce this component graph,
if we drop out the components with no call sites, and we in-
sert control flow edges among its predecessor and successor
components6. The remainding nodes are ordered into topo-
logical sequences7. In the Interprocedural Component Control
Flow Graph (ICCFG), each procedure is represented by a sim-
ple CCFG, and these CCFGs are connected by call edges. There
is a call edge from a given component node C to a procedure
entry of m if and only if at least one call site of C calls m.

To understand how the ICCFG is built up, let us see the ex-
ample in Fig. 1. This program executes a function selected by
the user. The input of the function is also determined by the
user. If the user’s function is not defined by the init function
in the program, the user has to select another function. If the
input of the function is not valid (it means that it is not convert-
ible to double), the input will be the default 0 value. In the init
function, the program initializes the list of the executable func-
tions. We can further complete the defined list with arbitrary
functions expanded on a double value. The readInputs func-
tion reads the user’s inputs, while the checkInputs function
checks whether the function selected by the user is executable
by the program. The program executes a well defined function
with the help of a function pointer. The allocated memory is
freed by the functions deleteFunctions and deleteName

at the end of the program.
Fig. 2 shows the control flow graph of the main function,

which is the most complex procedure of the program. The
strongly connected components of the control flow graph are
rounded by broken lines. The components which contain func-
tion calls as well are emphasized. The CCFG graph is deter-
mined by these components and the control flows among them.
These components are the black nodes of the ICCFG graph in
Fig. 3. For the sake of simplicity, the figure contains only the
entry nodes of the called procedures, but of course, these proce-
dures also have their own components.

There are four kinds of components.

a.) The component contains only one function call, and the call
has only one target.

b.) The component contains only one function call, but the call

6If two call sites are mutually reachable from each other by control flow
edges then they are represented by the same node.

7This ordering is important only for our second algorithm, which is intro-
duced in Fig. 5.

Per. Pol. Elec. Eng.166 Judit Jász

main entry

isAnyInput

main exit

call selectedFunc->func

call deleteFunctions

call readInputs

isAnyInput = call checkInputs

call init

.

Fig. 2. The CCFG graph of the main function of the example program in
Fig. 1

sin

cos

deleteName

readInputs

main

inita.)

b.)

a.)

d.)

c.)

deleteFunctions

checkInputs

Fig. 3. The ICCFG graph of the example in Fig. 1

has more targets. This situation is due to the fact that the
target of the function call is not determined during compila-
tion time. This can be caused by function pointers and virtual
function calls. At this point, our graph representation can be
very conservative. But the more precise the call graph repre-
sentation of our program is, the more precise our graph repre-
sentation is as well. We can improve the precision of our call
graph by applying an appropriate pointer analysis algorithm
or, in the case of object oriented programs, with the help of
Rapid Type Analysis [3].

c.) The component contains one or more function calls which
are in the same loop, but these calls have more targets. This
situation occurs in a case which is almost the same as point
b with the difference that the function call is in a loop. The
example in Fig. 3 shows the situation when there are more
function calls with different targets. In these cases, all pairs
of the targets will be in SEA relation.

d.) The component contains one function call with one target, but
the function call is in a loop. In this situation, it is possible
that the called function is executed several times, so the called
function is in SEA even if the ID relation is not part of the

SEA relation.

3.2 Algorithm for computing SEA
In the paper [16], we introduced an algorithm that for a given

procedure computes the set of procedures that are in SEB re-
lation with it. In this paper, we give the pair of this algorithm
where we determine the set of procedures which are in SEA re-
lation with the given procedure. Due to the features of our graph
representation, traversing the edges of our graph representation
in the reverse direction is not enough.

The algorithm in Fig. 4 computes the SEA set only for a par-
ticular procedure. In the first round, between lines 4 and 7, it
collects the procedures that call the given procedure, or rather
the components in which the control returns after the execution
of the selected procedure. In this way we can collect the RET
relations. In the second round, between lines 8 and 14, starting
from these components we can collect the procedures which are
in SEQ and CALL relations with the given procedure.

Our other algorithm for computing SEA was introduced
in [8]. In this algorithm, we compute the SEA sets for all pro-
cedures concurrently. However, we can refine our earlier algo-
rithm with the fundamental observation that we can reduce the
size of our graph representation not only by the strongly con-
nected components of the control flow graphs, but also by the
strongly connected components of the call graph.

Lemma 1 Let SCC_CallGraph be a strongly connected com-
ponent graph of the call graph. Let F and G be two components
of the SCC_CallGraph where procedures f ∈ F and g ∈ G.
If (f, g) ∈ SE A, then for all elements of F and G are in SE A
relation.

Proof. The procedures inside a strongly connected component
of the call graph are in transitive call relation. For all f ′(, f) ∈

F there is a transitive C AL L (or RET) relation among f ′ and
f and the same is realized for all g′(, g) ∈ G and g procedures.
If f and g are in CALL, RET or SEQ relation, for all f ′

∈ F
and g′

∈ G are in CALL, RET or SEQ relation, respectively.
The realization of the CALL and RET relations comes from the
transitivity of these relationships, while the existence of the SEQ
relation comes from its definition.

Our modified SEA algorithm in Fig. 5 computes the SEA sets
of all procedures at the same time. In the first line, we determine
the strongly connected components of the call graph. Lines be-
tween 2 and 5 are responsible for determining the CALL and
RET relations. This computation starts from the last component
of the sequence of the topologically sorted components. For ev-
ery component we determine the set of components that can be
called from the selected component, and the set of components
from which the flow of control can return to the selected one.
Lines between 6 and 14 determine the SEQ relations appearing
among the different call sites of a procedure. The topologically
sorted list of components of the procedure is traversed from the

Static Execute After algorithms as alternatives for impact analysis 1672008 52 3-4

program computeSEA(P, f)

input: P : ICCFG of program P
f : a procedure in P

output: S : set of procedures that are in SEA
relation with f

begin
1 Empty S
2 Color components of procedures of P transparent
3 Color components of f to grey
4 Traverse P from entry node of f in backward direction
5 If component c is reached from an entry (not from a component)

then color the successor components of c to grey.
6 If the entry of the procedure e is reached by the traversal then

insert e to S.
7 During the traversal each edge may be touched at most once.

8 While there are grey components
9 Let c be a grey component
10 Color c to black
11 Color the uncolored successor components of c to grey.
12 For all g procedures called by c
13 Insert g to S.
14 Color the uncolored components of g to grey.
15 Output S
end

Fig. 4. Computation of the SEA relation with graph reachability

first to the last. So, when component c of the procedure is un-
der observation, all p predecessor components of c have been
prepared. We determine the set of procedures that is available
before calling p or during the execution of p. So, when we ex-
tend the SEQ relations in line 14, the prev sets of component c
contain all the procedures which can be executed before c dur-
ing the execution of the investigated procedure m. In line 15, the
operation union has to consider that the CALL, RET and SEQ
relations are determined between components on behalf of the
procedures. The reflexivity of the SEA relationship is ensured
at this point.

3.3 Comparison of the algorithms
It can be an interesting question whether the algorithm in

Fig. 4 or the algorithm in Fig. 5 is more useful for a particular
case. It seems that if we want to know the impacts of only few
procedures then the algorithm in Fig. 4 is more efficient. How-
ever, in many cases we are interested in the determination of
the impact of almost every procedure. Although there are many
factors of the algorithms that determine their complexity, we try
to compare them. First, let us see the steps of the algorithms,
which mainly determine their costs:

• Algorithm in Fig. 4

a) Rows 1-3: initialization

b) Rows 4-7: traversing all the incoming edges of the entry
nodes of procedures and the incoming flow edges of com-
ponents. This step determines the RET relations of the
given procedure.

c) Rows 8-14: traversing all the outgoing call and flow edges
of components and procedure entry nodes starting from the
components that are the successors of the components col-
lected by the first traversal of the graph. This step deter-
mines the CALL and SEQ relations of the given procedure.

• Algorithm in Fig. 5

a) Rows 1-5: computing the CALL and RET relations.
b) Rows 6-14: traversing all components in the procedure and

making the Cartesian product of the set of procedures that
can be executed before the execution of the component but
after entering the actual procedure and the set of procedures
called direct or indirect by the given component. Actually
these steps determine the SEQ realations that come into
existence by the procedure m.

The main difference between the algorithms is that the first
one computes the impacts of only one procedure, while the sec-
ond one computes the impacts of all procedures. So, if we want
to know the total cost of the earlier algorithm, we have to multi-
ply its cost with the number of procedures for which we want to
compute the impact sets.

Per. Pol. Elec. Eng.168 Judit Jász

program computeSEA(P)

input: P : ICCFG of program P

output: SEA : the SEA relation for all procedures

begin
1 SCC_CallGraph := componentQueue(callGraph).
2 for cc := last(SCC_CallGraph) to first(SCC_CallGraph)

3 forall cc_next components of succComponentOf[cc]
4 CALL[cc].insert (cc_next ∪ CALL[cc_next]);

endforall
5 RET = inv(CALL);

endfor
6 forall m procedures of the program
7 topOrder := componentQueue(m)

8 for c := first(topOrder) to last(topOrder)
9 prev[c] :=

⋃
p∈previous components of c prev[p]

10 if c is in loop
11 prev[c] := prev[c] ∪ CALL[c]

endif
12 SEQ := SEQ ∪ (prev[c] × CALL[c])
13 if c is not in loop
14 prev[c] := prev[c] ∪ CALL[c]

endif
endfor

endforall
15 SEA := C AL L ∪ RET ∪ SE Q;

end

Fig. 5. Computation of SEA for all procedures

Contrary to the algorithm in Fig. 4, the main advantage of the
algorithm in Fig. 5 is that it needs to visit all the procedures only
once during the computation, while the other has to traverse the
procedures several times when we want to compute the impact
sets of several procedures. Anyway, this multiple traversal can
be cheaper in many cases than the Cartesian product computa-
tion of the algorithm in Fig. 5.

The worst case computational complexities of the algorithms
are the following: let n be the number of procedures, k and e be
the maximum number of component nodes and edges in the pro-
cedures respectively, and m be the maximum number of proce-
dure calls in a component. The first method traverses the graph
twice to determine the relations of a given method. Both traver-
sals are linear to the graph size, thus this method has a worst
case computational complexity of O(n · e +n · k ·m), if we want
to compute the SEA relations of all n procedures. The second
algorithm first determines the transitive calls of all procedures,
then it computes an ordering of the components and performs
set operations for each component. If appropriate data structures
are used, this is done in O(n · e + n · k · m) time. These com-
plexities are roughly the same as the computational complexity
of the detailed SDG-based static slicing algorithm [15]. How-
ever, there are significant differences between slicing and our

two approaches. The main difference is in the building of SDG
and ICCFG. The building of both requires an Interprocedural
Control Flow Graph (ICFG). The ICCFG can be easily derived
from the ICFG by deleting nodes and performing two depth-first
graph traversals for finding strongly connected components. On
the other hand, the building of the SDG requires the compu-
tation of control and data dependencies, which are additional
(also complex) algorithms. Finally, the number (k) of nodes of
the graph of the given procedure is also larger in the SDG than
in the ICCFG. Thus, the overall computation complexity of the
ICCFG is significantly better than that of the SDG.

To return to the comparison of our two algorithms, we an-
alyzed the source of the gcc compiler. Of course the worst
case computational complexities of the algorithms are almost
the same, there could be significant differences in practice. In
order to get comparable results, we used the same framework
and data representation for handling the recognized relations.
We chose the gcc for this measurement because its graph repre-
sentation size was enough to emphasize the differences between
the execution times of the algorithms. We executed the algo-
rithm in Fig. 4 for every procedure and we also executed the
algorithm in Fig. 5 and its original version.

Static Execute After algorithms as alternatives for impact analysis 1692008 52 3-4

We found that the total execution time of the algorithm in
Fig. 4 was quintuple of the algorithm in Fig. 5, and the execution
time of this algorithm was half the execution time of the original
algorithm introduced in [8].

Although this practical measurement is not enough to decide
which algorithm is better in a particular situation, we can say
that the more procedures’ SEA sets we want to calculate, the
more likely we have to apply the algorithm in Fig. 5.

4 Empirical results
In this section, we try to prove with experimental results that

the determination of the SEA/SEB relations is safely usable in
the procedure level impact analysis and it can replace the more
resource demanding slicing8. We compare the SEA/SEB sets
of the procedures of the investigated programs with the results
of procedure level slicing where the result sets connected to the
particular procedure contain the procedures which are reachable
from any slice starting from any criterion of the given procedure.
Additionally, we will show that an impact analyzer tool, which
is built only on a call graph or on a dependence graph which
contains only partial information about the program, gives more
imprecise results for these programs.

4.1 Computation of recall and precision
During our measurements, we compare the obtained results

with the results of slicing9. For each procedure, we determine
the sets of procedures which are contained by any of the forward
(backward) slices starting from the procedure and we compute
the SEA/SEB sets of each procedure. For each procedure, these
sets contain the procedures which are in SEA/SEB relation with
the given procedure.

For a given procedure

• the true positive examples (T P): the procedures which are
identified by either the slicer or the SEA/SEB relation,

• the false negative examples (F N): the procedures which are
identified by the slicer, but not by the SEA/SEB relation,

• the false positive examples (F P): the procedures which are
identified by the SEA/SEB relation, but not by the slicer,

• the true negative examples (T N): the procedures which are
identified by neither the slicer nor the SEA/SEB relation.

The recall value:

recall =
T P

T P + F N
8Of course, it would be much interesting to give an exact mathematical way

for this comparison, but it is almost impossible, because the semantic and the
structure of the analyzed program strongly affect the difference between the re-
sults of slicing and of our approaches. There are programs where the results of
the slicing and the SEA computation are the same, while in the worst case the
SEA result contains all the procedure of the analyzed programs even if the result
of the slicing is more less.

9The SEA and SEB relations approximate the forward and the backward slice
respectively.

The precision value:

precision =
T P

T P + F P
A program slice starting from any criterion of the program

is easy to obtain by the appropriate traversal of the edges of
the system dependence graph of the program [15]. The touched
edges are the control-, data-, parameter- and the summary edges.
The latter connects the formal input and output parameters of
the procedures. Theoretically, these edges could only appear
between such nodes among which there is a path determined by
control flow edges. Thus, the procedure level results of slicing
must be the real subset of the results of the SEA/SEB sets com-
putations, and the recall value must be 100% in every case.

This assumption was not fulfilled in the comparison of the re-
sults of forward slices determined by the CodeSurfer program
slicing tool and the SEA sets, while it was fulfilled in the back-
ward cases10. We investigate the reasons for this in Section 5.

So, in our experiments, we compare only the connection be-
tween backward slices and SEB relations. We can do this, since
the data could show the same result in the forward case, if the
duality of the backward and forward slices was also realized in
practice.

4.2 Implementation
So that the SEA/SEB sets computed by our algorithm will be

comparable with the results of the CodeSurfer program slicing
tool [13], the ICCFG graph, which is the basis of our algorithm,
is produced by using the CodeSurfer’s Application Program-
ming Interface. Of course, our method is independent of the
detailed computations of the CodeSurfer, since it is built only on
the call graph and the intraprocedural control flow graphs of the
program. This information can be extracted from the program
by other tools. For this purpose, we used our self developed
Columbus framework [11] in our earlier paper [8]. Fig. 6 shows
the computational steps for determining the appropriate graph
representations to compute slices and SEA/SEB relations.

CodeSurfer permits the construction of different graph repre-
sentations according to the presets defined by the user. It is used
as the common front end which performs source code parsing
and produces the common internal representation, which may
be slightly different in the cases of the two dependence compu-
tation parts.

We used different presets of the frontend for the two meth-
ods in order to gain a more optimal performance for each of
the approaches (see Table 1). These presets are different in the
SEA/SEB computation and in slicing, because the SEA/SEB
computation requires less information and uses less expensive
computations than slicing.

In order to determine a program slice starting from a partic-
ular program point, one has to determine the control- and data

10This apparent aberration comes from the fact that the duality of backward
and forward slices is not fulfilled in practice by applying the CodeSurfer (2.1p1)
program slicing tool.

Per. Pol. Elec. Eng.170 Judit Jász

src1 srcn

IR

ICCFGSDG

computations
dependence

computations
dependence

slicing
statement level

...

parsing

SDG building ICCFG building

Fig. 6. Experimental tool architecture

Tab. 1. Different presets of the used CodeSurfer

Preset of CodeSurfer SDG ICCFG

-control-dependence yes no

-data-dependence yes no

-compute-gmod yes no

-compute-summaries yes no

-cfg-edges no yes, both directions

-basic-blocks no yes

dependencies inside each procedure, the use of global and other
variables has to be recorded for every procedure, and the sum-
mary edges which connect the formal inputs and outputs of the
procedures have to be computed.

For the construction of the ICCFG graph, it is sufficient to
give the program call graph and collect the call sites of each
procedure with the control flow edges connected them. Thus, the
construction of the ICCFG graph is only a simple conversion.
We have to compute the topologically ordered sequence of the
strongly connected components of the vertices determined by
the call sites and we have to note the call edges starting from
them, and the flow edges among them.

4.3 Subject programs
For the experiments about precision, we started with the suite

of C programs of Binkley and Harman [9], but in some cases,
we used different versions. Table 2 lists the subject programs
with some related basic data, namely the number of procedures
and the lines of code (TL means total lines, while LCode means
logical line as provided by the CodeSurfer). In order to find
the limits of the different approaches in terms of space and time
costs, the efficiency of the methods is verified on several C/C++
large software systems available as open source. The basic fea-
tures of these systems are listed in Table 3.

4.4 Results
Fig. 7 shows that the call graph only does not give sufficient

information about the possible impact sets. The recall values are
low in this case, so in many cases, the impact sets determined by

Tab. 2. C language test programs for precision measurements

Program Number

of

procedures

TL LCode

time v1.7 12 1 314 757

replace v? 21 563 512

compress v? 24 1 937 1 335

wdiff v0.5 27 1 862 1 080

which v2.17 28 1 989 1 246

acct v6.3 50 3 510 1 996

termutils v2.0 57 3 685 2 518

barcode v0.98 62 3 885 2 331

indent v2.29 111 11 539 7 582

ed v0.8 120 3 052 2 267

EPWIC v? 149 9 597 5 249

flex v2.4.7 152 14 184 9 134

byacc v1.9 178 3 553 2 737

diffutils v2.8 192 15 022 9 735

bc v1.06 204 7 794 5 290

userv v0.95.0 239 7 909 6 016

copia v? 242 1 168 1 085

gnuchess v5.07 261 16 533 11 045

tile-forth v2.1 286 5 730 3 549

li v? 357 7 597 4 793

espresso v? 361 22 050 21 780

go v? 372 29 629 22 118

ijpeg v? 467 28 185 15 253

ctags v5.0 518 13 750 10 018

sendmail v8.14 548 123 965 77 950

findutils v4.2.31 608 41 661 27 261

a2ps v4.13 902 54 954 33 573

gnubg v1.2 192 6 705 4 330

gnugo v3.6 2 188 151 376 110 631

Tab. 3. C/C++ language test systems for efficiency measurements

System Number of TL LCode

procedures

valgrind 3.3.0 (C) 5 318 228 763 141 631

gdb 6.7.1 (C) 8 095 473 793 303 552

gcc 4.0 (C) 16 108 1 052 353 725 620

mozilla 1.6 (C++) 83 432 2 382 459 1 414 946

the call graph only can hardly approximate the real impact sets.
Fig. 8 compares the average size of the call, control, slice and
the SEA/SEB relations connected to the individual procedures.
The control dependence is a little bit more precise than the call
relation, because in many cases the execution of a procedure can
determine the execution of another procedure, even if there is no
call relation between them. However, Fig. 8 shows that the con-
trol dependence information is not enough either to predict the
real impact set of a particular procedure. This is a very impor-
tant observation, because it means that significant parts of the
impacts are caused only by data dependencies.

According to our expectations, the recall values of the impact
sets determined by the SEB relations are 100% in all cases, and
the precision values are also high. Apart from the case when the
precision is only about 67%, the precision values are between

Static Execute After algorithms as alternatives for impact analysis 1712008 52 3-4

0%

20%

40%

60%

80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
IC fle

x

by
ac

c

dif
fu

tils bc
us

er
v
co

pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Fig. 7. The recall values of impact sets determined by only the call graph.

0%

20%

40%

60%

80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
ICfle

x

by
ac

c

dif
fu

tils bc
us

er
v

co
pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Call

Control backward

SLICE backward

SEB(SEA)

Fig. 8. Comparison of the size of the average call, control, slice and the
SEA/SEB relations of procedures

77,28% and 98,77% as it is readable from Fig. 9. We can say
that the SEB relations nicely approximate the backward slice
results. The main disadvantage of the static slice is said to be
the fact that it contains almost the whole program, so the use of
the static slice is not so effective. In Table 4, by investigating
all procedures of certain programs, we collect the average per-
centage of the procedures which are in any of the slices starting
from any criterion of the given procedure. In this table, we also
introduce the average size of the SEB relations of procedures in
a program. It is easy to see that there are some cases where the
average slice size becomes almost the same as the program size,
but this is not typical.

Up to now, the examined data have shown the average sizes
of slices and the SEB sets connected to the certain procedures.
However, the SEB sets approximate the slices well, not only on
average, but for every procedure as well. Fig. 11 shows the his-
togram of the differences between backward slice sizes and the
sizes of the SEB sets of each procedure of each program. As
it is readable from the figure, these differences are very small
in most cases. Although there are cases where the difference
reaches 48% of the size of the given program, the number of
these situations is irrelevant according to the number of all pro-
cedures. Moreover, having investigated the situations where the
difference was greater than 25%, we found that only three pro-
grams – wdiff, barcode, gnuchess – were responsible for
these cases.

The fact that the determination of the SEB relation approxi-
mates accurately the slice sizes is not enough in itself. The main

Precision

0%
20%
40%
60%
80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
ICfle

x

by
ac

c

dif
fu

tils bc
us

er
v
co

pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Fig. 9. The precision of the SEB sets relative to the backward slices.

0%

20%

40%

60%

80%

100%

tim
e

re
pla

ce

co
m

pr
es

s
wdif

f

whic
h
ac

ct

te
rm

ut
ils

ba
rc

od
e

ind
en

t
ed

EPW
ICfle

x

by
ac

c

dif
fu

tils bc
us

er
v

co
pia

gn
uc

he
ss

tile
-fo

rth li

es
pr

es
so go

ijp
eg
cta

gs

se
nd

m
ail

fin
du

tils
a2

ps

gn
ub

g

gn
ug

o

Slice average
SEB average

Fig. 10. The data of Table 4

advantages of our method and our graph representation are that
they are much simpler than the graph representation of the pro-
gram, which is suitable on slicing. Both slicing and determining
the SEB are reachability problems on an appropriate graph rep-
resentation. Due to the much bigger representation, the graph
traversal can be much more time consuming in the case of slic-
ing. Although so far, slicing has been somewhat more expensive
than the computation of SEB sets in the case of most programs,
using a slicer can be convenient even with the computers used
nowadays. However, in the case of programs with thousands
of procedures and millions of lines of code where slicing is not
feasible, we can use our technique efficiently.

The two program representations used in our case study share
the same structure on the highest level, namely both of them in-
clude a node for each procedure of the program. However, there
are significant differences in these representations regarding the
amount of data to be stored for a procedure. Table 5 contains
the relevant numbers. It can be easily deduced that ICCFGs re-
quire a significantly smaller amount of nodes and edges and the
difference is about two degrees of magnitude. The CodeSurfer
could not build up the system dependence graph of the biggest
program, so the corresponding data are missing from the table.

Table 6 investigates major real applications. It compares the
building times of the system dependence graph and the ICCFG
graph, which are the basis of slicing and the SEB computations
respectively. We made our experiments on an AMD Opteron 2.2
GHZ processor with 4G memory.

Per. Pol. Elec. Eng.172 Judit Jász

Tab. 4. The average size of backward slices and the average size of the SEB
sets.

Programs Backward

slice

sizes

SEB

sizes

a2ps 39,99% 46,78%

acct 56,40% 71,72%

barcode 14,72% 17,07%

bc 48,88% 54,22%

byacc 45,55% 54,74%

compress 44,97% 50,00%

copia 98,76% 99,99%

ctags 74,29% 80,55%

diffutils 27,80% 35,09%

ed 77,42% 83,70%

EPWIC 14,65% 16,63%

espresso 60,88% 65,51%

findutils 20,63% 22,77%

flex 63,92% 77,41%

gnubg 18,03% 23,20%

gnuchess 20,96% 24,84%

gnugo 21,84% 23,56%

go 95,69% 96,49%

ijpeg 34,71% 40,05%

indent 67,32% 71,13%

li 53,38% 54,50%

replace 72,34% 74,60%

sendmail 57,86% 66,39%

termutils 55,68% 62,88%

tile-forth 5,12% 5,61%

time 57,64% 63,89%

userv 47,14% 51,81%

wdiff 41,29% 64,75%

which 80,74% 84,06%

5 Duality of the backward and forward slices
Even though from the point of view of impact analysis the

comparison of the forward slices and the SEA relation would
be a more obvious choice in the empirical measurements, we
took the reverse direction. The main reason for this choice was
that the imprecision of the forward slice caused some differences
which distorted our results. Actually, a well functioning forward
slicer is the dual pair of the backward slicer. It means that if the
forward slice of the program point A contains the program point
B, then the backward slice of the program point B contains the
program point A. Our measurements investigate the slices of
all program points as the criteria of the slices, so if duality was
realized, the average size of the result sets would be the same
in the two directions. In this section, we investigate how it is
possible that this duality feature is not fulfilled.

The slicing algorithm of the CodeSurfer is based on the algo-
rithm of Ball and Horwitz [5]. For generating executable slices,
it augments the original control flow graph of the program with
additional control flow edges which, in the case of jump or abort
statements (break, continue, goto, return . . .), point
to those statements where the control would follow the execu-

0

500

1000

1500

2000

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Difference

N
u

m
b

er
 o

f
m

et
h

o
d

s

Fig. 11. Differences of the SEB sets and the backward slices of the proce-
dures of all programs.

Tab. 5. The sizes of the different graph representations

valgrind

SDG
vertices 1 920 150

edges 6 947 024

ICCFG
vertices 154 509

edges 179 626

gdb

SDG
vertices 10 086 409

edges 48 876 108

ICCFG
vertices 160 340

edges 185 611

gcc

SDG
vertices 18 775 143

edges 81 492 908

ICCFG
vertices 467 185

edges 584 972

mozilla

SDG
vertices N/A

edges N/A

ICCFG
vertices 1 587 499

edges 1 723 611

tion if there was not a jump statement in that point. So, the latter
statements which the control does not get into are in essence
control dependent on the jump or abort statements. This method
is suitable for slice computation where the slice has to be exe-
cutable and semantically the same as the original program.

Bent et al. compared one of the earlier versions of the
CodeSurfer with their own slicer called Sprite [6]. They inves-
tigated how a more precise dependence determination could af-
fect the size of program slices. In most cases, the CodeSurfer
was much more precise. However, according to the fact that the
CodeSurfer makes executable slices, in some cases, the slices
also contain statements which cannot affect the behaviour of the
given program point and could be dropped out of the slice.

The backward slice from the 9th line of the example in Fig. 12
originally contains – in the investigation of Bent et al. – the 5th
and 6th lines. Of course, these lines do not have any effect on
the criterion, and without these lines, the slice is also executable
and semantically has the same behavior as the original program
in the statements of line 9. Similarly the forward slice from the
condition of line 5 contains the statements of line 9.

This problem is originated in the algorithm of Ball and Hor-
witz [5]. Consider the control flow graph of the procedure foo
and complete it with the control flow edges given by the algo-
rithm. Build the program dependence graph by taking into con-
sideration the augmented edges by which false dependent con-

Static Execute After algorithms as alternatives for impact analysis 1732008 52 3-4

Tab. 6. Building times of graph representations

System Parsing SDG ICCFG

time building building

time time

valgrind 5 min 16 min 2 min

gdb 8 min 124 min 4 min

gcc 69 min 571 min 11 min

mozilla 113 min N/A 54 min

1 int foo(int i){
2 int result := 0;
3 switch(i) {
4 case 1:
5 if (hoo())
6 return 0;
7 break;
8 case 2:
9 result = goo();

10 break;
11 }
12 return result;
13 }

Fig. 12. Example according to Bent et al.

hoo()

breakreturn 0

return result

augmented control flow edges

control flow edges

foo entry

result := 0

i

break

result := goo()

Fig. 13. The control flow graph of the code in Fig. 12

foo entry

result := 0 i

hoo() break break

return result

result := goo()

false control dependence edges

control dependence edges

return 0

Fig. 14. The program dependence graph of the code in Fig. 12

trol flow edges can be imported. Fig. 13 and Fig. 14 show these

Tab. 7. Test programs where the forward slices contain redundant elements.

Program Differences between

forward and backward

slices

Erroneously classified

elements in the

forward slices

termutils 0,15% 0,276%

ed 0,39% 0,482%

diffutils 0,50% 1,76%

espresso 5,35% 8,027%

sendmail 0,02% 0,028%

a2ps 4,25% 9,423%

gnubg 0,43% 2,24%

gnugo 0,69% 2,764%

graphs of the example in Fig. 12, respectively 11.
This false control dependence determined by Ball et al. is

a non transitive relation, while the determination of a slice re-
mains a simple reachability problem over the augmented pro-
gram dependence graph as it was in the algorithm of Horwitz et
al. [15]. Since false control dependence is not a transitive re-
lation, the slice should not contain a program point if there is a
path between the criterion and the program point where the false
control dependence edges follow each other. The elimination of
these situations could reduce the size of the slice and the slice
would still remain executable.

Although the present version of the CodeSurfer (2.1p1) pays
attention to this situation in the case of backward slices, it does
not in the case of forward slices. According to the faith of the
GrammaTech Inc., it will be corrected in the next release of the
CodeSurfer.

We have to note that Harman and Danicic published an
algorithm for slicing unstructured programs [14] and they
proved that their solution is more precise than the algorithm of
Agrawal [1] and the algorithm of Ball and Horwitz. Neverthe-
less, they only dealt with backward slices as well and they did
not investigate whether the adaptation of their algorithm in the
forward direction gave the dual pair of the backward slice or not.

5.1 The effect of this problem on the experimental results
The effect of the above introduced problem is that the duality

among the backward and forward slices is not fulfilled in some
cases. So, it is possible that there is a program point A whose
forward slice contains the program point B, while the backward
slice of the program point B does not contain the program point
A. In addition, this problem decreases in the comparison of for-
ward slices and SEA sets. In some cases, there are procedures
whose slices contain such a procedure that is not in the SEA set
of the given procedures12.

Table 7 contains the programs of our tests where this problem
appeared. Since we made slices from all potential vertices of
the program, our original assumption was that the summary of

11Data dependencies are not represented. These are no effect to this problem.
12This is a rightful trouble. The SEA set of a procedure does not contain

rightfully the procedures which are not reachable from the given procedure by
control flow edges.

Per. Pol. Elec. Eng.174 Judit Jász

the size of forward slices and the summary of the size of back-
ward slices would be the same. The first column of the table
shows for each procedure with what percentage the forward slice
is larger than the backward slice in general. The second col-
umn describes for each program what percentage of the forward
slices is found false in the slice by SEA.

Altogether there were only 8 programs where the problem ap-
peared. In many cases, the number of the incorrectly identified
elements in the slices was very low, but in some cases, the num-
ber of unnecessary elements in the slices is remarkable.

6 Conclusion
In this paper, we present two methods to compute impact sets

for procedures with the help of our ICCFG graph representation
of the program. The ICCFG graph is based on the call graph
of the program and on the reduced control call graphs of each
procedure. We have proved with experimental results that the
precision of our methods is slightly more inaccurate than slicing
and it is efficiently applicable on large programs, too.

The investigation of the experimental results also reveals the
fact that the more expensive computations do not have the ap-
propriate benefits on any level of abstraction. Although slic-
ing can be more precise on statement level, on a higher level of
abstraction e.g. on procedure level, a not so precise but more
effective method such as the SEA computation can be more use-
ful as an implementation of impact analysis. Additionally, in a
complex computation like slicing, it is easier to make a mistake
just as the slicer did in our case when handling arbitrary con-
trol flows. Moreover these inaccuracies of a complex algorithm
can be completed with any other intentional imprecision for the
sake of efficiency. For example, the handling of points-to in-
formation, arrays, structure fields, etc. can be different during
slicing depending on whether the precision or the efficiency is
more important. In these cases, it is increasingly more likely
that the originally more imprecise but more effective algorithm
has the same results with much less effort.

References
1 Agrawal H, On slicing programs with jump statements, PLDI ’94: Proceed-

ings of the ACM Sigplan 1994 Conference on Programming Language De-
sign and Implementation, 1994, pp. 302-312, DOI 10.1145/773473.178456,
(to appear in print).

2 Apiwattanapong T, Orso A, Harrold M J, Efficient and precise dy-

namic impact analysis using execute-after sequences, Proceedings of the 27th
International Conference on Software Engineering (ICSE’05), May 2005,
pp. 432-441, DOI 10.1145/1062455.1062534, (to appear in print).

3 Bacon D F, Fast and effective optimization of statically typed object-oriented

languages, Ph.D. Thesis, 1997. Chair-Susan L. Graham.
4 Badri L, Badri M, St-Yves D, Supporting predictive change impact analy-

sis: A control call graph based technique, Apsec ’05: Proceedings of the 12th
Asia-Pacific Software Engineering Conference (APSEC’05), 2005, pp. 167-
175, DOI 10.1109/APSEC.2005.100, (to appear in print).

5 Ball T, Horwitz Susan, Slicing programs with arbitrary control-

flow, Automated and algorithmic debugging, 1993, pp. 206-222, DOI

10.1007/BFb0019410, (to appear in print), citeseer.ist.psu.edu/
article/ball92slicing.html.

6 Bent L, Atkinson D, Griswold W, A qualitative study of two whole-

program slicers for C, citeseer.ist.psu.edu/bent01qualitative.
html.

7 Beszédes Á, Gergely T, Faragó Sz, Gyimóthy T, Fischer F, The dy-

namic function coupling metric and its use in software evolution, Proceedings
of the 11th European Conference on Software Maintenance and Reengineer-
ing (CSMR 2007), 2007mar 21, pp. 103-112, DOI 10.1109/CSMR.2007.47,
(to appear in print).

8 Beszédes Á, Gergely T, Jász J, Tóth G, Gyimóthy T, Rajlich V,
Computation of static execute after relation with applications to soft-

ware maintenance, Proceedings of the 2007 IEEE International Confer-
ence on Software Maintenance (ICSM’07), October 2007, pp. 295-304, DOI
10.1109/ICSM.2007.4362642, (to appear in print).

9 Binkley D, Harman M, A large-scale empirical study of forward and back-

ward static slice size and context sensitivity, Proceedings of the International
Conference on Software Maintenance (ICSM’03), September 2003, pp. 44-
53, DOI 10.1109/ICSM.2003.1235405, (to appear in print).

10 Bohner Sh A, Arnold R S. (eds.), Software change impact analysis, IEEE
Computer Society Press, 1996.

11 Ferenc R, Beszédes Á, Tarkiainen M, Gyimóthy T, Columbus – reverse

engineering tool and schema for C++, Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2002), October 2002, pp. 172-
181.

12 Gallagher K B, Lyle J R., Using program slicing in software maintenance,
IEEE Transactions on Software Engineering 17 (1991), no. 8, 751-761, DOI
10.1109/32.83912.

13 GrammaTech’s CodeSurfer, GrammaTech, Inc., http://www.

grammatech.com/products/codesurfer.
14 Harman M, Danicic S, A new algorithm for slicing unstructured pro-

grams, Journal of Software Maintenance 10 (1998), no. 6, 415–441, DOI
10.1002/(SICI)1096-908X(199811/12)10:6<415::AID-SMR180>3.0.CO;2-
Z.

15 Horwitz S, Reps T, Binkley D, Interprocedural slicing using dependence

graphs, ACM Transactions on Programming Languages and Systems 12
(1990), no. 1, 26-61, DOI 10.1145/77606.77608.

16 Jász J, Beszédes Á, Gyimóthy T, Rajlich V, Static Execute After/Before

as a replacement of traditional software dependencies, Proceedings of the
2008 IEEE International Conference on Software Maintenance (ICSM’08),
September 2008, DOI 10.1109/ICSM.2008.4658062, (to appear in print).

17 Landi W, Ryder B G., Pointer-induced aliasing: a problem taxonomy,
Popl ’91: Proceedings of the 18th ACM Sigplan-Sigact Symposium on
Principles of Programming Languages, January 1991, pp. 93-103, DOI
10.1145/99583.99599, (to appear in print).

18 Law J, Rothermel G, Incremental dynamic impact analysis for evolv-

ing software systems, Proceedings of the 14th International Symposium
on Software Reliability Engineering, November 2003, pp. 430-441, DOI
10.1109/ISSRE.2003.1251064, (to appear in print).

19 , Whole program path-based dynamic impact analysis, Proceedings of
the 25th International Conference on Software Engineering (ICSE’03), May
2003, pp. 308-318, DOI 10.1109/ICSE.2003.1201210, (to appear in print).

20 Orso Al, Apiwattanapong T, Harrold M J, Leveraging field data for im-

pact analysis and regression testing, Proceedings of the 11th ACM Sig-
soft Symposium on Foundations of Software Engineering held jointly with
9th European Software Engineering Conference (ESEC/FSE’03), September
2003, pp. 128-137.

21 Ren X, Shah F, Tip F, Ryder B, Chesley O, Chianti: A tool for change

impact analysis of Java programs, Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’04), October 2004, pp. 432-448.

22 Ryder B G, Constructing the Call Graph of a Program, IEEE Transac-

Static Execute After algorithms as alternatives for impact analysis 1752008 52 3-4

citeseer.ist.psu.edu/article/ball92slicing.html
citeseer.ist.psu.edu/article/ball92slicing.html
citeseer.ist.psu.edu/bent01qualitative.html
citeseer.ist.psu.edu/bent01qualitative.html
http://www.grammatech.com/products/codesurfer
http://www.grammatech.com/products/codesurfer

tions on Software Engineering SE-5 (May 1979), no. 3, 216-226, DOI
10.1109/TSE.1979.234183.

23 Szegedi A, Gyimóthy T, Dynamic slicing of Java bytecode programs,
Proceedings of the Fifth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM’05), September 2005, pp. 35-44, DOI
10.1109/SCAM.2005.8, (to appear in print).

Per. Pol. Elec. Eng.176 Judit Jász

	Introduction
	Related works
	Computation of SEA
	The ICCFG graph
	Algorithm for computing SEA
	Comparison of the algorithms

	Empirical results
	Computation of recall and precision
	Implementation
	Subject programs
	Results

	Duality of the backward and forward slices
	The effect of this problem on the experimental results

	Conclusion

