
Ŕ periodica polytechnica

Electrical Engineering
52/3-4 (2008) 197–208

doi: 10.3311/pp.ee.2008-3-4.08
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Pipeline mode in C-based direct
hardware implementation
Péter Arató / Bence Csák

Received 2007-12-09

Abstract
In this paper a methodology is presented that enables the

pipeline function of hardware blocks created by C-based direct
hardware design. The method is embedded into the C-based
design methodology worked out by the authors earlier. This
pipeline enabling method is rather flexible, needs no special
efforts. With the help of a simple state-machine-based entity,
blocks of different execution times can build up the pipeline,
even with data-dependent duration. A data-spreading technique
solves data consistency. Pipeline sectioning – chosing the right
and balanced granularity versus pipelining overhead – is an op-
timisation matter. Simulation results prove the correctness of the
method.

Keywords
C-based design · reuse · component based design · parallel

processing · pipelining · hardware-software codesign

Acknowledgement
The authors work has been supported by the grants OTKA Nr

T043329 at the Department of Control Engineering and Infor-
mation Technology, BME

Péter Arató

Bence Csák

Department of Control Engineering and Information Technology, BME, H-1117
Budapest Magyar Tudósok krt. 2., Hungary

Introduction
There is a big pressure on companies in recent times to use

application oriented components. The reason is that there are
more and more high speed applications, which require very high
speed processing of complex algorithms. Such application is for
example on-line video filtering, or wireless communication pro-
tocols. Of course the problem can be solved with a CPU-based,
SW controlled circuit, but if e.g. heat dissipation is a leading
constraint, distributed processing in FPGA or ASIC can be more
beneficial. If the design is RTL based, then any modification
needs high efforts and specially educated developer. Contrary,
C-based design provides an easy way [1,2,3,4,5].

C-based design however has a strong sequential influence due
to the initial sequential code. Better utilisation of processing
time and silicon area requires – if possible – parallel processing.

Parallel processing – depending on the nature of the task –
can be classified into two main types, one is „horizontal” and
the other is „vertical”. The first, trivial case is, when calcula-
tions are independent, so these can run partly or entirely in a
concurrent manner. The other case is, when there is a sequential
dependency among calculation parts, so these can not overlap.
In case of cyclic execution, pipelined calculation scheduling can
establish a so called „vertical” parallel processing.

In the first part of this paper the authors’ embedding method-
ology is introduced, showing an example for „horizontal” par-
alleling in an application, where a recursive function is imple-
mented. Concurrent operations compete for a single-sample re-
source and a resolving method is introduced.

In the second part the add-on methodology is introduced,
which solves pipelining.

The embedding methodology
The pipelining solution discussed in this paper is embedded

in the C-based direct hardware implementation methodology
worked out by the authors earlier [8,9,10,11]. This embedding
methodology is based on state-machines that correspond to basic
C instructions like ‘while’, ‘do’, ‘for’, ‘if’, ‘switch’, or ‘case’.
These state-machines (instruction units) control corresponding
actions like evaluation of conditions, starting cycles or other ac-

Pipeline mode in C-based direct hardware implementation 1972008 52 3-4

http://www.pp.bme.hu/ee

tions based on the result of the evaluated conditions and trigger-
ing subsequent operations. There are so many types of instruc-
tion units, as many instructions exist. Procedure (‘function’)
definition - with its variables – is done by creating a procedure
unit consisting of a state-machine and storages for local vari-
ables and calling parameters. Operations like comparison, ad-
dition, etc are represented by operation units. All these units
form a compatible set of IPs, which then – as defined by the
SW code - are linked into a chain using ‘trigger’ and ‘ready’
connections. We have proposed to break this strongly sequen-
tial structure with automatic compile-time code analysis based
paralleling, allowing and resolving competition cases [11]. This
automatic analysis is done by a wide-scope parser that – in addi-
tion to usual parser functions - analyses big blocks of code and
able to recognise situations where paralleling or resource shar-
ing is possible. It could be fed back from the resulting chip plan,
so it could find a trade-off between resource demand and execu-
tion time. Thank to these basics, this conversion methodology
is simple, yet structured and transparent, supporting creation of
applications of any complexity. The distributed control helps
better utilisation of silicon area.

The conversion method has a dual nature. Based on the C
code, directly a HW structure can be drawn (so this is a direct
conversion procedure). But - as text-to-text conversions require
less apparatus – a C-to-VHDL methodology is given too. Here,
block schemes will be shown for the easy understanding. All the
blocks have a reset and a clock input, which are omitted in the
figures. Outputs are changed at rising clock edges, while inputs
are read and state variables are set at falling clock edges. This
provides a half clock period for optional asynchronous circuits
to settle.

On Fig. 1 the hardware block of instruction ’for’ and its state
diagram can be seen. A ‘for’ instruction in the form of “for (
scv(); chk(); rcv())” is considered here, where function scv()
is responsible for setting the cycle variable, chk() is to check,
whether the cycle is to be executed and rcv() is to refresh the cy-
cle variable. As in C description, one or more of these functions
can be omitted. In such case the corresponding trigger has to be
directly connected to the returning ready.

Signals on the right side of the block can be ordered into three
groups. The first two signals belong to “scv()” and are responsi-
ble for setting the cycle variable. The next three signals belong
to “chk()” and are responsible for checking the cycle condition,
while the next two signals are responsible for triggering the cy-
cle body and taking control back from the cycle. The cycle body
involves steps corresponding to “rcv()”.

The state diagram on the right describes the exact function.
Rounded rectangles represent each state. Arrows between them
represent possible state transitions. Unframed texts at the ar-
rows show the condition of the corresponding state transitions
(if there are multiple equations, a logic AND is considered be-
tween them unless it is explicitly noted there). Framed text at
each status show, what actions are taken there.

Earlier publications [8,9] show examples of the embedding
methodology; here another example is given where flexibility
of handling function calls and returns - including recursion -
is demonstrated. Parallel call of the same function sample is
resolved by competition management.

The following SW is not a practical one, but helps highlight
features mentioned in the introduction.

char func_r(char num)

{

if (num == 68) return 86;

if (num > 12) return 13;

if (num > 1) return func_r(num-2); //

recursive call of func_r()

else return num;

}

void main(void)

{

char a,b,c,d;

a = func_r(68);

b = func_r(14);

c = func_r(7);

d = func_r(68);

}

Function “func_r()” has more features, which are important re-
garding the embedding methodology. It has more than one “re-
turn” statements, that are not mutually exclusive and one can be
even recursive. The recursive operation determines whether the
parameter (if num < 13) is an even or an odd number.

Multiple returns in a C function – even if these are non-
exclusive – are usual and the flow-control resolves them, but
since the base methodology supports concurrent execution, all
the returns provide a value, which situation could not be re-
solved. Consider, if “func_r()” is called with 68, then all “if”s
are true and the function would return with 86 and 13 and – in
addition – it would call itself again with 66.

The solution to this problem is a “return” unit, of which so
many is needed as many “returns” are in the source code. These
are then linked into a priority chain. Each return unit latches the
corresponding return value, but finally only the one with highest
priority may output its latched value. Using this block, even
functions not explicitly having any “return” statement can be
converted, if during the C to HW translation one such block is
inserted. Fig. 2 shows the block scheme and the state diagram
of the “return” unit.

The “return” unit gets its return parameter on its “in” input.
When “trg” is activated, the value is written into an internal reg-
ister and “rdy” is activated. Return units are daisy-chained by
priority ranking using their “dsyi” inputs and “dsyo” outputs. If
a “return” unit has been written, it raises its “dsyo” output. The
same happens anyway, if its “dsyi” input is raised by a higher
priority “return” unit. This chain works asynchronously and a
half clock cycle is provided for full propagation. When later the

Per. Pol. Elec. Eng.198 Péter Arató / Bence Csák

Fig. 1. Block scheme and state-diagram of the
state-machine representing instruction ‘for’

Fig. 2. Block scheme and state diagram of the
“return” unit

“oe” input is activated, the single “return” unit with dsyi=0 and
dsyo=1 drives its “out” and “reco” outputs. “Out” contains the
stored input value, while “reco” is set according to the “reci” in-
put. “Reci” stands for “recursion demand in” and tells whether
the respective return path is a recursive path (like the “return” of
the last “if” in “func_r()”). When “oe” is inactive, these outputs
are in high-impedance state (“Z”).

For supporting recursion, another unit is required, named “re-
curs”. It either transfers calling parameters to the sample of the
function and then transfers the return value back to the caller, or
– if the function itself signals a recursion demand – it feeds back
the return value as it was a new calling parameter and restarts the
calculations of the function. Block scheme and state diagram of
“recurs” can be seen on Fig. 3.

The “recurs” unit is a function header block, transferring con-
trol signals and data between operations of a function and the
calling blocks. It gets the calling parameter(s) on its “parin”
input(s) and is triggered by its “trg” input. Then it outputs the
value of “parin” to its “paro” output and triggers the first func-
tion operation by its “trgo” output. When operations of the func-
tion are done, the last puts the return value to “retvali” and then
triggers “rdyi”. If “reci” is inactive, then it is a non-recursive
call, so the value of “retvali” is output to “retvalo” and then
“rdy” is activated to signal that the function is done. If “reci”
is active, then recursion is needed, so the value at “retvali” is fed
back on “paro” and the operations of the function are restarted
via “trgo”.

Note, that this recursion mapping inherently assures a faster
realisation of the recursion, since there is no stack used and so
no stack restoration is needed.

Using these and some other blocks, the following block
scheme represents „func_r()” on Fig. 4.

As on Fig. 4 can be seen, the blocks are chained as determined

by the original C source code using trigger and ready connec-
tions. For saving space, paralleling is not introduced here, but
later in connection with the „main()” program.

The „main()” program shows further features of the basic
methodology. These are: using functions in „manager-resource”
approach, parallel execution and competition resolution.

The „manager-resource” approach enables the reuse of re-
sources like function samples, array variables, operations, etc.
The resulting hardware can consist of one single resource of a
kind (e.g. func_r() or a multiplier) and as many corresponding
managers as many times the resource is „called” in the original
source code. A bus system is created for the access of each re-
source to which the corresponding managers are attached [10].

The basic methodology inherently supports paralleling since
one block can trigger several others and it uses a very simple
„join” unit for reuniting multiple operation paths. Concurrent
execution becomes difficult, when concurrent paths try to use
the same resource. The basic methodology offers a local, sep-
arate competition handling unit, a so called „competition man-
ager” (CM). In a structured way, a competition manager is con-
structed of slices. One slice handles one competing block. CM
slices are chained to form a CM unit. This unit can arbitrate any
building block without any modification. Fig. 5 shows the block
scheme and the state diagram of the CM slice. Depending on the
number of the competing „resource managers” the same amount
of competition manager slices have to be combined.

Access request is signalled to the competition manager via its
„reqi” input. If priority situation allows, it forwards the signal
through its „acko” output to the corresponding competing „re-
source manager”. When the given resource manager finishes,
its „rdy” output is fed back to the competition manager’s „rdyi”
input. (It’s a branch, as „rdy” triggers the subsequent opera-
tion too.) Priority situation is arbitrated by a daisy-chain and

Pipeline mode in C-based direct hardware implementation 1992008 52 3-4

Fig. 3. Block scheme and state diagram of the “recurs” unit

Fig. 4. Block scheme of func_r()

Fig. 5. Block scheme and state diagram of the „competition manager”

Per. Pol. Elec. Eng.200 Péter Arató / Bence Csák

a progress signal. The CM sets its „dsyo” output if its „dsyi”
input is set, or if its „dsyi” input is not set and it has an active
„reqi” input. The CM having an inactive „dsyi” input and a set
„dsyo” output can activate its „acko” output. Avoiding situa-
tions when a higher priority request joins (or rather interrupts) a
running competition and takes over the control, a progress bus
is introduced connecting all CM slices. A CM slice can enter a
competition only then, when the progress bus is not driven yet.
If a slice enters, it drives the progress bus low.

Using these and other blocks, the following scheme repre-
sents the „main()” function on Fig. 6.

Fig. 6. Block scheme of the „main()” function

The „main()” function is started by „x_trg”. It triggers the
first function call, or rather a function manager (func_mgr #1)
to “func_r()”. It reaches the single sample of “func_r()” via
a bus system consisting of “trg_bus”, “par_bus”, “retval_bus”
and “rdy_bus”. This time no competition is given as “func_mgr
#1” is triggered alone and until it’s done, no other manager of
“func_r()” is triggered. “func_mgr #1” first drives the “par_bus”
with the value put on its “par” input. In the next clock cycle it
triggers “func_r()” via “trg_bus”. When “func_r()” is done, it
drives the “retval_bus” with the actual return value and in the
next clock cycle it “back-triggers” the actual calling function
manager (func_mgr#1) via the “rdy_bus”. As “func_mgr #1”
gets the “rdyi” signal, it undrives “trg_bus” and “par_bus” caus-
ing “func_r()” to undrive “retval_bus” and drive “rdy_bus” in-
active.

As “func_mgr #1” is done, it triggers “wr_mgr #1”, which is
responsible to write variable “char a” stored in “char_store_a”.
This then triggers three competition manager slices at once
(“comp_mgr_1 #0”, “comp_mgr_1 #1”, “comp_mgr_1 #2”)
building up “comp_mgr_3 #1”, which is a 3-channel competi-

tion manager. The slices are daisy-chained and - in addition –
are tied to a common bus called “progress”. The competition
manager is necessary, because “func_r()” is to be called three
times concurrently, but - in this example - it has only one sin-
gle sample. These competition manager slices arbitrate access
to “func_r()” via the same bus system as “func_mgr #1” did.
When a function manager is done, it signals its readiness via its
“rdy” output. These outputs trigger each respective character
write manager, writing char b, c and d.

The way as a variable storage is accessed by a corresponding
write manager is very similar to the one as a function sample is
accessed. At the lower right “wr_mgr #1” is drawn in detail to-
gether with the corresponding storage unit (“char_store_a”). All
variables have such an arrangement, but for the sake of simplic-
ity all write managers are drawn simplified and corresponding
storages do not appear in this figure.

Timing diagrams of „main()” can be seen on Fig. 7.
The timing diagram of Fig. 7 is sectioned into six sections.

One section has been omitted containing reset, clock, main trig-
ger and main ready. These will be included and discussed later.

The first section (char a,b,c,d) contains the write and read
buses of these variables. It can be seen that at first a value ap-
pears on the write bus, then – according to signals not shown
here - the read bus takes it over.

In the next section (func_r interface) signals interfacing
„func_r()” to „main()” appear. Here at first #68 (0x44) is
put on the „par_bus”, then „trg_bus”, with an active low trig-
gers „func_r()”. When the function is ready, it puts the return
value #86 (0x56) onto „retval_bus”, then signals its readiness
on „rdy_bus” with an active low. Signals „recdem” (recursion
demand) and „recdem_l” (the latch in „recurs” storing the value
„recdem”) show that this return does not need recursion. In the
first section it now can be seen as „char_a” gets its new value.
The next call is done with a parameter value of #14 (0x0E) for
which a return value of #13 (0x0D) is given, which then is writ-
ten into „char_b”. The next call is done with a value of #7 (0x07)
which forces „func_r” to recursion. This can be observed on the
„recdem” signals just like on the „retval_bus” which – for di-
agnostic purposes – shows the actual „num” value (see Fig. 4.)
but - without „rdy_bus” activation - control remains at „func_r”.
When the recursion has reached the exit condition (num<=1),
„func_r” quits and the real return value #1 (0x01) is put on the
„retval_bus”. This value is then written into „char_c” (see first
section). Then „func_r” is called with #68 again.

The next section shows signals of function „main()” from
which „progress” is to be observed when the competition man-
agers (last three sections) are discussed. Based on Fig. 5 the
followings have to be noted here. There are three function
managers triggered concurrently, which then have to be arbi-
trated via connected competition manager slices. It can be seen
in Fig.7. as three „reqi” signals get active at the same time
(at 900nsec). The daisy chained competition manager slices
(comp_mgr_1_x x=0,1,2) start arbitrating the situation. By the

Pipeline mode in C-based direct hardware implementation 2012008 52 3-4

Fig. 7. Timing diagram of the application of Fig. 6

priority chain set up by „dsy_i” and „dsy_o” signals the prior-
ity is determined by an asynchronous evaluation within a half
clock period. The competition manager slice is the winner in
which the internal signal „win” can get an active high value.
This drives the „progress” bus low. Then the corresponding
„acko” (acknowledge out) signal gets active and the correspond-
ing function manager is triggered. When it is done, its „rdy”
output signals to the corresponding competition manager slice
on its „rdy_i” input. Then this slice releases the „progress” bus
and ends competing.

Pipelining
The application shown in the previous section was an example

for „horizontal” paralleling, when independent operations are
run concurrently. In case of strong sequentialism - like chain
calculations -, this parallel triggering is not possible. But, if
such calculations are parts of a cycle, “vertical” paralleling, or
pipelining is the way out.

Although during the execution of a desktop computer SW -
originally written in C - many pipelines are working, these work
on machine code level - within the CPU – and in the source
code there is no instrument to achieve or to control it. In addi-
tion, C can not cope with “time-overlapping”, when at different
pipeline stages, values of different times of the very same vari-

able are needed. Finally, handling of unbalanced or even data-
dependent execution times of the individual pipeline stages is
also not solved.

Some C-based hardware definition methods [2,6,12,13,14,15]
have instruments for pipelining, however here the developer has
to prescribe this function by a specific instruction to which a
special variable type can belong, or needs special preconditions,
instruments or has to construct pipelines manually.

This section shows that a simple and effective method has
been found that fits the transparent and flexible nature of the
embedding methodology. No special keyword, instrument or
wrapping is needed, not even special variable types. Time-
overlapping of different values of the same variable is solved,
just as the use of any variable types. In addition, a solution
has been found to cope with different duration pipeline sections
including when duration is data dependent. This costs only
one single clock cycle per pipeline section and a small state-
machine. Automatic compile-time code analysis – as mentioned
earlier - can make the decision too, whether pipelining makes
sense and if so, how the pipeline should be sectioned (see sub-
section Applicability).

It has been found that any cycle instruction of the C language
can be used for pipelining; only the cycle body has to be trans-
formed to a “cycle-and-tail” arrangement. Fig. 8 shows how a

Per. Pol. Elec. Eng.202 Péter Arató / Bence Csák

Fig. 8. Cycle-and-tail arrangement

“for” cycle is converted by this manner.
As shown in Fig. 8, instead of having block 1..6 in the cycle

body (see left), only block 1 is there, while the rest just hang
on it as a tail (see right). The „rdy” output of read block 1 is
branched at „a”, so the state machine of the „for” instruction be-
lieves that the cycle body is done, while execution of the „tail”
blocks goes on. After the „for” has positively checked, that the
cycle body has to be executed again, it triggers the operations of
the cycle body. This means, that there are two points of execu-
tion, one in the cycle body and one in the tail. The number of
points of execution proceeding towards tail-end depends on the
length (duration) of the tail and of the cycle. When a pipelined
cycle instruction finishes - depending on the length of the tail -
corresponding time has to ellapse to let the tail finish completely
and respective data settle.

However the above basic idea is simple, several problems re-
main that are addressed and solved in the next subsections.

Left-alone function of blocks
Function of blocks in the tail are not controlled anymore,

so these must be able to function even when they are „left
alone”. While the embedding methodology ensures, that a chain
of blocks (like the cycle body of a „for”) will not be restarted
until the final block has given a ready, in pipelined mode sev-
eral restarts are possible before the first ready arrives at the end.
Consequently, each block has to go on functioning when once
triggered even if „trg” gets inactive meanwhile. When a block
is done, it has to activate its „rdy” output for at least one clock
period even if the trigger input is not active already. This is
called here „left alone” function, meaning that once triggered,
the block will be certainly executed, even if the trigger input
isn’t active anymore. Retriggering of a working block (e.g. in-
struction unit, operation unit) still must be avoided.

Data consistency in the pipeline
On Fig. 9 a schematic of a simple application and its timing

diagrams can be seen. It illustrates well the data consistency
problem.

Fig. 9 shows how a data consistency problem occures, when
the tail is long enough to overlap with the new start of the cycle
body. For the sake of siplicity this application is only a simple
„for” cycle, where the cycle body is only a read-increment-write
of the cycle variable and the tail consists of 11 read blocks, read-
ing the value stored in „char_store_i”.

At „A” the storage of „char i” gets a new input value and at

„B” the write is triggered. At „C” the new value appears on
the corresponding read bus and at „D” the storage gives a ready
signal. At „E” – after a similar sequence – the next „i” value
gets to the read bus.

Note that while the first four read managers (from „F” to „G”)
read the actual value of „i”, the rest – due to their timely position
– read the next „i” value (from „H” on).

This test shows that a mechanism has to be created, which
serves operations in the pipeline with corresponding data. For
this mechanism the „data spreading” technique is proposed,
where input and output data travel with the corresponding point-
of-execution, so even if data changes in the corresponding stor-
age, operations get the specific older value, what they have to
use.

The goal - not to introduce demanding specific instruments
for pipelining [2] - can be kept with the special use of the exist-
ing „read” operation. A „read” block has an input port, which is
normally connected to the „read_bus” of the corresponding vari-
able. When the „read” is triggered by its „trg” input, it latches
and outputs the value of the „read_bus”. This output is held even
after „trg” gets inactive and so „rdy” gets inactive too.

It has been figured out that if such „read” blocks are not fed by
the original variable storage, but by each other, then - with ap-
propriate triggering - values of given variables can “spread with”
the operations and data consistency can be kept. Fig. ??10.
shows how data spreading “read” blocks have to be placed and
triggered among operation blocks. In Fig. 10 a part of a cycle-

Fig. 10. Data spreading. Placement and triggering

and-tail arrangement can be seen. Block “read #1” is in the “cy-
cle”, but the rest of the blocks belong to the tail. So the “rdy”
output of “read #1” is branched and path “a” triggers subsequent
“cycle” blocks, while the other path triggers “op #1”. When “op
#1” gets done, it triggers “read #2”, which is a data spreading
“read”. The specialty of “read #2” is that it does not read the
read bus of variable “i”, but it reads the output of “read #1”,
so even if variable “i” has changed meanwhile in its storage, a
previous value is handed over to “read #2”.

Pipeline mode in C-based direct hardware implementation 2032008 52 3-4

Fig. 9. Data consistency problem during pipelining

Run-up in the pipeline
As “left alone” function and “data spreading” is solved, there

is still a problem, arising from the execution time difference of
blocks in the tail. Introducing delay blocks to balance the tail
could be a bulk solution, but in case of data dependent execution
time, it won’t do either.

Fig. 11 shows an illustration, how different execution time
blocks hinder pipelining

In Fig. 11 a “for” block can be seen with a cycle-and-tail
arrangement and the corresponding timing diagram. It is not
drawn on the figure, but let’s consider a “for (i=0; i<3; i++) . . .
” program part. By the figure, “for #1” – after setting the cycle
variable and checking the condition – triggers “op #1”, which
is the only operation of the cycle. The “rdy” output of “op #1”
is split at point “a”. One path goes back to “for #1”, while the
other triggers the first operation – “op #2” – of the tail. The op-
erations have different durations. Operations #1, #2 and #4 are 3
time quanta, “op #3” is 11 time quanta and the time that “for #1”
needs to re-check the condition and activate its “do cyc” output
needs 2 time quanta. The timing diagram of the same figure has
3 lanes, representing how operations are triggered with consec-
utive “i” values.

At “t0” “for #1” is triggered on its “trg” input. By “t1” it sets
the cycle variable and checks the condition, so at “t1” operation
#1 is started. As “op #1” is done at “t2”, it triggers both “for #1
/ cyc_rdy” and “op #2” so from this time two lanes are needed
to describe, what is happening. At “t3” “op #3” is started while
“op #1” (with i=1 already) is running. After the second run of

“op #1”, at “t4”, a third lane is necessary to represent operations
regarding i=2. By “t5” a situation occurs, which can not be
resolved: “op #3” is still running with i=0, but is already needed
to run also with i=1. By “t6” the situation is even worse, where
three examples of “op #3” should ensure proper function. As an
operation can have one single status at a time, the arrangement
on Fig. 11 is not feasible.

As a consequence, a mechanism is needed, that can cope with
different operation length in the tail.

The solution found is a block, which can pause triggering
the next operation block until that is done. This is called
“pipeguard” and its task is to build up a feedback chain for op-
eration pausing in case of pipeline jam. Fig. 12 shows the state
diagram of the “pipeguard” and its basic application.

Fig. 12. Block scheme and state diagram of the pipeguard block

In Fig. 12a “pipeguard” block can be seen. It is a dynamic-
duration block sensing the readiness of the subsequent block via
its “fbck” input. It tracks the function of the next block and
if that has been triggered once then it doesn’t let that be re-
triggered until that is done. In the state diagram, path 000-001-
011-100 means a slower subsequent block than the previous,
while path 000-001-010-100 means a faster subsequent block

Per. Pol. Elec. Eng.204 Péter Arató / Bence Csák

Fig. 11. Different execution time blocks in the tail and timing behaviour

than the previous. The block is constructed in a way that if the
subsequent operation is free, than the “pipeguard” takes only
one single clock period. The “pipeguard” can determine if the
next block has been triggered, but its “rdy” output is inactive.
Then it waits until the ready gets active and then inactive again.

Fig. 13 shows a simple example of using “pipeguards”, ex-
tended with a pipeline timing diagram.

Fig. 13. Using pipeguards

In Fig. 13 an application of “pipeguard” blocks can be seen.
It is a “for” statement in cycle-and-tail arrangement. The cycle
consists of “op #1” and a “pipeguard” called “pg #1”, while the
tail is not fully drawn, but one stage with “op #2” and “pg #2”
is presented. (See dashed line)

When “for #1 / do_cyc” triggers the cycle body, “op #1” starts
and when it is done, it triggers “pg #1”. This “pipeguard” first
checks whether “pg #2” is done. If not, then “pg #1” waits and
gives no ready signal. When the observed block is done, “pg
#1” activates its ready output and so triggers both the “for #1
/ cyc_rdy” and “op #2 / trg”. Here “op #2” can start and then
execution is halted at “pg #2” if necessary.

Chaining “pipeguards” backwards with their “fbck” and “rdy”
connections solves pipeline jamming problems for any tail
length and any timing extremes of tail blocks.

Complete proposal
An example application is shown on Fig. 14 regarding the

complete proposal for pipelined execution.
A short software module (as included in the upper part of

Fig. 14) is translated by the methodology. The application is
a “for” cycle adding two ten-element-arrays building the result
in a third array. Data dependent execution time is caused by an
“if” statement, which - in case of the 2nd element - rewrites the
result to 2. A “delay” is added in the resulting block scheme
to increase the time spent with the taken “if”. Such a SW in
pipelined execution requires all techniques introduced above in
this paper.

Function of the resulting C-based hardware starts with “for
#1”, which first sets the cycle variable to zero (“wr #1”, variable
storages are not shown on the drawing), then checks the con-
dition using “rd #1” and “cmp_lt #1”. The cycle body of “for
#1” is represented in a cycle-and-tail arrangement. The “cycle”
part consists of “rd #2”, “pg #1”, “inc #1”, “wr #2” and – not to
forget – the part of “for #1” dealing with re-checking the cycle
condition. The “cycle” is tapped after “pg #1”, which is right af-
ter “rd #2” (see branch point “a”). This makes the earliest start
of the “tail” possible. The “pipeguard” in the “cycle” watches
the “tail” to avoid block re-triggering in the whole “tail”. When
“pg #1” triggers the “tail”, first it triggers a data spreading read
(“rd #3”) to assure the right “i” value spreading with pipelined
operations (“pl: i” stands for pipelined “i”). In parallel, the first
pipeguard triggers “inc #1” too, which then increments the cycle
variable. (Dashed lines emphasize pipeguarded pipeline section
boundaries.)

After “rd #3” reading b[i] is done by “arr_rd_mgr #1” another
“pipeguard” (“pg #2”) is triggered. When pipeline situation al-
lows, “pg #2” starts the next pipeline section by triggering “rd
#4” and “rd #5” in parallel. These are data spreading reads too.
Read #4 is to spread on variable “i”, while “rd #5” is to start
spreading the corresponding value of “b[i]”.

The same happens in the next pipeline section with “c[i]”, but
then “rd #6”, “rd #7”, “rd #8” are needed to spread the consistent
values of “i”, “b[i]” and “c[i]”. After these three reads, “b[i]”
and “c[i]” gets added and the value of “b[i]+c[i]” is spreaded
on together with “i”. In the next section the addition result is
written by “arr_wr_mgr #1” using the index value provided by
“rd #9”.

The last section of the “tail” is a data dependent execution
time “if” statement. If “i” equals #2, then “a[i]” is rewritten
to #2. (A delay block is added here to make timing diagrams
during evaluation better understandable.) Here – at the end of
the pipeline - no “pipeguard” is needed, so the last “rdy” signal
of this section is fed back to the previous “pipeguard”.

Note that thank to the back-chaining of the “pipeguards” via
their “rdy” and “fbck” connections, a delaying execution of any
pipeline section leads to the halt of previous sections. As soon
as the long running section gets free, the pipeline continues ex-
ecution in all sections.

The right side of Fig. 14 shows the pipeline timing. Each
vertical lane represents an execution sequence for a given “i”
value. Due to the different and changing execution times of the
blocks and pipeline sections, only the entry point of each lane is

Pipeline mode in C-based direct hardware implementation 2052008 52 3-4

Fig. 14. Application example with pipeguards

given, operation overlapping of different lanes is changing.
Fig. 15 shows important timing behaviour of the application

of Fig. 14.
In Fig. 15 relevant timing diagrams of the shown applica-

tion can be seen. The uppermost section contains basic sig-
nals like low active reset (“rst”), application trigger (“x_trg”),
the single phase clock (“clk”) and the final ready signal called
“x_rst”. The next section (“char i”) contains signals for variable
“i”. First a value is transmitted to the store on “char_i_wr_bus”,
then the write process is triggered via a negative edge on
“char_i_wr_trg_bus” (however it looks like a Z->L transition, it
is a H->L one where H is maintained by a pull-up circuit on the
bus). When the write process is done, the store signals its readi-

ness via “char_i_wr_rdy_bus” and the value written appears on
“char_i_rd_bus” where from any read operation can access it.

The next section (“array a”) contains signals for array vari-
able “a[]”. The index value is not presented here. Here
an access request signal (“a_req_bus”) and a read/write signal
(“a_rdwr_bus”) is used. First the index bus and the rd/wr bus is
set, then the “req” signal goes low to initiate the access at the
array store. When the appropriate value is put out by the ar-
ray store to “a_data_bus”, it signals on the “a_rdy_bus” with a
low. (Here no read bus is used, as an array store can output only
one value, so the actual value is handed over on the data bus to
the active array manager unit.) Sections “array b” and “array c”
have the same behaviour.

Per. Pol. Elec. Eng.206 Péter Arató / Bence Csák

Fig. 15. Timing behaviour

The next sections are divided by “block borders”, where al-
most only signals of the different “pipeguards” are included,
which are sufficient to show the main feature of the function.

First “instr_for_1_do_cyc” starts the cycle body. In a few
clock periods “pg #1” is triggered. As “pg #1” “knows” that
the next section is ready to be triggered, it triggers it after one
clock cycle. This goes on with all sections of the “tail” with i=0.
In the next round – with i=1 – however “pipeguard_1_rdy” does
not follow “instr_if_1_do_cyc” as before, because subsequent
sections force a delay via the “fbck-rdy” chain. This effect can
be observed in several samples on the diagram.

Another short introduction is necessary regarding the variable
section to follow corresponding values. On “char_i_rd_bus”
values of 00, 02, 02, 03, . . . can be seen as “for #1” proceeds.
Corresponding values of “b_data_bus” and “c_data_bus” are 07,
06, 05, 1E, . . . similar prestored values. Sum values being writ-
ten to array a[] are 0E, 0C, 0A, 02 and 3C on “a_data_bus”. The
reason why five values are mentioned is that a[2] is rewritten
from 0A to 02 because of the taken “if” in case of i=2. Char-
acteristic to the pipelined function, at e.g. 960nsec variable “i”
is being written to “02”, but this value does not yet appear on
its read bus; a[0] still has not got its calculated value defined by
b[0] and c[0], however b[] is already being read for i=1.

As a[2] has been written to 0A – due to the taken “if” –
it is rewritten to 02 (at 2300nsec). In addition, “delay #1” is
started (realising a preset 20 clock cycle delay). This delay only

helps understanding the way “pipeguards” are functioning. Be-
tween 2150nsec and 2920nsec the whole pipeline comes to a
halt, caused by the delaying “if” at the end of the line. When
“delay #1” gets done, its “if” gets done too (at 2920nsec) and
the whole pipeline goes on working again.

So, the basic idea of creating a “cycle-and-tail arrangement”
from the cycle body of any cycle instruction needs some exten-
sions. These are “left-alone” function ability of the blocks, “data
spreading” to maintain data consistency in the pipeline and us-
ing “pipeguard” blocks against run-ups in the pipeline.

Applicability
Applicability of this pipelining method is very wide. Possibil-

ities are limited by economical boundaries. A strong economical
boundary is, when setting up a pipeline has no time benefit, but
costs extra apparatus. Such are operation blocks that do not run
repeatedly, but only once (e.g. start-up initialisations); or a cy-
cle with purely independent operations that better run parallel
than in pipeline. (Mostly a cycle body consists of dependent
and independent operations. So pipelining groups of paralleled
operations may give the best performance.) Operation blocks
that are not part of a cycle may also need to be pipelined if these
run repeatedly. Such case is, when a SW-HW codesign’s HW
part is defined in C as a computation sequence and is “called”
repeatedly by a SW part.

When pipelining is chosen, the compile-time analysis tool

Pipeline mode in C-based direct hardware implementation 2072008 52 3-4

faces an NP-hard task. Here speed and cost constraints have
to be fulfilled by the setup and sectioning of the pipeline. The
smaller the pipeline sections are, the shorter restarting period is
provided. However the more pipeline sections created, the more
it costs. The cost ramp is progressive because more variables
have to be spread and for more sections.

When setting up a pipeline for a certain code part, it has to
be analysed how the cost of competition management of shared
resources relates to the cost gain caused by the resource sharing
itself. Consider a multiplier that is shared among more opera-
tions in a cycle body. Till these run sequential, the multiplier can
be shared without any problem. As soon as this cycle body is run
in pipeline mode, the operations may need the single multiplier
concurrently. This situation can be handled by a competition
manager as proposed, but it has extra costs.

Conclusion
The transparent and structured C-to-hardware translation base

methodology published earlier by the authors has easily em-
bedded an add-on methodology enabling pipeline fuction of
cyclic operations. So, „horizontal paralleling” of the embedding
methodology has been extended by a „vertical paralleling” of the
add-on methodology. It has very low and proportional overhead
regarding enabling apparatus and only one single clock cycle
per pipeline section regarding operation time. The enabling ap-
paratus consists of a simple, state machine based „pipeguard”, a
specific reuse of an already existing building block of the base
methodology and a specific handshaking technique of the build-
ing blocks.

Two example applications highlight both horizontal and ver-
tical paralleling techniques and simulator results prove the cor-
rectness and effectiveness of the whole methodology.

Further research
However pipelining can be solved with the add-on method-

ology discussed above, several questions remain open regard-
ing the way it is used. The most important task is the pipeline
sectioning, having major influence on speed and economy. In
addition, extremes have to be analysed in pipeline applications
to provide statistic data regarding execution time and resource
optimal setups.

Determining cycle-tail border and sectioning the pipeline
(the tail) is an optimisation question. Each section needs a
“pipeguard” and so many data spreading read units as many
values have to be propagated. A “pipeguard” needs one single
clock cycle, so usually it is only a small fraction of the whole
section time. First the cycle-tail border has to be chosen. As the
longest running pipeline section determines the pipeline execu-
tion time, main considerations have to aim at a time-balanced
pipeline. So the border has to be determined so, that the cycle’s
average execution time is close to the foreseen average pipeline
section execution times in the tail. This choice has a decisive
influence on the granularity of the pipeline. A long running

“cycle” determines a “tail” with less, but longer running sec-
tions. Then the “tail” has to be cut into sections so, that average
execution times of the sections are closest to even. Extremes
of pipeline sectioning spread from no-tail, only cycle to one,
short running block in the cycle and block-by-block sectioned
tail with short running blocks. A restarting period of one single
clock cycle can not be reached, as a working block must not be
retriggered and even a short block takes a few clock cycles. Still
a very high throughput can be reached.

This pipelining enabling methodology has no theoretical lim-
its however a pipeline tail with several sections and with big
amount of spreaded variables can consumpt considerable re-
sources.

References
1 Fujita M, Nakamura H, The Standard SpecC Language. CAPSL, BoF Ses-

sion at SC2002, Baltimore.
2 Dömer R, Gerstlauer A, Gajski D, SpecC Language Reference Manual

Version 2.0, 2002. SpecC Technology Open Consortium.
3 Gerstlauer A, Dömer R, Peng J, Gajski D, System Design – A Practical

Guide with SpecC, Kluwer, May 2001. ISBN 0792373871.
4 Bowen M, Handel-C Language Reference Manual Ver 2.1. Embedded Solu-

tions limited.
5 Baird M, System-C 2.0.1 Language Reference Manual Rev 1.0. Open Sys-

temC Initiative , 1177 Braham Lane 302, San Jose, CA 95118 – 3799.
6 Self RP, Fleury M, Downton AC, A Design Methodology for Construction

of Asynchronous Pipelines with Handel-C, IEE Proceedings Software 2003
150 (2003), no. 1, 39-47, DOI 10.1049/ip-sen:20030206.

7 Arató P, Csák B, Kandár T, Mohr Z, Some components of a new method-

ology of system-level synthesis, INES2002 Hotel Adriatic (Opatija, Croatia),
May 2002.

8 Arató P, Csák B, Hardware Software Co-Design Based On Standard C-

Language Source code, ICCC 2003 August 29-31 2003.
9 , Programming Language Based Definition of Application Oriented

Hardware, WISP 2003 September 4-6 (Budapest, Hungary, 2003), DOI
10.1109/ISP.2003.1275836, (to appear in print).

10 , Hardware Definition Based On Standard C-language Source Code,
FDL ’03, September 2003.

11 , Solutions for Competition Cases in C-Language Defined Application

Specific Hardware, ICCC04, 2004 IEEE International Conference on Com-
putational Cybernetics, 30 August, DOI 10.1109/ICCCYB.2004.1437666,
(to appear in print).

12 Ziegler H, So B, Hall M, Diniz P, Coarse-Grain Pipelining on

Multiple FPGA Architectures, Proceedings. 10th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, DOI
10.1109/FPGA.2002.1106663, (to appear in print). FCCM2002, Napa, Cali-
fornia, 21-24 April, 2002.

13 Gill G, Hansen J, Singh M, Loop Pipelining for High-Throughput Stream

Computation Using Self-Timed Rings, ICCAD 2006. IEEE/ACM Interna-
tional Conference, Nov 2006, DOI 10.1109/ICCAD.2006.320135, (to appear
in print).

14 Maruyama T, Hoshino T, A C to HDL compiler for pipeline processing on

FPGAs, FCCM2000, 8th IEEE Symposium on Field-Programmable Custom
Computing Machines, 2000 17 April, DOI 10.1109/FPGA.2000.903397, (to
appear in print).

15 Rodrigues R, Cardoso J, On Pipelining Sequences of Data-Dependent

Loops, Journal of Universal Computer Science 13 (2007), no. 3, 419-439.

Per. Pol. Elec. Eng.208 Péter Arató / Bence Csák

