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Abstract
In our experiments we examined the general relationship

between object-oriented metrics and the fault-proneness of
classes. We analyzed a large open-source program called
Mozilla, calculated 58 object-oriented metrics for Mozilla at the
class level [9], collected the reported and corrected bugs from
the bug tracking system of Mozilla and associated them with the
classes. We applied logistic regression to examine which metrics
could be used to predict the fault proneness of the classes. We
found that 17 of the 58 object-oriented metrics were useful pre-
dictors, but to a different extent. The CBO (Coupling Between
Object classes) metric was the best, but it was only slightly bet-
ter than NOI (Number of Outgoing Invocations) and RFC (Re-
sponse Set for a Class), which proved useful as well.

We also examined the metrics in terms of their categories and
we found that coupling metrics were the best predictors for find-
ing bugs, but the complexity and size metrics also gave good
results. On the other hand, in tests all the inheritance-related
metrics were statistically insignificant.
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1 Introduction
A fair number of object-oriented metrics have been defined

and published in the past few decades. The essence of these met-
rics is that they characterize certain properties of the programs
in numeric form, hence the values of different programs or the
parts of programs (e.g. classes) can be compared. From these
values we can infer things about them. However, before doing
this it is necessary to find the relationship between the metrics
and the software quality (e.g. fault-proneness or reusability) via
concrete empirical results, and it is not enough to try to discover
these relations just by using the definition of each metric. Un-
fortunately, there are very few publications to date in which the
usefulness of metrics have been studied and evaluated. The main
reason for this is that determining the quality of large program
is difficult, and so is calculating the metrics for it.

A sizable part of the cost of software development arises from
testing, and within it, finding software faults. Therefore, any-
thing which increases the efficiency of testing is helpful as it can
decrease the overall development cost. Consequently, in this
paper we shall focus on the issue of the fault-proneness of the
classes of a program. The fault-proneness of the classes can be
characterized by the number of bugs found and corrected in the
past during development. Hence, the fault-proneness quality of
the classes can to some extent be expressed in numerical or sta-
tistical terms.

There are various methods available for examining the rela-
tionship between object-oriented metrics and software quality
(fault-proneness) represented by a number. Usually, regression
analysis and machine learning are applied to investigate this
problem [3, 6, 10, 12, 15, 18, 19]. In a previous paper [12], we
applied regression analysis together with neural networks and
decision trees (both are machine learning methods), but we did
not find any significant difference in the results. For this reason
we shall use only one of them, namely regression analysis.

We employed our own reverse engineering framework called
Columbus [8] to analyze the source code of Mozilla [14]. We
developed a compiler wrapping method [9] to be able to auto-
matically analyze the software system, which means that we can
extract the necessary information without modifying anything in
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the source code. This way, we analyzed nine versions of Mozilla
and calculated 58 object-oriented metrics.

The bugs reported during the development of Mozilla are
stored in the Bugzilla database [4]. We collected the corrected
bugs from Bugzilla and associated them with the classes in order
to see how many bugs the classes contained. We used regression
analysis to examine the relationship between the object-oriented
metrics and the number of bugs found in the classes. We also
investigated what kinds of metrics were good at predicting the
fault-proneness of the classes.

We will show that 17 of the 58 examined object-oriented met-
rics were found to be statistically significant. The coupling met-
rics (e.g. CBO and RFC) seemed the best predictors for indi-
cating the fault-proneness of classes, but the complexity and the
size-related metrics also yielded significant results.

We will proceed as follows. In the next section, we will
describe how we extracted the data from the source code of
Mozilla and how we collected bugs from Bugzilla. In Section 3,
we will provide the necessary technical background about met-
rics and logistic regression. In the next section, we will present
the results of our statistical analysis, and list our conclusions
about the metrics and compare the actual results with the results
of an earlier paper [12]. In Section 5, we will discuss several
other articles which tackled the same problems. In Section 6,
we will present out main conclusions and then outline our plans
for future study.

2 Fact Extraction from Mozilla and Bugzilla
It is a rather difficult and complex task to extract facts from

a real-world system’s source code and for the present, we shall
outline just the main difficulties we had to overcome during the
analysis of Mozilla source code. The first step of the build pro-
cess is the configuration where all the necessary information
about the environment (e.g. operating system, existence and ver-
sion of the tools required to build the system) is verified, col-
lected and stored into files. Later all this information is taken
into account when building the system. After the configuration,
the system can be built automatically because the information
on how to build it is also part of the source code and it is stored
in separate files (makefiles or project files). Unfortunately, these
files can be very different and can store almost any kind of data,
hence it would be a great challenge to “understand” them. We
will describe the main idea behind our solution to these prob-
lems and also how we calculated the necessary metrics. For a
more detailed description of all this, see Ferenc et al. [9].

Besides analyzing the source code of Mozilla, we collected
the bugs reported and corrected during its development. These
bugs were reported into Bugzilla [4], which stores detailed infor-
mation about the bugs. Bugzilla consists of a Web interface used
to notify users of a new bug or to manage the existing ones and
an SQL database which stores the data. Extracting data from
an SQL database is a straightforward task, and first we chose
this approach of bug collection [12]. We were able to do it be-

cause the developer community of Mozilla provided us with this
database, but the great drawback of this approach is that if we
need more up-to-date information about the bugs we have to
repeatedly ask for the database. To solve this problem we im-
proved our bug collection toolset so that we could collect bugs
using the Web interface of the official Bugzilla of Mozilla. In
the second part of this section, a detailed description is given
about the bug extraction method and we will list the number of
bugs for the classes of Mozilla 1.6.

2.1 Source Code Analysis
Columbus [7, 8] is a reverse engineering framework that was

developed in cooperation between the University of Szeged, the
Nokia Research Center and FrontEndART Software Ltd. [11].
The main motivation behind developing the Columbus frame-
work was to create a general toolset which supports fact extrac-
tion and provides a common interface for other reverse engineer-
ing tasks as well.

The framework contains all the necessary components to be
able to perform the analysis of arbitrary C/C++ source code and
to present the extracted information in any desired form. In this
study, we used the compiler wrapper module of Columbus to
perform the extraction of facts from Mozilla’s source code.

The main idea of wrapping is that we temporarily hide the
original compiler by inserting the directory of the wrapper
toolset at the beginning of the PATH environment variable. In
this directory, the script files have the same names as the ex-
ecutables of the compiler, hence if the original compiler is in-
voked, one of its wrapper scripts will start instead. The scripts
first execute the original compiler tool (e.g. g++ or ld) with
the same parameters and in the same environment, so the out-
put remains the same; hence the user will not notice any differ-
ence. After calling the original compiler, the scripts also call
our corresponding analyzer tool, which creates a file contain-
ing the extracted information. Based on this technique, an ar-
bitrary system can be analyzed without modifying it. In fact,
we successfully applied it with other industrial and open-source
C/C++, Java and C# projects and on both Linux and Windows
platforms. A more detailed description about wrapping was pre-
sented earlier by Ferenc et al. [7].

After analyzing Mozilla’s source code we calculated the met-
rics needed. The result of this calculation is a table contain-
ing the classes found in the source code along with their posi-
tion/interval in the code (path and line information) and the 58
calculated metrics. We repeated this whole process for all the
nine Mozilla versions (1.0 – 1.8) investigated by us and created
a table for each version.

In the following we shall describe how we extended these
tables by associating the bugs extracted from the Bugzilla
database with the classes found in the source code.
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2.2 Mining Bugs from Bugzilla
In order to carry out our analysis we also had to collect the

number of bugs found and corrected in each class of the system
in all of the analyzed versions from 1.0 (released in June 2002)
to 1.81 (released on February 26, 2005). We will describe the
heuristic used in our approach.

Since the bug database contains all the known bugs about ev-
ery Mozilla product from the beginning of its development, we
first had to filter them. We analyzed just those bugs which were
reported for Mozilla2, which were FIXED and had at least one
non-obsolete3 patch file associated with them. They were re-
ported before July 2005 (four months – which is a typical release
period – later than the release date of Mozilla 1.8, February 26,
2005) and they were corrected (more precisely, the last modi-
fication date) only after the release date of Mozilla 1.0, mean-
ing after June 5, 2002 (see Fig. 1). In addition, we examined
DUPLICATED bugs as well to improve the accuracy of our heuris-
tic. A bug is labeled as a DUPLICATED bug of another bug if both
of them describe the same bug. In this case we refined the infor-
mation about the bug (e.g. reporting date, correction date) with
the data of DUPLICATED bugs, and if the DUPLICATED bug had
any patch file, this patch file was also assigned to the bug. This
way, we collected bugs more precisely (and refined the method
we used earlier [12]). The result was 10,503 bugs in all.

Our earlier solution [12] for bug extraction, where the bugs
were extracted from the SQL database of Bugzilla, had certain
limitations because if we wanted to repeat the experiment sev-
eral months later we had to ask for the database again, which
was very circuitous and sometimes required a lot of effort from
the owner of the database (in this case, from the community of
Mozilla). We wanted to overcome this drawback of the process,
so we developed a toolset which collected bugs over the Internet
directly from Bugzilla. We were able to do it by creating a URL
which contained the address of Bugzilla and all the filter condi-
tions (e.g. product, FIXED, date) in a special form. We inserted
an additional parameter into the URL to get the search result in
an XML form. When we got the XML file, it was processed,
and all the bug ids (identifiers) were collected. Then all the bugs
and their details were downloaded in XML form as well. By
processing XMLs of bugs we got all the data we needed about
them including the ids of the patch files (similar to bugs, every
patch file has a unique identifier), so the necessary patch files
could be downloaded as well.

The drawback of this method of bug collection is that it is very
slow and it overburdens Bugzilla and its infrastructure (e.g. the
SQL database, the Bugzilla server or SQL server it is running

1We analyzed Mozilla 1.8 Beta 1 because there was no non-beta release of
version 1.8.

2Bugzilla contains the bugs of all the products developed by the Mozilla
community (e.g. Sunbird, Rhino and Bugzilla itself), but as we only needed the
bugs of Mozilla, we filtered it as well.

3If a patch file is created for a given bug but it is not used later (e.g. it does
not properly correct the bug or a better one is created), it is marked as obsolete.

on) a lot on the first run. For example, it took days to collect
all the information about the bugs required for Mozilla analysis.
On the other hand, if we have already collected the bugs this
way, we can archive them and if we want to repeat or extend
this bug collection later, we do not have to repeat the whole
process again. It is enough to collect the “difference” (the new
or changed bugs or patch files), which is much faster and does
not adversely affect Bugzilla.

After collecting information about bugs and getting all the
patch files, we had to find out which classes were affected by
the bugs and in which version. By analyzing the patch files we
located the bugs within a part of the source code. A patch file
contained the name of the fixed file and it described how many
lines were deleted, starting from a given line number and how
many lines were inserted at a given line number. With these
four numbers we defined an interval of changes in the file for
localizing the bug.

We wanted to associate the bugs with the classes in concrete
release versions, but the bug report in Bugzilla did not explicitly
state which version the patch file had been applied to. Fortu-
nately, it contained the date when the bug was reported and also
the date when it was fixed. So we considered a bug to be present
in the actual release at the time when it was reported and in all
subsequent releases up to the date of the fix (see Fig. 2). As re-
gards the bugs reported before version 1.0, we took into account
only those which were fixed after version 1.0.

Next, we had to associate the bugs with the classes found in
the source code. We did this one at a time for each bug in each
affected version. More precisely, we examined the bugs one
by one and in each given version we looked for a class whose
interval in the source code fell within the interval of the bug. If
we found such a class, we increased the number of bugs in that
class. If the bugfix changed more than one class, the bug was
associated with all these classes. With this method we extended
each table mentioned in the previous section with a new column
containing the number of bugs for each class.

To carry out a precise bug analysis, first we had to analyze
each patch file to find out the Mozilla revision the patch files had
been applied to. (We could do it because this information was
also stored in the patch file.) After getting the revision number
we had to analyze the source code of this revision and associate
the patch file with this revision to get the precise result. Tak-
ing into account the fact that we had over 10,000 bugs and a
bug may have more than one patch file, running the algorithm
would be very time-consuming and would require a lot of re-
sources (e.g. cpu time and free space on hard disk). Therefore
we choose a faster and easier way, and associated bugs using
just the main release versions of Mozilla. We knew that in this
case the result might contain several imprecise values, but this
did cause a problem here.

Although we had every metric value and bug numbers for
each nine version, using just one of them was sufficient to carry
out our experiments. We chose version 1.6 because it had a lot
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Figure 1: Interval restrictions of bug extraction

we collected bugs more precisely (and refined the method we used earlier [5]).
The result was 10,503 bugs in all.

Our earlier solution [5] for bug extraction, where the bugs were extracted
from the SQL database of Bugzilla, had certain limitations because if we wanted
to repeat the experiment several months later we had to ask for the database
again, which was very circuitous and sometimes required a lot of effort from
the owner of the database (in this case, from the community of Mozilla). We
wanted to overcome this drawback of the process, so we developed a toolset
which collected bugs over the Internet directly from Bugzilla. We were able to
do it by creating a URL which contained the address of Bugzilla and all the
filter conditions (e.g. product, FIXED, date) in a special form. We inserted an
additional parameter into the URL to get the search result in an XML form.
When we got the XML file, it was processed, and all the bug ids (identifiers)
were collected. Then all the bugs and their details were downloaded in XML
form as well. By processing XMLs of bugs we got all the data we needed about
them including the ids of the patch files (similar to bugs, every patch file has a
unique identifier), so the necessary patch files could be downloaded as well.

The drawback of this method of bug collection is that it is very slow and it
overburdens Bugzilla and its infrastructure (e.g. the SQL database, the Bugzilla
server or SQL server it is running on) a lot on the first run. For example, it
took days to collect all the information about the bugs required for Mozilla
analysis. On the other hand, if we have already collected the bugs this way, we
can archive them and if we want to repeat or extend this bug collection later,
we do not have to repeat the whole process again. It is enough to collect the
“difference” (the new or changed bugs or patch files), which is much faster and
does not adversely affect Bugzilla.

After collecting information about bugs and getting all the patch files, we
had to find out which classes were affected by the bugs and in which version.
By analyzing the patch files we located the bugs within a part of the source
code. A patch file contained the name of the fixed file and it described how
many lines were deleted, starting from a given line number and how many lines
were inserted at a given line number. With these four numbers we defined an
interval of changes in the file for localizing the bug.

We wanted to associate the bugs with the classes in concrete release ver-
sions, but the bug report in Bugzilla did not explicitly state which version the
patch file had been applied to. Fortunately, it contained the date when the bug
was reported and also the date when it was fixed. So we considered a bug to
be present in the actual release at the time when it was reported and in all
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Figure 2: Mozilla versions where a bug is associated with a class

subsequent releases up to the date of the fix (see Figure 2). As regards the bugs
reported before version 1.0, we took into account only those which were fixed
after version 1.0.

Next, we had to associate the bugs with the classes found in the source code.
We did this one at a time for each bug in each affected version. More precisely,
we examined the bugs one by one and in each given version we looked for a class
whose interval in the source code fell within the interval of the bug. If we found
such a class, we increased the number of bugs in that class. If the bugfix changed
more than one class, the bug was associated with all these classes. With this
method we extended each table mentioned in the previous section with a new
column containing the number of bugs for each class.

To carry out a precise bug analysis, first we had to analyze each patch file to
find out the Mozilla revision the patch files had been applied to. (We could do
it because this information was also stored in the patch file.) After getting the
revision number we had to analyze the source code of this revision and associate
the patch file with this revision to get the precise result. Taking into account
the fact that we had over 10,000 bugs and a bug may have more than one patch
file, running the algorithm would be very time-consuming and would require a
lot of resources (e.g. cpu time and free space on hard disk). Therefore we choose
a faster and easier way, and associated bugs using just the main release versions
of Mozilla. We knew that in this case the result might contain several imprecise
values, but this did cause a problem here.

Although we had every metric value and bug numbers for each nine version,
using just one of them was sufficient to carry out our experiments. We chose
version 1.6 because it had a lot of bugs and we had already examined it.

Although the sum of the number of bugs in Mozilla 1.6 classes was 7,662,
this does not mean that there were this many different bugs because a bug can
be associated with one or more classes. If we take into account the fact that we
associate bugs just with classes (which are object-oriented constructs, written in
C++) and that in Mozilla there are many C source files as well (about 1,550 out
of the approximately 5,700 C/C++ source files), then this result is acceptable.

As a last step, we filtered out the classes which were generated on-the-fly
during compilation because there were no bugs associated with them. We also
filtered out all the bug-free classes which existed in each of the nine analyzed
versions of Mozilla and where none of the metrics had changed. This way we
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of bugs and we had already examined it.
Although the sum of the number of bugs in Mozilla 1.6

classes was 7,662, this does not mean that there were this many
different bugs because a bug can be associated with one or more
classes. If we take into account the fact that we associate bugs
just with classes (which are object-oriented constructs, written
in C++) and that in Mozilla there are many C source files as
well (about 1,550 out of the approximately 5,700 C/C++ source
files), then this result is acceptable.

Tab. 1. Distribution of the bugs in version 1.6

No. of classes % No. of associated bugs

1,284 40.01 0

760 23.68 1

415 12.93 2

197 6.14 3

115 3.58 4

92 2.87 5

71 2.21 6

35 1.09 7

35 1.09 8

28 0.87 9

25 0.78 10

23 0.72 11

16 0.50 12

12 0.37 13

14 0.44 14

11 0.34 15

31 0.97 16-20

12 0.37 21-25

10 0.31 25-30

10 0.31 31-40

5 0.16 41-50

6 0.19 51-60

2 0.06 60-72

3,209 100.00 7,662

As a last step, we filtered out the classes which were generated
on-the-fly during compilation because there were no bugs asso-
ciated with them. We also filtered out all the bug-free classes
which existed in each of the nine analyzed versions of Mozilla

and where none of the metrics had changed. This way we arrived
at 3,209 remaining classes (out of 3,624 extracted classes4) for
Mozilla version 1.6.

We used these classes in our other analysis described in the
following sections. Also we summarized our findings in Table 1
above. About 40% of the classes (1,284 of them) contained no
bugs at all, and about one fifth (760 of them) contained just one
bug.

3 Background
In this section, we will describe the types of metrics used in

our experiments, some basic theory of logistic regression and
state some important definitions. We should add that in an ear-
lier paper [12] we wanted to compare our results with those of
Basili et al. [3]. This was why we used their terminology to
represent the different qualities of the models. Here we will use
the well-known information retrieval terminology [16]. For each
definition, we will give the corresponding pair we used earlier
[12] to aid the comparison.

3.1 Metrics
We calculated 58 object-oriented metrics for the classes, but

due to lack of space Appendix A just contains the definitions
of 18 of them (which proved useful in our analysis). The 58
metrics were classified into five groups based on their detailed
properties.

We have 30 size-related metrics which usually tell us elemen-
tary things about the system by counting the number of given
items (e.g. lines, classes, methods, attributes). The main advan-
tage of these metrics is that they are easy to calculate (or at least
easier to calculate than the others) and it is not difficult to un-
derstand them. A good example of this is the traditional and
well-known lines of code metric (LOC).

Complexity metrics measure some kind of complexity of the
program or a given part of the program. Although many different
complexities of a class can be defined and measured (e.g. data
complexity), here we shall calculate just one complexity metric

4The C/C++ analyzer has been improved since our last experiment [12],
hence the number of classes is now slightly different.
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(WMC), which is the sum of the McCabe cyclomatic complexity
(McCC) of the methods of the class.

Inheritance metrics (we calculated 8 of them) provide infor-
mation about the inheritance tree of the system. Though an in-
heritance tree cannot be reconstructed based on these values,
they describe its main characteristics, which is sufficient to ex-
press the inheritance complexity of the system.

One of the aims of object-oriented techniques is encapsula-
tion, which suggests that data belonging together and the func-
tions that operate on them should be incorporated into one unit
called a class. Cohesion metrics (we examined 11 of them) mea-
sure whether a class implements just one functionality. Other-
wise, there is weak cohesion among its members (methods and
attributes). Weak cohesion occurs when the class stores data
or implements a functionality which does not belong to it. In
extreme cases, the members can be classified into two or more
groups without any connection (e.g. call or attribute access) be-
tween them, which suggests that the class should be redesigned
and refactored.

Yet another indication of a bad design is when the classes use
each other too much. They can do this in many different ways
e.g. when a class calls the methods of other classes or uses the
attributes of other classes. The 8 coupling metrics we calculated
here measure these kinds of relations.

3.2 Logistic Regression Analysis
In logistic regression, the unknown variable called the

dependent variable can take just two distinct values. Therefore,
we divided the classes into two groups according to whether a
class contained at least one bug or not. The known variables,
called explanatory variables, are the metrics.

The multivariate logistic regression model is based on the re-
lationship equation

π(X1, X2, . . . , Xn) =
eC0+C1·X i1+···+Cn ·X in

1 + eC0+C1·X i1+···+Cn ·X in
, (1)

where the X i s are the explanatory variables and π is the prob-
ability that a fault was found in a class during validation. Lo-
gistic regression is a widely used statistical method, so we
will not elaborate on it here (a detailed description is given by
Basili et al. [3], and Hosmer and Lemeshow [13]). Univariate
logistic regression is a special case of multivariate regression
for situations when there is just one explanatory variable in the
model.

First, we performed univariate logistic regression (the results
are given in Table 3). The coefficient (not shown in Table 3,
but discussed later on) is the estimated regression coefficient.
The larger the absolute value of this coefficient, the stronger the
impact (positive or negative, according to the sign of the coef-
ficient) of the explanatory variable on the probability of a fault
being detected in a class. The p-value tells us whether the result
is statistically significant or not (we chose a significance level of
α = 0.05). For these 17 metrics, the p-value was always less

than 0.001. The R2 coefficient is defined as the proportion of
the total variation in the dependent variable y that is explained
by the regression model. The bigger the value of R2, the larger
the portion of the total variance in y that is explained by the re-
gression model, and the better the dependent variable y that is
explained by the explanatory variables.

3.3 Definitions
Apart from the statistical figures, logistic regression gives us

a model for each classification. Thus for each classification we
know the values of the coefficients (C1, ..., Cn) and the constant
(C0) of formula (1). We applied these models with a 0.5 thresh-
old, which means that if 0.5 < π then the class is classified
as faulty, otherwise it is not considered faulty. Table 2 shows
the classification results for the CBO metric where the figures
in brackets are the sums of the faults that were found in that
particular group of classes.

Tab. 2. Classification results obtained by using CBO

Predicted

Observed Not faulty Faulty

Not faulty 757 527

Faulty 478 (695) 1,447 (6,967)

We can see from this table that 2,204 (757+1,447) of the
3,209 classes were classified correctly, which means that the
correctness of the model is 68.68% (2,204/3,209). (In an ear-
lier paper [12], we used the term precision instead.)

From a testing point of view there are three more important
quantities which say more about the quality of the models. The
first one is the precision score, which describes how many of
the faulty predicted classes are really faulty in percentage terms.
That is, it is the number of classes observed and predicted faulty
divided by the number of all faulty predicted classes times 100.
The larger the precision score, the fewer error-free classes have
to be tested, which in turn improves the efficiency of the testing
phase. In this case, 1,974 (527+1,447) classes were predicted
as faulty and 1,447 of them were really faulty, meaning that the
precision score was 73.03%. (In an earlier paper [12], we used
the term correctness instead.)

The second one is recall, which tells us how many of the
faulty classes have been found in percentage terms. That is, it is
the number of classes observed and predicted faulty divided by
the number of all faulty classes times 100. The larger the recall
score, the more faulty classes have been found by the model. In
the case of CBO, 1,447 classes were predicted as faulty out of
the 1,925 (478+1,447) really faulty classes, which means that
the recall score was 75.17%. (Previously in [12], we did not
calculate this.)

In spite of the fact that the models classify the classes by just
taking into account the fact whether a class contains a bug or
not, we know precisely how many bugs they found in percentage
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terms. This is also helpful for us. This quantity is characterized
by a completeness parameter, which is defined as the number of
faults in faulty predicted classes divided by the number of faults
in all classes times 100. The larger the completeness score, the
bigger the ratio of the faults captured by the model. In the case
of CBO, 6,967 out of 7,662 bugs were found, which means that
90.93% of the bugs were captured. (In an earlier paper [12], we
used the same terminology here.)

The classified faulty figure (column C.f. in Table 3) tells us
how many classes out of the 3,209 the model classified as faulty
(although Coh could be calculated just for 2,400 classes because
it is defined for classes that have at least one attribute and at least
one method (see Appendix A)). The true positive value (column
T.p.) tells us the number of faulty classes which we predicted
as faulty and really are faulty. These two figures are important
from a testing point of view. By using the figures of Table 3,
tables like Table 2 for the remaining 16 metrics can be created.

4 Results
In this section, we will examine the relationship between the

metrical values and the number of bugs found in the classes. In
spite of the fact that we knew exactly how many bugs were in
a class, we just looked at whether a class was faulty (contained
at least one bug) or not. Here, we employed logistic regression,
which is commonly used for predicting an unknown variable
based on one or more known variables.

Table 3 lists just the best 17 out of the 58 metrics, given in
terms of a decreasing R2 score. (Later we will explain why
only these 17 metrics are listed here.) As all the p-values are
less than 0.001, these metrics are significant. The coefficient
of each metric except the Coh metric is positive, which means
that the larger the metric value, the more fault-prone the class
is. The negative coefficient of Coh displays an inverse relation
between the metrical value and the fault-prone property of the
class. More precisely, the larger the Coh value is, the less fault-
prone the class is. According to the R2 values, CBO is the best
predictor but NOI is only slightly worse. On the other hand,
the R2 values do not tell us much about the bugs or the classes
themselves, nor can we compare the usefulness of the metrics
using the R2 values alone. To do this, we examined other aspects
in our regression analysis.

In the following we shall analyze the results of univariate lo-
gistic regression and then draw some conclusions.

4.1 Evaluation
In Table 3, we listed just 17 out of the 58 metrics because the

models of the other 41 metrics classified fewer than one hundred
classes (less than 3.2% of the classes) as not faulty. Hence there
is little use analyzing their scores, and we can say that in the
case of Mozilla they are not really suitable for predicting faults.

Although the R2 scores dramatically decrease from the CBO
to the Coh metrics, the correctness scores decrease by less than
5%, and the worst score of 63.79%, which is associated with

LCOM4, is still better than the value of trivial classification
(59.99%) where all classes would have been predicted as faulty.
Interestingly, the correctness score of CBO (68.68%) is almost
9% better than that for a trivial classification.

LOC has the largest precision score (74.64%), meaning that
most of the faulty predicted classes really are faulty. On the
other hand, it has the smallest recall score – only 69.87% – so
some 30% of the faulty classes are not captured. The score for
lLOC is very similar, which is not surprising as both of them
measure lines of the code but in a slightly different way. The pre-
cision score of CBO is just 1.5% worse than the score for LOC,
but its recall score is over 5% better. Coh has the largest recall
score – over 90% – but seeing that only 295 classes are pre-
dicted error-free its large value is not so helpful here. It would
be good to somehow improve the precision and recall scores at
the same time. This does not really contradict the definition of
precision and of recall, but experience tells us that if precision is
increased, recall will decrease, and vice versa. This general re-
lationship can be seen in Table 3 as well (although the scores are
in terms of descending R2-values and not in terms of precision
or recall).

Completeness can provide a better idea about how many
bugs have been captured. The CBO model classified 1,974
(527+1,447, see Table 2) classes as faulty which is only 61.51%
of all the classes, but these 1,974 classes contain 75.17% of the
faulty classes (recall) and, what is more, 90.93% of the bugs
(completeness). The correctness score of Coh is the biggest here
(97.07%), but it classified 87.71% (2,105/2,400) of the classes
as faulty. LCOM4 got the second biggest completeness score
(94.39%), which is slightly worse, but it predicted 79.93% of
the classes as faulty, which is almost 8% less than the value of
Coh, hence it is better overall. The completeness scores of the
other metrics vary from 88.79% to 91.80%, which is a small
difference, so their strength depends on how many of the classes
predicted faulty are really faulty in percentage terms. The fewer
classes that are predicted to be faulty, the more valuable a big
completeness score is.

Though we cannot choose the best metric in general here, we
can still analyze their categories, which will tell us what kinds
of metrics are useful. As we saw previously, coupling metrics
have the largest R2 scores, the largest correctness and a “bal-
anced” precision and recall pair. And while the coupling met-
rics measure more or less different kinds of couplings between
classes, it seems that any kind of dependency between classes
increases the probability of faults. WMC, which is the only
examined complexity metric, also yields good scores. This is
natural because it is generally more difficult to create, under-
stand and maintain a complex class than a less complicated one.
The size metrics whose scores we found significant can be di-
vided into two groups. The first group (LOC, lLOC and Av-
gLOC) counts the lines of the code of a class and its methods
in different ways, and we think it is obvious that larger classes
contain more faults. The second group of size metrics contains
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Tab. 3. Results obtained using Univariate Logistic Regression

Metrics Cat. R2 Corr. Prec. Recall Compl. C.f. T.p.

CBO coup. 0.186 68.68% 73.30% 75.17% 90.93% 1,974 1,447

NOI coup. 0.184 67.90% 72.82% 74.18% 89.62% 1,961 1,428

RFC coup. 0.176 67.68% 72.09% 75.27% 90.92% 2,010 1,449

NFMAni coup. 0.174 66.87% 72.26% 72.68% 88.80% 1,936 1,399

WMC compl. 0.161 67.28% 72.63% 72.94% 89.39% 1,933 1,404

NFMA coup. 0.158 67.22% 72.19% 73.77% 89.27% 1,967 1,420

LOC size 0.154 67.68% 74.64% 69.87% 89.05% 1,802 1,345

lLOC size 0.147 67.19% 73.12% 71.64% 89.51% 1,886 1,379

NML size 0.128 66.38% 69.93% 77.09% 91.16% 2,122 1,484

RFC3 coup. 0.125 67.93% 71.35% 77.77% 91.80% 2,098 1,497

NMLD size 0.122 65.78% 68.94% 78.18% 91.48% 2,183 1,505

NAML size 0.114 66.19% 69.37% 78.13% 91.56% 2,168 1,504

NMLpub size 0.110 66.19% 69.23% 78.55% 91.36% 2,184 1,512

NMLDpub size 0.104 65.60% 68.52% 78.91% 91.24% 2,217 1,519

AvgLOC size 0.090 64.07% 66.92% 79.32% 88.79% 2,228 1,527

LCOM4 coh. 0.085 63.79% 64.87% 86.44% 94.39% 2,565 1,664

Coh5 coh. 0.050 65.96% 67.36% 91.60% 97.07% 2,105 1,418

metrics which measure the number of methods (NML, NMLD,
NAML, N M L pub, N M L Dpub). It was also shown earlier by
Basili [3] that the more methods a class has, the more faults the
class contains. However, we see that the number of public meth-
ods used is a more useful predictor than the number of protected
or private methods (among the 58 metrics there were metrics
which measured this as well). Only two of the 11 cohesion met-
rics (LCOM4 and Coh) gave acceptable, but not such good re-
sults. The negative coefficient of the Coh metric is in accordance
with the positive correlation of LCOM4 because LCOM4 mea-
sures the lack of cohesion. Thus we think that the less coherent
classes are more fault-prone. And finally, we did not find any
inheritance-based metric which could help to predict the faults
of the classes, though we examined metrics which took this into
account, such as the number of parents (NOP), ancestors (NOA),
children (NOC), descendants (NOD) and the depth of the inher-
itance tree (DIT).

We shall compare the main results of the above experiments
with those of an earlier paper [12]. Previously, we found that
CBO was the best predictor and the other coupling metric (RFC)
was good as well. The results agree with our earlier findings
about coupling metrics, and what is more, CBO is the best in
both cases. In our earlier paper, we examined two size metrics,
LOC and WMC6, and found that LOC performed only slightly
worse than CBO, and WMC also gave good results. This is sim-
ilar to our new findings because many of the size metrics proved
to be good predictors and some of them are only a little worse
than the coupling metrics. So far we have found that only 2 of
the 11 cohesion metrics are acceptable, which does not contra-

5Coh was calculated just for 2,400 of the 3,209 classes because it is defined
for classes which have at least one attribute and have at least one method (see
Appendix A).

6The weight was one so the WMC counted the number of methods instead
of their complexity. Hence it is a size metric.

dict the results of our earlier analysis where the two cohesion
metrics also gave poor results. The fault-proneness capability
of DIT in our earlier analysis produced the worst scores and
the performance of other inheritance metric was not significant.
Similarly, we found that all the inheritance metrics are not of
much worth here either. Summarizing our comparison, we can
say overall that the new experiment confirms our earlier conclu-
sions about software metrics.

4.2 Multivariate Logistic Regression
In a multivariate logistic regression analysis we utilized all

58 metrics but we knew beforehand that these metrics were not
totally independent and captured similar information about the
classes. Thus, not all of them were required in the multivari-
ate regression, so a stepwise selection was applied to select the
necessary variables for the multivariate analysis. The chosen
metrics were CBO, AvgLOC, RFC, CLD (see Appendix A for
the standard definition of each metric). The R2 value is 0.208,
which is a little better than that for CBO (which is the best
among the results of our univariate analysis). The correctness
and precision scores of CBO are slightly better than those for
the multivariate model, but the recall and completeness scores
of CBO are slightly worse. The classified faulty (c.f.) and true
positive (t.p.) scores are practically the same.

4.3 Metrics in Practice
Our main conclusion here is that with the help of metrics we

can choose a set of classes of the system which contains the
major portion of the bugs. This means that if we focus on test-
ing these classes instead of uniformly testing the entire system,
we can find more bugs with the same effort. This way we can
improve the efficiency of the testing phase, which should then
improve the quality of the software and reduce the cost of the
testing phase.
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Tab. 4. Results obtained using multivariate logistic regression

R2 Corr. Prec. Recall Compl. C.f. T.p.

Multi 0.208 68.37% 72.89% 75.27% 91.14% 1,988 1,449

If we regularly calculate metrics for a given system, we can
see how the metrics change over time, from which we can esti-
mate the quality of the system without testing. Moreover, this
way we can discover problematic parts of the source code as
soon as they appear and, what is more important, before the test-
ing phase. This would be of great help to the practicing software
engineer.

5 Related Work
A number of studies have been carried out in the past fif-

teen years to discover the precise relationship between object-
oriented metrics and the fault-proneness of classes. The first ar-
ticle about object-oriented metrics was published by Chidamber
and Kemerer (CK) [5].

Basili et al. [3] examined the relationship between the six
CK metrics and the fault-proneness of classes. They utilized a
medium-size management information system which had been
written in C++ by university students and consisted of 180
classes. They extracted CK metrics by GEN++ and applied lo-
gistic regression to examine the correlation between the iden-
tified bugs and their classes. They found that DIT, NOC7 and
RFC were very significant, CBO was significant, WMC was to
some extent significant and LCOM was insignificant. Their con-
clusions and our conclusions about inheritance metrics seem to
contradict each other, but their conclusions about the other four
metrics are quite similar to ours.

Fioravanti and Nesi [10] analyzed the same project, but they
looked at 226 metrics. One goal of theirs was to create a model
whose precision score was at least 90% (meaning that it clas-
sifies over 90% of the classes correctly) and another was to re-
duce the number of metrics used to an acceptable amount while
keeping the precision score for the model above 80%. They
employed principal component analysis (PCA) and multivariate
logistic regression, and first they got a model consisting of 42
metrics with the precision score of 97.35%. After reducing the
number of metrics, their model contained only 12 metrics and
its precision score was 84.96%. We examined their metrics and
discovered that 5 of their 12 metrics are similar to ours. We
found that 3 of them (RFC3, NAML, NML) were good predic-
tors, but the other 2 metrics (LCOM1, LCOM2) were not sig-
nificant. However, we did not calculate the other 7 metrics of
theirs.

Olague et al. [15] studied the Rhino project [17], which is
also an open-source product of Mozilla. It is written is Java
and was developed using an agile software development process.
They examined its six different versions, where the number of

7In the case of NOC, there was an inverse correlation.

classes rose from one hundred to two hundred. They also used
the Bugzilla of Rhino to collect the bugs and to associate them
with the classes. They studied three groups of software metrics,
namely the CK metrics [5], Brito e Abreus MOOD metrics [1],
and the Bansiya and Davis’s quality model for object-oriented
design (QMOOD) metrics [2]. In their univariate logistic re-
gression they found that the coefficient of CBO8 was significant
for five of the six cases, the LCOM989 coefficient was signifi-
cant in four of the six cases, the RFC coefficient was significant
in every case and the WMC10 coefficient was significant in four
of the six cases, but the other two CK metrics – DIT and NOC
– were of little value. MOOD metrics coefficients were signif-
icant in only two of the six versions. CIS11 was significant in
five of the six versions. Summarizing these results, we can say
that their general conclusion about univariate logistic regression
is similar to ours here. They studied several different models
built using multivariate logistic regression and they found that
the CK metrics-based models were the best for predicting the
quality of classes, but the QMOOD metrics-based models were
just marginally worse. They evaluated the usefulness of the met-
rics and the models for the different versions as well and found
that the CK and QMOOD metrics were better in the initial phase.
They divided the classes into two groups based on their size, and
they looked at how the metrics performed on small and large
classes.

6 Conclusions and Future Work
The main contributions of this paper are the following.

Firstly, we presented a method and toolset with which metrics
(and also other data) can be automatically calculated from the
C++ source code of real-size software. Secondly, we improved
our earlier bug collection method [12] and now we are able to
collect bugs directly from Bugzilla. Thirdly, we associated these
bugs with classes found in the source code. Fourthly, we em-
ployed logistic regression to assess the suitability of 58 object-
oriented metrics for predicting the number of bugs in the classes
(in an earlier paper we evaluated just 8 metrics).

Our main observations are the following. First of all, the CBO
metric performed best when predicting the fault-proneness of
classes, and we can say in general that the coupling metrics are
the best predictors. Secondly, WMC, which is the only exam-
ined complexity metric, is also a good predictor. Thirdly, the
observation that the classical size metrics (LOC and number of

8Their definition for CBO differs slightly from ours.
9Their LCOM98 metric is equivalent to our LCOM4 metric.

10They used one for a weight instead of real complexity, so WMC there
counted the number of methods.

11CIS is quite similar to our N M L and N M L pub metrics.
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methods) were useful predictors is not surprising and it is not
a new result. Furthermore, we found that the number of pub-
lic methods used also displayed some correlation with the fault-
proneness of classes. Fourthly, only two of the 11 cohesion met-
rics were found to be slightly significant. Fifthly, we did not find
any inheritance metric which was significant in our new study.

In the future we plan to do experiments with function and
method-level metrics in order to learn about their bug prediction
capabilities. In addition, we would like to examine open-source
projects written in Java (e.g. Eclipse and Derby) to find out
which metrics are better at predicting faults.
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A Definition of the metrics mentioned above
• Coupling between object classes (CBO): A class is coupled to

another if the class uses any method or attribute of the other
class or it directly inherits one of these from it. CBO is the
number of coupled classes.

• The number of outgoing invocations (NOI): NOI for a class
is the cardinality of the set of all function and method invo-
cations in the class of its methods. This means that if there
is more than one invocation to the same function or method,
they are counted just once. Invocations in a nested or local
class are not counted.

• The response set for a class (RFC): RFC is the cardinality
of the set M of the methods of the class (inherited ones are
not taken into account) and the set of the methods directly
invoked by the methods in M.

• The number of foreign methods accessed (without inheri-
tance) (N F M Ani ): N F M Ani for a class is the cardinality
of the set of method invocations of any of the class’ methods,
where the invoked methods belong to classes other than the
method itself, or they are inherited methods (thus only the lo-
cally defined methods are not counted). This means that if
there is more than one invocation to the same method, they
are counted only once.

• Weighted methods for a class (WMC): The weight is the Mc-
Cabe cyclomatic complexity. Consider a class C with meth-
ods M1, . . . , Mn that are defined in the class. Let c1, . . . , cn

be the McCabe cyclomatic complexity of the methods. Then
WMC = c1 + c2 + · · · + cn .

• The number of foreign methods accessed (NFMA): NFMA for
a class is the cardinality of the set of method invocations of
any of the class’ methods, where the invoked methods belong
to classes other than the method itself (the inherited methods
are not counted either). This means that if there are more
than one invocation to the same method, they are counted only
once.

• Lines of code (LOC): This metric is calculated using the orig-
inal source files. Here the lines between the beginning and
the end of a class or a method are counted regardless of the
number of lines in the file after preprocessing. LOC for a
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defined class counts the end-line of the class definition mi-
nus the begin-line of the definition plus 1. In addition to this,
the LOC metric of a method of the class is also added if the
method is implemented outside the class definition. If there is
a nested class (struct or union) in the class or a local class in
one of its methods, the LOC of this class is decreased by the
length of the nested/local class (struct or union), which is the
end line of the nested class (struct or union) minus the begin
line of the class (struct or union) plus 1.

• Logical lines of code (lLOC): This metric is calculated after
preprocessing the file (after files have been included, macros
have been substituted, etc.). lLOC for a defined class counts
all nonempty, non-comment lines of the class and all its meth-
ods implemented outside the class definition (but the lines of
the local classes are not counted).

• The number of local methods (NML): NML is the number of
local methods. Both declarations and definitions are counted,
but if there is an implementation for a declaration, the decla-
ration is not counted.

• The response set for a class (without inheritance) (RFC3):
RFC3 is the cardinality of the set M of the methods of the
class (the locally defined and the inherited ones are taken into
account), and the set of the methods directly or indirectly in-
voked by the methods in M.

• The number of locally defined methods (NMLD): NMLD is
the number of methods locally defined (the inherited methods
are not counted).

• The number of locally defined attributes and methods
(NAML): NAML is the number of the locally defined at-
tributes and methods of a class.

• The number of public local methods (N M L pub): N M L pub

is the number of the public local methods of a class. Both
declarations and definitions are counted, but if there is an im-
plementation for a declaration, the declaration is not counted.

• The number of public locally defined methods (N M L Dpub):
N M L Dpub is the number of the public methods locally de-
fined.

• Average of lines of code (AvgLOC): the AvgLOC of a class is
the average of the lines of the method definitions in the class.

• Lack of cohesion in methods (LCOM4): Consider an undi-
rected graph G, where the vertices are the methods of a class,
and there is an edge between two vertices if the correspond-
ing methods use at least one attribute in common. LCOM4 is
defined as the number of connected components of G.

• Cohesion (Coh): Consider a set of methods {Mi , i =

1, . . . , m} accessing a set of attributes {A j , j = 1, . . . , a}.
Let v(A j ) be the number of methods which reference attribute

A j . Then Coh =
∑a

j=1 v(A j )

m∗a .

• Class-to-leaf depth (CLD): the CLD of a class is the max-
imum number of levels in the hierarchy that are below that
class.
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