
Ŕ periodica polytechnica

Electrical Engineering
52/3-4 (2008) 187–195

doi: 10.3311/pp.ee.2008-3-4.07
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Necessary test cases for Decision
Coverage and Modified Condition /
Decision Coverage
Zalán Szűgyi / Zoltán Porkoláb

Received 2008-07-22

Abstract
Test coverage refers to the extent to which a given software

verification activity satisfies its objectives. Several types of cov-
erage analysis exist to check code correctness. Less strict analy-
sis methods require fewer test cases to satisfy their requirements
and consume less resources. Choosing test methods is a compro-
mise between the code correctness and the available resources.
However this selection should be based on quantitative consid-
eration. In this paper we concern the Decision Coverage and
the more strict Modified Condition / Decision Coverage. We ex-
amined several projects written in Ada programming language.
Some of them are developed in the industry and the others are
open source. We analyzed them in several aspects: Mc- Cabe
metric, nesting and maximal argument number in decisions. We
discuss how these aspects are affected by difference of the nec-
essary test cases for these testing methods.

Keywords
Testing · DC · MC/DC · Ada

Acknowledgement
Supported by the Hungarian Ministry of Education under

Grant FKFP0018/2002.

Zalán Szűgyi

Department of Programming Languages and Compilers, ELTE„ Pázmány Péter
sétány 1/C H-1117 Budapest, Hungary
e-mail: lupin, gsd@elte.hu

Zoltán Porkoláb

Department of Programming Languages and Compilers, ELTE, Pázmány Péter
sétány 1/C H-1117 Budapest, Hungary
e-mail: lupin, gsd@elte.hu

1 Introduction
Coverage refers to the extent to which a given verification

activity satisfies its objectives. Coverage measures can be ap-
plied to any verification activities, although they are most fre-
quently applied to testing activities. Appropriate coverage mea-
sures give the people doing, managing, and auditing verification
activities a sense of the adequacy [18] of the verification accom-
plished [13].

The code coverage analysis contains three main steps [19],
such as: finding areas of a program not exercised by a set of test
cases, creating additional test cases to increase coverage and de-
termining a quantitative measure of code coverage, which is an
indirect measure of quality. Optionally it contains a fourth step:
identifying redundant test cases that do not increase coverage.

Code coverage analysis is a structural testing technique (white
box testing), where the test program behavior is compared
against the apparent intention of the source code. Different types
of analysis require different sets of test cases. We concern De-
cision Coverage (DC), and Modified Condition / Decision Cov-
erage (MC/DC) testing methods. DC only requires that every
line of code in a subprogram must be executed and every deci-
sions must be evaluated both to true and false. MC/DC is more
strict as it should fulfil the requirements of DC and additionally,
it demands to show that every condition in a decision indepen-
dently affects the outcome. It is clear that more test cases are
needed to satisfy the requirements of MC/DC. But it is not so
trivial how much can be spared when testing by DC instead of
MC/DC. In this paper we answer that question by analyzing sev-
eral projects used in the industry. These projects wre written in
Ada programming language and we analyzed them in several
aspects: McCabe metrics [14], nesting, and maximal argument
number in decisions. We examined how these aspects affected
the difference of the necessary test cases.

In Chapter 2 we describe the most frequently used coverage
metrics. In Chapter 3 we give a detailed description about how
we analyzed the source codes of projects. Then we discuss the
results of our analysis in Chapter 4. We give an overview of
related works in Chapter 5. Summary and conclusion are given
in chapter 6.

Necessary test cases for Decision Coverage and Modified Condition / Decision Coverage 1872008 52 3-4

http://www.pp.bme.hu/ee

2 Coverage metrics
In this chapter we describe some commonly used coverage

metrics.

2.1 Statement coverage
To achieve statement coverage, each executable statement in

the program is invoked at least once during software testing. The
main advantage of this method is that it can be applied directly
on object code and it is not necessary to process source code.
But this method is insensible to some control structures. Let us
see the following example:

T* t = NULL;

if (condition)

t = new T();

t->method();

In this example a single test case (where the condition is true)
is enough to achieve 100% statement coverage because every
statement is invoked once. In that case our program works fine,
and we recognize it is faultless. But in the real usage, the condi-
tion can be false, which might cause non-deterministic behavior
or segmentation fault.

2.2 Decision coverage
This method requires that each statement must be invoked at

least once and each decision must be evaluated both to true and
false. In this case the error mentioned in the previous example
is discovered in testing time. This metric has the advantage of
simplicity without the problems of statement coverage. A dis-
advantage is that it ignores branches within Boolean expressions
which occur due to short-circuit operators. Let us see to follow-
ing example:

if A or else B then

Two test cases where (A = true, B = false and A = false, B =
false) can satisfy the requirements of DC, but the effect of B is
not tested. Thus these test cases cannot distinguish between the
decision (A or B) and the decision A.

2.3 Modified Condition / Decision Coverage
The MC/DC criterion requires that every statement must be

invoked at least once, every decision must be evaluated to true
and false, and each condition must be shown to independently
affect the outcome of the decision. The independence require-
ment ensures that the effect of each condition is tested relative to
the other conditions. In our example three test cases (where A =
false, B = false and A = true, B = false and A = false, B = true)
provide MC/DC. The MC/DC is derived from by Condition /
Decision Coverage testing method. More information on these
coverage methods can be found in [13], [12], [19]. MC/DC is
used for various environments, from test generation [16] to mea-
sure complexity [8].

3 Analysis method
In this chapter we describe our method to analyze the source

codes written in Ada programming language. We used ANTLR
[20] parser generator with [21] grammar file to create the Ab-
stract Syntax Tree (AST) of the source code. Our analysis uses
this AST.

3.1 Counting test cases for decision coverage
The Decision Coverage requires that every decision must be

evaluated to true and false at least once. So we need at least two
test cases for every decision to satisfy these requirements. But
one test case can cover several decisions and more than two test
cases are needed if a decision contains nested decisions. Let us
see the following example:

if Condition_1 then

if Condition_2 then

true_statement_2;

else

false_statement_2;

end if;

else

false_statement_1

end if;

...

if Condition_3 then

true_statement_3;

end if;

Three test cases are needed to cover DC where the Condition_1,
Condition_2, Condition_3 are for example: (true, true, true),
(true, false, false), (false, any, any). Condition_1 must be eval-
uated to true twice because it has a nested decision in its true
part. Condition_3 can be tested the same time as Condition_1
because they are in the same level.

In summary we can say, A + B test cases are needed to cover
a decision. A is either the number of necessary test cases that
are nested within a true consequence or 1 if there is no nested
decision there. B means the same but in false consequence. A
subprogram may contain more decisions in a same level. If all
of these decisions are unique then we calculate max(Ai + Bi)

where Ai , Bi belongs to the ith decision (i = 1 . . . number of
decisions).

If there are identical decisions on the same level we classify
them. The identical decisions will be placed into the same class.
Then we consider max(A j + B j) where A j , B j belongs to the
j th class. We calculate A j and B j in the following way: A j =

max (A j1 ..A jk), B j = max (B j1 ..B jk) where k is the
number of the decisions in class j. A jl and B jl are the num-
ber of necessary test cases for true and false consequences of
the corresponding decision (l = 1..k).

Per. Pol. Elec. Eng.188 Zalán Szűgyi / Zoltán Porkoláb

3.2 Counting test cases for Modified Condition / Decision
Coverage
In this case we have two main steps. First we count how many

test cases are needed to cover the decisions separately [2] and
then we check how these decisions affect each other. If a de-
cision contains more than 15 arguments, then we consider as
number of arguments plus one test cases are needed. This ap-
proximate value comes from [13].

Analyzing decisions separately

– If the decision contains only one argument or the negation of
that argument we need exactly two test cases. Dealing with
this case is same as we do in Decision Coverage.

– If the decision contains two arguments with logical operator
and, and then, or, or else, or xor we need exactly
three test cases:

– TT, TF, FT for and
– TT, TF, one of FT, FF for and then
– FF, FT, TF for or
– FF, FT, one of TF, TT for or else
– three of TT, TF, FT, FF for xor

where T means true and F means false.

– If the decision contains more arguments, then we use the fol-
lowing algorithm:

1 Transform the AST that belongs to the decision to con-
tain information about the precedence of logical operators.
(The AST, generated by [20] is a bit different.)

2 Generate all the possible combinations of values for the ar-
guments. (2n combinations, where n is the number of ar-
guments.) These are the potential test cases.

3 Eliminate the masked test cases. For example let us con-
sider A and B, where B is false. In this case the whole
logical expression is false and independent of A. But A is
not necessarily a logical variable. It can be another logical
expression too and in this case the outcome value of A does
not affect the whole logical expression. Therefore this test
case is masked for A and it can be eliminated (for A). You
can find a more detailed description and examples in [13]
about this step.

4 For every logical operator in the decision: we collect the
non-masked test cases which satisfy one of its require-
ments. So we get a set of test cases for every requirement of
every logical operator. If one of these sets is empty the de-
cision cannot be fully covered by MC/DC. If this happens
we try to achieve the highest possible coverage.

5 Calculate the minimal covering set of these sets. We do it in
the following way: let us suppose we have n arguments in
a decision. The maximum number of test cases is m = 2n

and we number them 0..m − 1. Of course almost all will
be masked. Let us suppose that all the logical operators
have two arguments (neither of them are not), so we have
s = 3 · (n − 1) sets. We calculate the minimal covering set

by Integer Programming, where for every si set we have a
disparity which is:

m−1∑
k=0

χk∈Si Xk > 1

Our target function is:

min
m−1∑
k=0

Xk

In wich the value of each Xk is either 0 or 1. When the re-
sult is calculated we get the minimal covering set. Each test
case indexed with k is a member of the minimal covering
set if Xk is 1.
To do that calculation we used Lemon graph library [5]
with glpk linear programming kit [6].

Analyzing decisions together

Like in DC one test case can test several decisions when they
are in same level, and one decision may require more test cases
when it has nested decisions. But the way to calculate this is a
bit more difficult because we have to deal with conditions in a
decision. Here is an example about the problem of decisions in
same level:

...

if a and b then

...

end if;

...

if c or d then

...

end if;

...

Three test cases are necessary to satisfy the requirements of both
of these decisions. The test cases for the first decision are: TT,
TF, FT, and for the second decision are: FF, TF, FT. So three test
cases can exercise both of the decisions simultaneously, because
their conditions are independent. But let us see what happens if
we change the c to a in the second decision:

...

if a and b then

...

end if;

...

if a or d then

...

end if;

...

Now three test cases are not enough because in the first decision,
a has to be true twice and false once. And in the second
decision it must be true once and false twice. So we need

Necessary test cases for Decision Coverage and Modified Condition / Decision Coverage 1892008 52 3-4

four test cases and two of them have to evaluate a as true and
two others as false.

The method to calculate how many test cases are needed for
decisions standing in same level:
Decision 1 has n arguments: a1, ..., an

Decision 2 has m arguments: b1, ..., bm

The first s arguments are the common arguments where s ≤

min(n, m)

Our algorithm works with k arguments c1, ..., ck where k = n +

m − s
ci .true means the number of test cases where the argument ci

evaluated to true.
ci .false means the number of test cases where the argument ci

evaluated to false.
Let us consider:

ci .true =

max(ai .true, bi .true) if i = 1..s
ai .true if i = s + 1..n
bi−n .true if i = n + 1..n + m − s

ci .false =

max(ai .false, bi .false) if i = 1..s
ai .false if i = s + 1..n
bi−n .false if i = n + 1..n + m − s

If there are more than two decisions, we start the algorithm again
with c1, ..., ck , and the arguments of the next decision, and re-
peat it until all the decisions are processed.
Number of test cases:

maxi=1..k(ci .true + ci .false)

We deal with the nested decisions in the following way. Let us
see an example:

...

if a or b then --first decision

if c and d then --second (nested) decision

...

end if

end if

...

There are three test cases that are needed for both decisions: TF,
FT, FF for the first and TT, TF, FT for the second. The arguments
are independent, so we can test them simultaneously. But in the
third case the first decision is false, therefore the second decision
cannot be executed. So we need an extra test case – where the
first decision is true – to exercise the third requirement of the
nested decision.

In general we calculate the maximum number of test cases that
are needed to exercise the requirement of true and false conse-
quences of decisions (mtrue, m f alse are the corresponding val-
ues). Then we get the set of test cases which cover the decision.

Values dtrue, d f alse denote the number of test cases, which have
been evaluated to true and false, respectively. Then the number
of necessary test cases are:

max(mtrue, dtrue) + max(m f alse, d f alse)

We always consider the arguments in nested decisions indepen-
dent from the arguments of outer decisions. Our future work is
to refine this method to deal with the same arguments.

4 Measurement and results
We analyzed twelve projects written in Ada programming

language. The sources contained both Ada 83 and Ada 95 lan-
guage versions. Six of the projects originated in an industrial
company and related to control systems and device drivers. The
rest of the projects were open source applications in various
fields [24–29], and were downloaded from sourceforge.net.
In every project about fifty per cent of the subprograms have
no decisions. These are the initialiser, getter and setter sub-
programs. About twenty five per cent of the subprograms have
only one argument in their decisions. We used only those files
which contain at least one subprogram definition, not only dec-
larations. Let us see the overall details:

Number of files: 3549
Effective lines of code: 888432
Number of subprograms: 23892
Nr. of subprog. without decision: 13439
Nr. of subprog. with exactly 1 argument in their
decisions:

8190

Nr. of subprog. with more arguments in their
decisions:

2263

Table 1 shows the distribution of decisions by their argument
numbers.

Tab. 1.

Number of

arguments:

1 2 3 4 5 6 7 8 9

Number of

decisions:

51542 3466 626 289 111 99 32 37 20

Number of

arguments:

10 11 12 13 14 15 16 18 22 23 34

Number of

decisions:

18 14 13 9 4 4 1 1 1 4 1

4.1 Differences and the McCabe metric
In this chapter we can see how the McCabe metric values af-

fect the difference between the necessary test cases for DC and
MC/DC. We grouped the subprograms of the projects by their
McCabe values. The table 2 shows those subprograms where
the McCabe values are between 0 and 10, the table 3 shows
those where the McCabe values are between 11 and 20 etc. Each

Per. Pol. Elec. Eng.190 Zalán Szűgyi / Zoltán Porkoláb

row of the tables refers to an individual project and the last row
contains the summary. The Nr. column holds the number of
subprograms in the group. The DC and MC/DC columns mean
how many test cases are needed to cover all the subprograms in
the group for DC and MC/DC. The difference column con-
tains the difference of DC and MC/DC columns and the Ratio
column means how many times more test cases are needed to
cover MC/DC than DC.

Tab. 2. McCabe values are between 0 and 10

Nr. DC MC/DC Difference Ratio

1. 1533 2361 2517 156 1.07

2. 1212 2845 3113 259 1.09

3. 5498 9220 9730 510 1.06

4. 1746 3314 3505 191 1.06

5. 5792 9801 10523 722 1.07

6. 5690 9972 10636 664 1.07

7 [24]. 91 171 189 18 1.11

8 [25]. 7 8 8 0 1.00

9 [26]. 299 478 505 27 1.06

10 [27]. 451 701 751 50 1.07

11 [28]. 112 174 177 3 1.02

12 [29]. 61 86 95 9 1.10∑
22327 39140 41750 2610 1.07

Tab. 3. McCabe values are between 11 and 20

Nr. DC MC/DC Difference Ratio

1. 85 791 825 34 1.04

2. 56 475 537 62 1.13

3. 177 1542 1634 92 1.06

4. 72 705 729 21 1.03

5. 244 1499 1678 179 1.12

6. 289 1919 2138 219 1.11

7 [24] 4 18 19 1 1.05

8 [25]. 2 15 15 0 1.00

9 [26]. 10 61 66 5 1.08

10 [27]. 1 2 2 0 1.00

11 [28]. 5 20 21 1 1.05

12 [29]. 0 - - - -∑
945 7047 7664 617 1.09

Since the McCabe metric deals with the number of decisions and
not their structure or their argument numbers, we can say the
difference between the necessary test cases for DC and MC/DC
does not depend on the McCabe metric. We accept this result,
because the McCabe value of a subprogram can be high even if
there is only one argument in decisions. In that way the DC and
MC/DC values are the same. And on the other hand the McCabe
value is low when there are few decisions in a subprogram even
if they have many arguments. In that way there can be a big
difference between the DC and MC/DC values.
The Fig. 1 shows the ratio of the number of necessary test cases
for MC/DC and DC. The colums correspond to the proper table
of this chapter.

Tab. 4. McCabe values are between 21 and 30

Nr. DC MC/DC Difference Ratio

1. 34 579 587 8 1.01

2. 13 215 220 5 1.02

3. 55 729 749 20 1.03

4. 12 166 178 12 1.07

5. 106 820 907 87 1.11

6. 74 701 791 90 1.13

7 [24] 0 - - - -

8 [25]. 0 - - - -

9 [26]. 3 46 46 0 1.00

10 [27]. 1 4 4 0 1.00

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
298 3260 3482 222 1.07

Tab. 5. McCabe values are between 31 and 40

Nr. DC MC/DC Difference Ratio

1. 13 295 300 5 1.02

2. 4 113 117 4 1.03

3. 27 394 409 15 1.04

4. 11 207 210 3 1.01

5. 31 256 302 46 1.18

6. 55 638 778 138 1.22

7 [24] 0 - - - -

8 [25]. 0 - - - -

9 [26]. - - - - -

10 [27]. 1 20 20 0 1.00

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
142 1923 2134 211 1.11

Tab. 6. McCabe values are above 40

Nr. DC MC/DC Difference Ratio

1. 13 423 453 30 1.07

2. 1 37 44 7 1.19

3. 20 726 770 44 1.06

4. 6 286 286 0 1.00

5. 70 2015 2275 260 1.13

6. 68 1942 2083 141 1.07

7 [24] 0 - - - -

8 [25]. 1 47 47 0 1.00

9 [26]. 1 5 5 0 1.00

10 [27]. 0 - - - -

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
180 5481 5963 482 1.09

4.2 Differences and the nesting
In this section we grouped the subprograms by the deepth of

the nested structures. The orientation of the tables are the same
as in the previous chapter.
An increase in the maximum nesting value causes the increase
of the ratio very slightly, thus it does not affect the difference of
necessary test cases significantly.

Necessary test cases for Decision Coverage and Modified Condition / Decision Coverage 1912008 52 3-4

Fig. 1. McCabe

Tab. 7. The maximum nesting is between 0 and 1

Nr. DC MC/DC Difference Ratio

1. 1360 2498 2564 66 1.03

2. 912 1696 1831 135 1.08

3. 4331 6304 6552 248 1.04

4. 1341 2055 2133 78 1.04

5. 4885 8231 8748 517 1.06

6. 4430 7507 7883 376 1.05

7 [24]. 63 93 97 4 1.04

8 [25]. 7 18 18 0 1.00

9 [26]. 240 317 331 14 1.04

10 [27]. 353 429 456 27 1.06

11 [28]. 95 130 132 2 1.02

12 [29]. 51 65 71 6 1.09∑
17841 27091 28263 1171 1.04

Tab. 8. The maximum nesting is between 2 and 3

Nr. DC MC/DC Difference Ratio

1. 234 1058 1125 67 1.06

2. 298 1436 1589 153 1.11

3. 948 3613 3840 227 1.06

4. 366 1358 1449 91 1.06

5. 1058 3782 4173 391 1.10

6. 1145 3903 4223 320 1.08

7 [24]. 29 84 99 15 1.18

8 [25]. 2 5 5 0 1.00

9 [26]. 58 161 175 14 1.09

10 [27]. 85 230 251 21 1.09

11 [28]. 18 50 51 1 1.02

12 [29]. 9 19 22 3 1.16∑
4250 15716 17002 1286 1.08

The orientation of Fig. 2 is the same as in previous chapters.

4.3 Differences and the maximum argument numbers
Here we can see how the largest decision (which contains the

most arguments) affects the difference in the number of neces-
sary test cases for DC and MC/DC. We grouped the subpro-
grams by the number of arguments of the largest decisions. The
orientation of the tables are the same as in the previous chapters.
In the first two cases there is no difference between DC and

Tab. 9. The maximum nesting is between 4 and 6

Nr. DC MC/DC Difference Ratio

1. 76 804 895 91 1.11

2. 74 555 604 49 1.09

3. 262 2027 2189 162 1.08

4. 121 910 971 61 1.07

5. 262 1896 2165 269 1.14

6. 493 2960 3387 427 1.14

7 [24]. 3 12 12 0 1.00

8 [25]. 1 47 47 0 1.00

9 [26]. 12 87 91 4 1.05

10 [27]. 16 68 69 1 1.01

11 [28]. 4 14 15 1 1.07

12 [29]. 1 2 2 0 1.00∑
1325 9382 10447 1065 1.11

Tab. 10. The maximum nesting is above 6

Nr. DC MC/DC Difference Ratio

1. 8 89 98 7 1.10

2. 2 7 7 0 1.00

3. 36 667 711 44 1.07

4. 19 338 355 17 1.05

5. 38 482 599 117 1.24

6. 108 802 933 131 1.16

7 [24] 0 - - - -

8 [25]. 0 - - - -

9 [26]. 3 25 25 0 1.00

10 [27]. 0 - - - -

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
214 2410 2726 316 1.13

Fig. 2. Nesting

MC/DC. It comes from the definition of these testing methods.
As the number of arguments increases in decisions, the differ-
ence is increasing as well. Decisions with more than ten argu-
ments in subprograms require almost twice as many test cases
for MC/DC than for DC.
The orientation of Fig. 3is the same as in previous chapters.

Per. Pol. Elec. Eng.192 Zalán Szűgyi / Zoltán Porkoláb

Tab. 11. The maximum argument number is 0 (no decisions)

Nr. DC MC/DC Difference Ratio

1. 1134 1134 1134 0 1.00

2. 586 586 586 0 1.00

3. 3299 3299 3299 0 1.00

4. 996 996 996 0 1.00

5. 3469 3469 3469 0 1.00

6. 3343 3343 3343 0 1.00

7 [24]. 31 31 31 0 1.00

8 [25]. 6 6 6 0 1.00

9 [26]. 160 160 160 0 1.00

10 [27]. 291 291 291 0 1.00

11 [28]. 82 82 82 0 1.00

12 [29]. 42 42 42 0 1.00∑
13439 13439 13439 0 1.00

Tab. 12. The maximum argument number is 1

Nr. DC MC/DC Difference Ratio

1. 389 2308 2308 0 1.00

2. 493 1957 1957 0 1.00

3. 1817 6475 6475 0 1.00

4. 656 2466 2466 0 1.00

5. 2324 7840 7840 0 1.00

6. 2130 7304 7304 0 1.00

7 [24]. 53 122 122 0 1.00

8 [25]. 3 17 17 0 1.00

9 [26]. 127 309 309 7 1.00

10 [27]. 131 322 322 0 1.00

11 [28]. 27 83 83 0 1.00

12 [29]. 10 25 25 0 1.00∑
8190 29229 29229 0 1.00

Tab. 13. The maximum argument number is between 2 and 3

Nr. DC MC/DC Difference Ratio

1. 134 873 1031 158 1.18

2. 166 900 1081 181 1.20

3. 416 2396 2866 470 1.19

4. 179 1072 1249 177 1.17

5. 307 2106 2539 433 1.21

6. 571 3504 4223 719 1.21

7 [24]. 11 36 54 18 1.50

8 [25]. 1 47 47 0 1.00

9 [26]. 23 94 113 19 1.20

10 [27]. 27 85 113 28 1.33

11 [28]. 8 29 33 4 1.14

12 [29]. 9 19 28 9 1.47∑
1857 11288 13377 2089 1.19

4.4 Differences overall
In this chapter the differences can be seen for the whole

projects separately and in the last row together. The DC and
MC/DC columns mean how many test cases are needed to
cover all the subprograms in the projects for DC and MC/DC.
Columns Diff and Rat contain the difference and the ratio of
the values in columns DC and MC/DC respectively. There are

Tab. 14. The maximum argument number is between 4 and 5

Nr. DC MC/DC Difference Ratio

1. 3 8 25 17 3.125

2. 25 156 236 80 1.51

3. 33 362 484 122 1.34

4. 10 117 135 18 1.15

5. 69 401 642 241 1.60

6. 74 471 673 202 1.43

7 [24]. 0 - - - -

8 [25]. 0 - - - -

9 [26]. 3 34 40 6 1.17

10 [27]. 4 29 43 14 1.48

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
236 1696 2437 741 1.44

Tab. 15. The maximum argument number is between 6 and 10

Nr. DC MC/DC Difference Ratio

1. 0 - - - -

2. 11 65 110 45 1.69

3. 6 26 66 40 2.54

4. 5 18 46 28 2.56

5. 52 359 718 359 2.00

6. 44 399 630 231 1.58

7 [24]. 0 - - - -

8 [25]. 0 - - - -

9 [26]. 0 - - - -

10 [27]. 1 2 7 5 3.50

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
122 877 1602 725 1.83

Tab. 16. The maximum argument number is above 10

Nr. DC MC/DC Difference Ratio

1. 0 - - - -

2. 5 30 61 31 2.03

3. 6 53 102 49 1.92

4. 1 9 16 7 1.78

5. 22 216 477 216 2.21

6. 14 151 253 102 1.68

7 [24]. 0 - - - -

8 [25]. 0 - - - -

9 [26]. 0 - - - -

10 [27]. 0 - - - -

11 [28]. 0 - - - -

12 [29]. 0 - - - -∑
48 459 909 450 1.98

three tables: In Table 17 all subprograms of the projects appear.
In Table 18, we excluded those subprograms which have no de-
cisions at all. And in Table 19, we excluded those subprograms
that either have no decisions or there are no decisions with more
than one argument.

The Fig. 4 shows the ratio of compulsory test cases of DC
and MC/DC testing method. The column A represents the sum-

Necessary test cases for Decision Coverage and Modified Condition / Decision Coverage 1932008 52 3-4

Fig. 3. Maximu argument numbers

Tab. 17. All subprograms of the projects

DC MC/DC Diff Rat

1. 4449 4682 233 1.05

2. 3694 4031 337 1.09

3. 12611 13292 681 1.05

4. 4678 4908 230 1.05

5. 14391 15685 1294 1.08

6. 15172 16426 1254 1.08

7 [24]. 189 208 19 1.10

8 [25]. 70 70 0 1.00

9 [26]. 590 622 32 1.05

10 [27]. 727 776 49 1.07

11 [28]. 194 198 4 1.02

12 [29]. 86 95 9 1.10∑
56851 60993 4142 1.07

Tab. 18. Subprograms containing decisions

DC MC/DC Diff Rat

1. 3315 3548 233 1.07

2. 3108 3445 337 1.11

3. 9312 9993 681 1.07

4. 3682 3912 230 1.06

5. 10922 12216 1294 1.12

6. 11829 13083 1254 1.11

7 [24]. 158 177 19 1.12

8 [25]. 64 64 0 1.00

9 [26]. 430 462 32 1.07

10 [27]. 436 485 49 1.11

11 [28]. 112 116 4 1.04

12 [29]. 44 53 9 1.20∑
43412 47554 4142 1.10

mary of the Table 17, the column B belongs to Table 18 and the
column C to Table 19.

Tab. 19. All subprograms of the projects

DC MC/DC Diff Rat

1. 1007 1240 233 1.23

2. 1151 1488 337 1.29

3. 2837 3518 681 1.24

4. 1216 1446 230 1.19

5. 3082 4376 1294 1.42

6. 4554 5779 1254 1.27

7 [24]. 36 55 19 1.53

8 [25]. 47 47 0 1.00

9 [26]. 128 160 32 1.25

10 [27]. 116 165 49 1.42

11 [28]. 29 33 4 1.14

12 [29]. 19 28 9 1.47∑
14320 18432 4142 1.29

Fig. 4. Overall

5 Related works
Chilenski at al. [6] gave a comprehensive analysis of

analysing structural coverage criteria. They provided formal
techniques for axiomatizing Ada programs and translating the
path expressions of subprogram bodies into conjunctive nor-
mal form. Coverage specifications were combined with feasi-
ble path expressions to construct a minimal set of test specifica-
tions. However, these methods proved effective only for small
programs written in a restricted subset of the Ada language (cca
5000 effective lines of code).

Goldberg et al. [10] describes the design and prototype im-
plementation of a structural testing system that uses a theorem
prover to determine feasibility of testing requirements and to
optimize the number of test cases required to achieve test cov-
erage. Using this approach, the authors were able to determine
path feasibility for moderately-sized program units of produc-
tion code written in a subset of Ada. On these problems, the au-
thors argued that computer solutions were obtained much faster
and with greater accuracy than manual analysis.

Gotlieb et al. [11] introduced constraint solving based tech-

Per. Pol. Elec. Eng.194 Zalán Szűgyi / Zoltán Porkoláb

niques. After statically transform a procedure into a constraint
system by using Static Single Assignment form and control-
dependencies they solved the system to check whether at least
one feasible control flow path going through the selected point
exists and to generate test data that correspond to one of these
paths. The key point of their approach is to take advantage of
advances in constraint techniques when solving the generated
constraint system. The authors developed a prototype imple-
mentation on a restricted subset of the C language.

As the examples above show, most of the related works are
able to handle only small or medium sized projects, and imple-
mented over resticted language subsets. In our research, how-
ever, real-life projects in size up to 220.000 effective lines of
code have been measured.

6 Conclusions and future work
We analyzed several projects written in Ada programming

language and measured the difference of the required test cases
of Decision Coverage and the more strict Modified Condition /
Decision Coverage. To reduce development efforts it is essen-
tial to find a good balance between minimizing testing costs and
find the most of the possible bugs in the code. Choosing the
rigth testing methods based on the character of the source could
be a useful method. We found that the difference is about five
to ten per cent because the decisions in most subprograms have
only one argument and there are several subprograms which do
not contain decisions at all. If we exclude these subprograms
we get a difference that is four times larger. Most importantly,
the maximum number of arguments in decisions affects the dif-
ference. For those subprograms where there are decisions with
more than six arguments, almost twice as many MC/DC test
cases are needed as DC. But these subprograms are only less
than one per cent of the whole project.

In general we can say five to ten per cent more test cases are
needed to satisfy the requirements of MC/DC then DC.

Our future work is to refine our analyzer program to do a more
precise measurement on programs containing special syntactical
and semantical features, like exception handling. We also plan
to analyse a wider set of projects from different industrial areas.

References
1 Adrion W R, Branstad M A, Cherniavsky J C, Validation, Verification,

and Testing of Computer Software, ACM Computing Surveys (CSUR) 14
(June 1982), no. 2, 159-192, DOI 10.1145/356876.356879.

2 Amman P, Offutt J, Huang H, Coverage Criteria for Logical Expressions,
Proc. of 14th International Symposium on Software Reliability Engineering,
pp. 99, DOI 10.1109/ISSRE.2003.1251034, (to appear in print).

3 Beizer B, Software testing techniques, Van Nostrand Reinhold Co., New
York, NY, 1990. 2nd ed.

4 Cherniavsky J C, On finding test data sets for loop free programs, Inform.
Process. Lett 8 (1979), no. 2, DOI 10.1016/0020-0190(79)90155-8.

5 Chilenski J J, Miller S P, Applicability of Modified Condition/Decision

Coverage to Software Testing, Software Engineering Journal 9 (September
1994), 193-200, DOI 10.1049/sej.1994.0025.

6 Chilenski J J, Newcomb P H, Formal Specification Tools for Test Cov-

erage Analysis, Proceedings of the Ninth Knowledge-Based Software Engi-
neering Conference (KBSE’94), Monterey, CA, USA, 1994, pp. 59-68, DOI
10.1109/KBSE.1994.342677, (to appear in print).

7 DeMillo R A, Lipton R J, Sayward F G, Hints on test data selection:

Help for the practicing programmer, Computer 11 (1978), no. 4, 34–43, DOI
10.1109/C-M.1978.218136.

8 Dupuy A, Leveson N, An empirical evaluation of the MC/DC

coverage criterion on the HETE-2 satellite software, Proc. of 19th
Digital Avionics Systems Conferences, 2000, pp. 1B6/1-1B6/7, DOI
10.1109/DASC.2000.886883.

9 White A L, Comments on Modified Condition/Decision Coverage for Soft-

ware Testing, 2001 IEEE Aerospace Conference Proceedings, 10-17 March
2001, Big Sky, Montana, USA, pp. 2821-2828.

10 Goldberg A, Wang T C, Zimmerman D, Applications of feasible path anal-

ysis to program testing, International Symposium on Software Testing and

Analysis, Proc of 1994 ACM SIGSOFT international symposium on Soft-
ware testing and analysis, Seattle, Washington, United States, 1994, pp. 80-
94, DOI 10.1145/186258.186523, (to appear in print).

11 Gotlieb A, Botella B, Rueher M, Automatic test data generation using con-

straint solving techniques, ACM SIGSOFT Software Engineering Notes 23
(1998), 53-62, DOI 10.1145/271775.271790.

12 Hayhurst K J, Veerhusen D S, A Practical Approach to Modified Condi-

tion/Decision Coverage, 20th Digital Avionics Systems Conference (DASC),
Daytona Beach, Florida, USA, October 14, 2001, pp. 1B2/1-1B2/10, DOI
10.1109/DASC.2001.963305.

13 Hayhurst K J, Veerhusen D S, Chilenski J J, Rierson L K, A Prac-

tical Tutorial on Modified Condition/Decision Coverage (NASA / TM-2001-

210876, technical report).
14 McCabe T J, A Complexity Measure, IEEE Trans. Software Engineering,

SE-2(4), posted on 1976, 308-320, DOI 10.1109/TSE.1976.233837, (to ap-
pear in print).

15 Myers G J, The Art of Software Testing, John Wiley, 1986.
16 Rayadurgam S, Heimdahl M P E, Coverage based test-case generation us-

ing model checkers, Engineering of Computer Based Systems 2001, ECBS
2001. Proceedings Eighth Annual IEEE International Conference and Work-
shop, pp. 83-91, DOI 10.1109/ECBS.2001.922409, (to appear in print).

17 Weyucker E J, Ostrand T J, Theories of program testing and the applica-

tion of revealing subdomains, IEEE Trans. Softw. Eng. SE- 6 (May, 1980),
pp. 236–246, DOI 10.1109/TSE.1980.234485, (to appear in print).

18 Zhu H, Hall P A V, May J H R, Software unit test coverage and adequacy,
ACM Computing Surveys 29, 366–427, DOI 10.1145/267580.267590.

19 Cornett S, Code Coverage Analysis, available at http://www.bullseye.
com/coverage.html.

20 available at http://www.antlr.org/.
21 O. Kellogg, available at http://www.antlr.org/grammar/ada.
22 available at https://lemon.cs.elte.hu/site/.
23 available at http://www.gnu.org/software/glpk/.
24 available at http://sourceforge.net/projects/aptesting.
25 available at http://sourceforge.net/projects/gnat-asis/.
26 available at http://sourceforge.net/projects/p2ada/.
27 available at http://sourceforge.net/projects/libadacrypt-dev/.
28 available at http://sourceforge.net/projects/gnat-asis/.
29 available at http://sourceforge.net/projects/zlib-ada/.

Necessary test cases for Decision Coverage and Modified Condition / Decision Coverage 1952008 52 3-4

http://www.bullseye.com/coverage.html
http://www.bullseye.com/coverage.html
http://www.antlr.org/
http://www.antlr.org/grammar/ada
https://lemon.cs.elte.hu/site/
http://www.gnu.org/software/glpk/
http://sourceforge.net/projects/aptesting
http://sourceforge.net/projects/gnat-asis/
http://sourceforge.net/projects/p2ada/
http://sourceforge.net/projects/libadacrypt-dev/
http://sourceforge.net/projects/gnat-asis/
http://sourceforge.net/projects/zlib-ada/

	Introduction
	Coverage metrics
	Statement coverage
	Decision coverage
	Modified Condition / Decision Coverage

	Analysis method
	Counting test cases for decision coverage
	Counting test cases for Modified Condition / Decision Coverage

	Measurement and results
	Differences and the McCabe metric
	Differences and the nesting
	Differences and the maximum argument numbers
	Differences overall

	Related works
	Conclusions and future work

