
Ŕ periodica polytechnica

Electrical Engineering
51/1-2 (2007) 11–19

doi: 10.3311/pp.ee.2007-1-2.02
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

A test suite conversion method: from
interoperability test to conformance test
Sarolta Dibuz / Péter Krémer

Received 2005-03-31

Abstract
In this paper we propose a method for easier creation of con-

formance test suites. Instead of a formal description of a proto-
col, our method needs an interoperability test suite. The con-
formance test suite in this method is constructed by re-using
parts of an existing test suite. We have used a test suite for
OSPF (Open Shortest Path First) routing protocol to present our
method through an example. We describe how the interoperabil-
ity test suite and the conformance test suite for the same protocol
look like. Then we construct the re-using method by comparing
these test suites and by identifying the re-usable parts. We also
investigate the resulted test suite to find out the goodness of the
conversion. Finally, we compare the coverage of two confor-
mance test suites that are based on the same test purposes and
one of them was created by this conversion method.

Keywords
interoperability test · conformance test · TTCN-3 · test suite

conversion

Sarolta Dibuz

Ericsson Telecommunications Hungary, P.O. Box 107, H-1300, Budapest 3,
Hungary
e-mail: Sarolta.Dibuz@ericsson.com

Péter Krémer

Ericsson Telecommunications Hungary, P.O. Box 107, H-1300, Budapest 3,
Hungary
e-mail: Peter.Kremer@ericsson.com

1 Introduction
Interoperability testing checks if two different implementa-

tions of the same protocol have the capability of inter-working.
It is used for testing prototypes built on RFCs and products im-
plementing Internet protocol standards. Interoperability testing
is a popular verification method in IETF (Internet Engineering
Task Force). A protocol draft can be an IETF standard only if
there exists at least two inter-operating implementations for it.
That is, interoperability testing is such a well accepted method
by standardization bodies that they use it to check the correct-
ness of a specification. Unfortunately, there can be common
errors in implementations or misunderstandings of the protocol
description. If two IUTs (Implementation Under Test) have the
same error of this kind, this error will not be discovered by in-
teroperability testing.

Conformance testing is used to check that the implementa-
tions conform to the protocol specification [1]. In the tele-
com world conformance testing is more applied. ETSI, ITU,
3GPP and other standardization bodies develop conformance
test suites. Vendors of telecom equipments or operators – the
customers – are used to apply these conformance test suites to
show conformance of the products or for type approval. Interop-
erability test is also done after the conformance tests. Its main
function is to check if a new network element can inter-operate
with the other nodes of the network on the main operation level.
Conformance test suites cannot cover 100% of the protocol’s
functionalities. It may happen that interoperability test of two
IUTs fails even if the IUTs passed the conformance test. That is
why interoperability testing is also needed beside conformance
testing. As it can be seen, the two kinds of test suites are for dif-
ferent purposes and both of them are needed to thoroughly test
a protocol implementation.

So, if we have to test a protocol, we need an interoperability
test suite (ITS) and a conformance test suite (CTS), too. But
it is not efficient to write two separate test suites for the same
protocol. The best solution would be to create a kind of for-
mal description of the protocol and then generate both test suites
from this description. Theoretically, it is a good solution but un-
fortunately not feasible in practice. There are only a few com-

A test suite conversion method 112007 51 1-2

http://www.pp.bme.hu/ee

mercial tools available that support this kind of generation (e.g.
Telelogic Tau). Furthermore, only CTS generation is possible
at the moment. Another problem is that the protocols are usu-
ally too big and these tools generate huge test suites. They are
difficult to execute in practice and they contain many test cases,
which are not relevant or important to execute. That is why it is
quite rare in practice that testers build a formal model first and
then use some methodology to generate the test cases automat-
ically. However, the theory is undoubtedly beneficial, it is not
widely used. Instead of using formal models, we have tried to
find something else that is already available or easier to create
for an average tester.

We have already shown in a previous paper [7] that an ITS is
easier to derive from a textual description than a CTS. For ex-
ample, the inputs and stimuli are not specified as protocol mes-
sages, the protocol specification is not needed to be so mature,
etc. Moreover the development of an ITS can be an iterative
process. I.e. the monitoring functions are developed later, when
several log files are available and the message templates and pa-
rameters can be extracted. Our experience also shows that the
need is much higher for an ITS during the development of a pro-
tocol implementation and testers usually write some kind of test
suite to fulfil their own needs for testing.

Both ITS and CTS have to be written for testing protocol im-
plementations. If we write an ITS and then we derive the CTS
from it, we could save a lot of time and effort. Let’s investigate
whether they have some common or at least similar parts.

In this paper, we describe the way a protocol implementation
is usually tested in Section 2. Section 3 presents the method
we propose to follow in order to re-use an ITS to get the CTS.
In the next Section we compare the two test suites and show
the different and the identical parts. It is also shown how to
re-use the appropriate parts of an ITS in a CTS. This process
is described in Section 6. The resulted CTS is investigated in
Section 7 to find out the goodness of the conversion. Then, we
compare this test suite to another CTS to verify the coverage of
test purposes in the converted one. Finally, we show a small
example to present this method in practice.

2 The current practice
In this Section we present the current practice that is applied

for protocol testing. According to it, the typical testing activities
of a protocol implementation are the following:

1 ad-hoc interoperability test (during implementation develop-
ment)

2 specification of test purposes

3 CTS development

4 conformance testing

5 ITS development

6 interoperability testing

At first sight, it seems that every step in this process is needed
to make both the developer (or tester) of the implementation and
also the customer satisfied. The developers need some method
to check the implementation during the development of the im-
plementation. Since an ITS is much easier to write [7], the inter-
operability test (as noted in the first step) is quite common. The
customer needs some kind of evidence that the implementation
is correct and behaves just like it is described in the protocol
specification. That is why the second, third and fourth steps are
needed. There are also cases when the customer also require an
interoperability test to see if the implementation not only con-
form to the specification but can inter-work with other protocol
implementations, as well. In this case the fifth and the sixth
steps are also inevitable.

But by taking a deeper look at this approach, we can see some
problems, especially when we take into account the efficiency.
For example, the first interoperability test is performed by the
developers and the second one is written and executed by the
testers. They have different knowledge, they use different meth-
ods and tools: developers write some testing functions in the
source code, while testers usually do not alter the implementa-
tion to test is.

Our aim with this work was to reduce required man-power for
all of these efforts by identifying the common parts of an ITS
and a CTS and by re-using some parts of the test suites (with or
without modification) would also be a considerable benefit. Of
course, the current practice also needs to be changed to facilitate
the development of reusable test suites. The detailed method
how to write such a test suite is described in the next Section.

3 Method for re-using test suites
As it can be seen in Section 2, the current practice leaves some

space for improvements. At first, in order to make it possible to
easily re-use test suites we need a common description language.
Since we do not want to convert between different languages and
would like to re-use parts of test suites as easy as possible, we
need a common language in which we write our tests.

Nowadays, TTCN is a common language for writing CTSs
and its latest version [2] is general and flexible enough to de-
scribe ITSs, as well. If the two different types of test suites
are written in the same language then some parts of it can be
simply copied. This situation becomes more and more likely
as TTCN–3 based test tools get used widespread. The interop-
erability test is part of the protocol design (at least in IETF),
protocol specification, implementations and tests are developed
together. It also means that an ITS is written before the CTS and
both can use the same description language. That is, results, ex-
periences and parts of the TTCN–3 source code of the interoper-
ability tests can be re-used in conformance tests. These parts are
the definitions of the protocol’s data types and messages, timers,
templates, altsteps1 and functions that describe the dynamic be-

1An altstep is a method to choose among several alternative events.

Per. Pol. Elec. Eng.12 Sarolta Dibuz / Péter Krémer

haviour of a protocol. Because of these reasons and because
TTCN–3 has already proved its usability in several areas of test-
ing, we have chosen TTCN–3 as the common language.

The following steps describe the method we propose:

1 specification of test purposes

2 ITS development

3 interoperability testing

4 CTS development by re-using parts of the ITS

5 conformance testing

6 interoperability testing

In the first step, the testers write the specification of the test
purposes. This step is already part of the current practice (so
it does not require any extra work) we just moved it into the
beginning. The reason is simple: both test suites should be based
on the same test purposes in order to get a similar structure,
which makes the re-use more simple. Since both test suites are
written for the same protocol, it is obvious that the same test
purposes can be used. In the resulted test suites one test case
is written for one test purpose. However, it is also possible to
use different structure for the test suites, e.g. write an ITS where
one test case checks more than one test purposes. Reusing is
also possible in this case because the information can still be
extracted from the interoperability test case (see Section 7 for
more details). The only difference is that this information will
be used to construct more than one conformance test cases and
not for only one. Either way the ITS is written it is correct and
fully functional but if the ITS and the CTS are based on the same
test purposes, it is much easier to re-use some parts.

The second step uses the same efforts as needed for the ad-hoc
interoperability tests. This ITS is a result of an iterative devel-
opment just like the old one, it grows as the implementation is
getting better and better. The difference here is that the ITS is
already written according to the test purposes. The result in this
step is an ITS that is developed parallel with the implementation,
so it can be used for testing the implementation during develop-
ment. Even the first working version can be tested, as the test
suite is already available at such an early phase. Moreover, the
very same ITS can be used for the interoperability test required
by the customers in step 6.

To reach this point we only used basically the same effort that
is needed for ad-hoc interoperability test and for test purpose
specification, according to Section 2. Thus, we already saved the
work needed to develop a separate ITS. The only thing we still
need is a CTS. Now, instead of writing the CTS from scratch,
we construct it by simply copying parts of the ITS. What we get
at the end is a CTS, which is exactly the same as if it was devel-
oped from the test purposes. Of course, there can be such test
purposes that cannot be implemented in an ITS. In this case the
test cases for the missing test purposes must be written some-
how. Do not forget though, that all the templates and supporting

functions for the rest of the test suite are already available. Usu-
ally, several test cases call the same functions and use the same
templates, thus the availability of these items makes this task
quite simple.

In the next subsections we present two test suites: one ITS
and one CTS. First, we have written the test purposes, then the
ITS, and finally the CTS. That is, the two test suites are based
on the same test purposes.

3.1 Interoperability Test
For interoperability test we have used the MAIT (Model for

Automated Interoperability Test) model [7], thus in the fol-
lowing pages we will refer to a MAIT test suite when we re-
fer to ITS. A MAIT test suite can be represented in TTCN–3,
implementation-independent, suitable for automated tests and
applicable for any kind of protocol.

Router 1 Router 2

Connection types:

System
Test MTC

PTC R1 PTC R2

protocol

telnet

coordination

PTC M

Fig. 1. Test configuration for interoperability test of OSPF Hello protocol

Fig. 1 shows the test configuration for interoperability tests.
The configuration consists of Router 1, Router 2 and the Test
System. Router 1 and Router 2 denote the two OSPF imple-
mentations, which are under test. The Test System handles the
following tasks:

• remote controlling of Router 1 (PTC R1),

• remote controlling of Router 2 (PTC R2),

• monitoring the network (PTC M),

Since these tasks are independent from each other, they are
implemented in Parallel Test Components (PTC). The Main Test
Component (MTC) is used to coordinate the behaviour of PTCs.

PTC R1 establishes a telnet connection between Router 1 and
the Test System, this connection is then used to remote control
Router 1. The test component emulates an ordinary user: con-
figures the IUT, starts an application or triggers a special test by
giving the appropriate input. These kinds of inputs cannot be
given through the IUT’s standardized interfaces because most
of the protocol standards do not specify the upper interface. Ba-
sically, it configures, starts and makes everything what only an
experienced developer of that particular implementation can do.

A test suite conversion method 132007 51 1-2

PTC R2 creates the same type of connection but its tasks are
slightly different. It also has to start and configure the imple-
mentation but then it checks if the test ran correctly and the nec-
essary changes were made. It emulates the user of the other
implementation, who follows the tests at the console and sees if
everything is working correctly or not. It can be the establish-
ment of a connection, a new record in a database or something
else which shows that the test was successful. The messages that
are sent on this type of connection highly depend on the imple-
mentations. In order to avoid the re-compilation of the test suite,
if a new implementation is tested, these messages are given as
test suite parameters.

All testers like to know what happens on the wire, thus they
always monitor the network that connects them to the other im-
plementation. In general, "tcpdump" (or a similar tool, e.g. ethe-
real) is used to record the packets. Synchronization of starting
and stopping the packet recorder tool and the analysis of the log
files are made manually in most of the cases. We have defined a
separate test component in our model to handle and to automate
these tasks. PTC M monitors the network, records and analyses
every protocol message that the implementations send.

The function of MTC is to synchronize and to co-ordinate the
behaviour of PTCs. Similarly to conformance testing, the exe-
cution of a test case is divided into 3 phases (the names of the
involved PTCs are shown in parentheses):

1 Configure the implementations for the test case (PTC R1,
PTC R2).

2 Execute the test case (PTC R1, PTC R2, PTC M).

3 Restore the original configuration (PTC R1, PTC R2).

These phases are separated in such a way that each one is im-
plemented by a function call. Thus, a MAIT test suite consists of
two main parts, one part is a MAIT skeleton, that is common for
every MAIT test suite and creates the PTCs, handles the com-
munication between MTC and PTCs and so on. This part is
referred as MAIT-static because it is the same in all MAIT test
suites and this part is protocol-independent. The second part
contains the functions that configure the implementation, exe-
cute the test cases and restore the original configuration. This
part is called MAIT-dynamic because the behaviour to check the
IUTs is described here. In the remaining pages of this paper we
take into account MAIT-dynamic only because this is the part
that is related to the protocol.

We assume that each test case in an ITS checks only one test
purpose. This assumption makes the re-use of our ITS more
user-friendly. Re-using is also possible if this condition is not
fulfilled, the details can be found in Section 7.

3.2 Conformance test
The test configuration for the conformance test of OSPF’s

Hello protocol (Fig. 2) is more simple than the interoperabil-
ity test. In this case, there is only one test component needed:

the MTC. It has two ports, one for OSPF messages and the other
one is a telnet connection, which is used to transmit configura-
tion commands and messages for the upper tester (e.g. start/stop
the implementation).

IUTMTC

protocol

telnet

Connection types:

Test System

Fig. 2. Test configuration for conformance test of OSPF Hello protocol

In a typical conformance test case, we have to do the follow-
ing tasks:

• configuring the IUT,

• checking the test purpose

• driving the IUT back to its original state

These tasks must be performed one after another, so they do
not need more PTCs. Depending on the complexity of the proto-
col, there may be other PTCs existing during the check of a test
purpose. The Hello protocol is not so complicated that it would
require more PTCs than the MTC. So, our Test System consists
of one test component (MTC) and two ports. The MTC has the
very same ports, thus it will have the same component type as
the Test System. In the CTS each test case checks exactly one
test purpose.

4 Comparison of two test suites
In this section we will compare our test suites and will iden-

tify the identical or similar parts. First, we describe the nota-
tion that we will use in the following pages. Let T S denote a
TTCN–3 test suite that is based on test purpose T P as a 5-tuple:

T S(T P) = (D, C, T I, T, B), where

D : Definitions

C : Constants

T I : Timers

T : Templates

B : Dynamic behaviour descriptors

D denotes all types of definition, in TTCN–3 they can be
data, component and port type definitions. Let Ddata denote
data types, Dcomp component types and D port port types. An
additional CT S or I T S index will denote a CTS and an ITS.
For example Ddata

CT S stands for the data types in a CTS. Since

Per. Pol. Elec. Eng.14 Sarolta Dibuz / Péter Krémer

the two test suites are for the same protocol, it is pretty obvious
that the data type definitions must not differ. Thus we can say
that Ddata

CT S = Ddata
I T S . If these definitions are stored in a sepa-

rate TTCN–3 module, then the same module can be imported in
both test suites. The test suites also use the same interfaces to
interact with the IUT(s) and such interfaces are represented by
ports in TTCN–3. That is, the port type definitions must also be
the same in both test suites: D port

CT S = D port
I T S . As it can be seen

on Fig. 2, the components are quite different: Dcomp
CT S , Dcomp

I T S .
The C represents the global constants2 and the parameters

(that are constant during the execution) of a test suite. They
have a common attribute: all of them must have a specific value,
so wildcards and matching mechanisms cannot be used. Con-
stants are used to store values defined in the protocol specifica-
tion that does not change at all, e.g. the version of the protocol.
Another typical usage of constants is the case when certain spe-
cific values are stored in order to improve the readability of the
test suite. For example, there is a special multicast address (e.g.
AllSPFRouters) where the initial Hello packet needs to be sent.
Regardless the purpose of the constants, they are all protocol-
related, thus their value does not depend on whether they are
used in a CTS or in an ITS. Denoting the constants with Cconst

CT S
for a CTS and with Cconst

I T S for an ITS: Cconst
CT S = Cconst

I T S . Param-
eters (C par) describing the behaviour of an implementation in
interoperability test must also be given for a CTS. It is because
the same kind of information is needed to properly set up a con-
formance tester. So, we can say that the parameters of a CTS
and an ITS are the same: C par

CT S = C par
I T S , thus CCT S = C I T S .

The timers (denoted by T I) used in a test suite are heavily
determined by the protocol. Since the protocol does not change,
the timers should not change as well: T ICT S = T II T S .

Templates (T) describe the abstract data that we would like to
send and receive in a TTCN–3 test suite. In this test suite we use
two types of messages: protocol messages (OSPF packets) and
configuration messages (over a telnet connection). The configu-
ration messages are exactly the same in both cases, so the corre-
sponding templates should be the same too. But there is a small
difference between the templates of protocol messages in this
case. During interoperability test, we do not send any protocol
message, so there are only receiving templates in the ITS. That
is, TI T S ⊂ TCT S and TI T S = TCT S \T ps

CT S , where T ps
CT S denotes

templates that are used to send protocol messages. However, the
latter set (T ps

CT S) may be empty if the receiving templates can be
used for sending, as well.

Dynamic behaviour descriptors (B) include all the constructs
that are used to describe the protocol behaviour. They are the alt-
steps and defaults (Balt), functions (B f unc) and test cases (Btc).
Altsteps and defaults are handled together because they are de-

2Global constants are visible in the whole TTCN–3 module. There are also
local constants, which are visible only inside the statement block (e.g. compo-
nent, function, test case) where they are defined. Local constants are considered
to be part of that statement block. Since there are only local variables, they also
considered to be part of their own statement block.

fined in the same way in TTCN–3. The only difference between
them is the method they are used in the test suite they are both
a shorthand to group multiple alternatives together. Altsteps be-
have like functions but for receiving events, one can process sev-
eral kinds of incoming packets by defining an altstep. A mes-
sage sequence that is handled by the ITS must also be handled
by the CTS. The message sequences determined by the protocol
specification are already described by altsteps in PTC M. Since
a CTS must also work based on the protocol specification, the
altsteps of an ITS can also be used in a CTS, so Balt

CT S ⊂ Balt
I T S .

One part of the functions is the same in the two test suites
(e.g. for configuring the IUTs), B f unc

CT S ⊂ B f unc
I T S . The other

part of the functions in an ITS describe the dynamic behaviour
of a protocol, which is normally part of a test case in a CTS.
As a consequence of the different architecture and purpose of
the two test suites, the test cases are completely different. But
the test cases of a CTS include the information needed for the
corresponding functions of the ITS: Btc

CT S ∩ B f unc
I T S , ∅, so re-

using is still possible. Moreover, the test cases in the MAIT
model belong to MAIT-static, which does not change test suite
by test suite, so the interoperability test cases can be re-used in
another ITS.

5 Conversion of test suite parts
This section describes how and why it is possible to convert

parts of an ITS to a CTS. Most of the parts of a test suite are re-
usable without modification (D, C, T I) or easy to convert (T).
Only the conversion of elements in dynamic behaviour descrip-
tors (B) may need further explanation. Namely, the details of
Btc

CT S → B f unc
I T S are shown in this section.

Suppose we have a test purpose tpi . If it is possible to check
that test purpose with an interoperability test case, then we al-
ready have the functions B f unc

I T S (tpi) that describe the protocol’s
behaviour in that case. It is obvious that there will be a test case
in the CTS that checks the same test purpose, denote it with
Btc

CT S(tpi). We know that B f unc
I T S (tpi) must provide the follow-

ing functionalities:

1 configuring the IUT

2 stimulate the IUTs

3 checking the message sequences between the IUTs

4 checking that the test was successful

5 restoring the IUTs to their original states.

The first and the last steps are exactly the same in a confor-
mance test case, as well. The stimuli in the second step are gen-
erated by the IUT(s) in case of interoperability test, which can
be recorded to help the creation of the corresponding template
and the reconstruction of the stimuli in the corresponding con-
formance test case Btc

CT S(tpi). The message sequence described
in the third step is checked by the function that runs on PTC M.
Knowing the test purpose and the PTC where the function runs

A test suite conversion method 152007 51 1-2

Tab. 1. Size of test suite elements in the OSPF test suites

Element common Interoperability Conformance

type test suite test suite

Ddata 255 (39) 0 (0) 0 (0)

D port 4 (2) 0 (0) 0 (0)

Dcomp 0 (0) 12 (3) 3 (1)

Cconst 1 (1) 0 (0) 0 (0)

C par 0 (0) 2 (2) 2 (2)

T I 1 (1) 0 (0) 1 (1)

T 83 (4) 0 (0) 275 (6)

Balt 10 (1) 20 (2) 0 (0)

B f unc 182 (7) 1270 (24) 0 (0)

Btc 0 (0) 0 (16) 875 (17)

we can unambiguously identify the function B f unc,PTC M
I T S (tpi)

that we need. Most of the information we need to construct
Btc

CT S(tpi) can be found in B f unc,PTC M
I T S (tpi). All the messages

that are exchanged between two IUTs are described in this func-
tion, so we will know what messages to send and what will be
the answer. Not only the message types but the contents of the
messages can also be extracted from the log files of the inter-
operability test. The same environment, the lack of conversion
from a textual representation to another one that is used in the
test tool also helps to reduce the possibility of misunderstand-
ings.

6 Re-usability in practice
According to the method presented in Section 3, we show

how to derive a CTS by using an ITS. First, we have written the
test purposes for OSPF’s Hello protocol and then developed the
ITS. Then the CTS has been constructed by re-using the already
written ITS.

Table 13 shows a brief summary of the results. The first col-
umn indicates the type of the elements of a test suite as it was
defined in Section 4. The second column contains the size and
the number of test suite elements that are exactly the same in
the two test suites (the common parts). The third and fourth
columns indicate the size (measured in source code lines) and
the number of each additional element (written in parentheses)
that are only present in an ITS or in a CTS. Thus, the number of
elements in an ITS (CTS) is the sum of the values in second and
third (fourth) columns.

As it can be seen, the data type definitions (Ddata) of the ITS
can be re-used in the CTS without any modification or conver-
sion. There are 39 types defined in TTCN–3 for the OSPF proto-
col, which type definitions take 255 lines in the source code. As
TTCN–3 is modularized (i.e. a test suite may consist of several
modules and each module can be a part of any other test suite),

3The code size of the interoperability test cases are not indicated because the
test cases are considered to be in the static part of a MAIT model, and are not
relevant in this Table. There is one test case missing in the ITS because it cannot
be checked by interoperability test.

the data type definitions can be stored in one module and can
be imported to any test suite. The very same is true for the port
type definitions (D port).

The ITS uses 3 different types of components (Dcomp): one
for protocol messages, one for upper tester purposes (and for
configuration) and the third one is for the Test System Interface.
Unfortunately, the component type definitions are different in
the CTS. But they only define the ports that the components are
using and the port types are available, thus the new components
can be constructed easily.

The ITS used only one constant (Cconst), thus the same can
be re-used in the CTS. We said in Section 4 that the parameters
are identical. Although, Table 1 shows as if the test suites had
different parameters, they have the same parameters with respect
to the type and the number. We have only changed their names
in order to adjust them to the CTS. The parameters have a par-
ticular type that describes the attributes of an implementation,
for instance the IP address or the network mask. We call the pa-
rameters IUT1, IUT2 in the ITS and TESTER, IUT in the CTS.
That is, we consider the equation C par

CT S = C par
I T S to be still true.

There is one timer that is common in both test suites and this
is the only timer that the ITS uses. The other one has been added
to the CTS later because it was needed in such test cases, which
do not have counterpart in the ITS. It can happen if a test purpose
is not applicable for interoperability test. The conformance test
cases for such test purposes have to be created by some other
method (see Section 7 for more details).

The number of Templates (T) heavily depends on the writer
of the test suite. Their number can be extremely small if only
one template is written for one message type (in this case ev-
ery template will have a lot of parameters). The other extreme
situation is when the templates have no parameters at all. Of
course, the ideal situation is between them. In the ITS we have
2 templates for base protocol messages and another 2 that are
used by the base templates. These templates are only applicable
to receive packets, and these are used in the CTS. But we would
also like to send packets, so we had to define 6 more templates.
One of them is a base template that is used for sending a general
message, each one of other four adds one more parameter to this
template. The sixth one is a template for receiving purposes but
it is used in a test case which is based on a test purpose that is not
applicable for interoperability test. However it is inevitable to
send protocol messages in a CTS, it is not necessary in an ITS.
In case of interoperability test, we stimulate the IUTs by up-
per tester messages (in case of OSPF, these commands are sent
over a telnet session). Then, the protocol messages are created
and sent by the IUTs. In our MAIT (interoperability) test suite,
these messages are monitored and logged by PTC M. Later, the
log files can be used to construct the protocol messages and the
templates that are needed for conformance testing. Though, the
ITS does not provide the templates for sending protocol mes-
sages (denoted by T ps

CT S) but makes it easier for the tester to
create them.

Per. Pol. Elec. Eng.16 Sarolta Dibuz / Péter Krémer

Altogether, there are three altsteps (Balt) used in the ITS and
one of them is re-used in the CTS, as well. Besides, there
are 31 functions in the ITS, out of which 7 can be re-used in
the CTS without any modification. We can divide these func-
tions into two sets: functions that do not need any modification
(B f unc,N M

I T S) and the ones that may be altered (B f unc,M
I T S). Natu-

rally,
B f unc,N M

I T S ∪ B f unc,M
I T S = B f unc

I T S ,

B f unc
I T S \ B f unc,M

I T S = B f unc,N M
I T S ,

B f unc
I T S \ B f unc,N M

I T S = B f unc,M
I T S and

B f unc,N M
I T S ∩ B f unc,M

I T S = ∅.

The functions in (B f unc,N M
I T S) are for general purpose: send-

ing upper tester messages, configuring, starting, stopping and
restoring the IUTs. The remaining 24 functions (B f unc,M

I T S) are
executed on PTC R1, PTC R2 and PTC M and are describing the
actual interoperability test case. The description of the dynamics
of an interoperability test case (thus the behaviour of the proto-
col) is implemented in B f unc,M

I T S that only the ITS uses. Since the
corresponding conformance test case checks the same test pur-
pose, the same dynamics must be described in a conformance
test case, as well. That is, the test cases of the CTS (Btc

CT S) can
be derived from B f unc,N M

I T S .

7 Coverage of the constructed test suite

Introduce two operators:
G

−→ and
R

−→, in order to investi-
gate the goodness of the CTS that we have constructed. The
first one represents the process of creating a CTS from the test

purposes: T P
G

−→ CT SG(T P), where T P denotes the test
purposes and CT SG(T P) denotes the test suite that is based on
these test purposes. This is the ordinary way to write a CTS
from a textual description and considered as the best current
practice. The other operator constructs a CTS from an ITS:

I T S(T P)
R

−→ CT SR(T P), where I T S(T P) denotes the ITS
that is based on the test purposes T P . In the latter case, the
two test suites (I T S and CT SR) will be checking the same
test purposes. This operator implements the method described
in the previous Sections that uses an ITS to construct a CTS.

The goal is to get a CTS by using
R

−→ that has the same cov-

erage as if it were created by
G

−→. The test purpose T P is
considered as a set that contains n elementary test purposes:
T P = (tp1, tp2, . . . tpn). For later use, define a test purpose
T Pprot that contains all the elementary test purposes that can be
extracted from the protocol specification.

In Section 6, we have already shown how to construct a con-
formance test case by re-using the corresponding interoperabil-
ity test case. The resulting conformance test case checks a test
purpose and it is obvious that two test cases provide the same
coverage if they are both checking the same test purpose. Thus,

if we want to compare the goodness of
R

−→, we only have to
compare the coverage of CT SG and CT SR . The coverage func-
tion (Cov()) is defined by the checked test purposes of a test

suite. If test suite T S1 and T S2 check the test purpose T P1 and
T P2 respectively, then we can say that the two test suites provide
the same coverage:

Cov
(
T S1(T P1)

)
= Cov

(
T S2(T P2)

)
if and only if T P1 =

T P2.
If T P1 ⊂ T P2 then Cov

(
T S1(T P1)

)
< Cov

(
T S2(T P2)

)
. It

can be seen that the coverage of a test suite depends on the set of
checked test purposes (T P) and does not depend on the method
the test suite was written with. Thus, if two conformance test
suites check the same test purposes then they provide the same
coverage:

Cov
(
CT SG(T P)

)
= Cov

(
CT SR(T P)

)
.

It is trivial that for every tpi in T Pprot = (tp1, . . . tpn) where
1 ≤ i ≤ n, a conformance test case can be written. Thus,
T Pprot

G
−→ CT SG(T Pprot). It is also obvious that one test

case in a CTS checks only one test purpose, so the number of
test cases in CT SG(T Pprot) is n. However this is not neces-
sarily true in case of an ITS. We have already mentioned that
it is possible to write complex interoperability test cases, which
check several test purposes. Since these test cases can be re-
structured and broken down into several test cases (where each
new test case checks only one test purpose), we consider such
a test case as if it were written as separate test cases. The other
possibility is that a test purpose tpi cannot be checked by an
interoperability test case. For example, the answer for an erro-
neous or an inappropriate packet should be checked in that test
purpose.

Denote T PCT S and T PI T S the set of test purposes that are ap-
plicable for conformance and interoperability test, respectively.
Then, we can say that T PCT S = T Pprot and T PI T S ⊂ T Pprot ,
what means that T PI T S ⊂ T PCT S , as well. If there is at least
one test purpose that cannot be checked by an interoperability
test case, then T PCT only = T PCT S \T PI T S and T PCT only , ∅.
Since the ITS was written for the set of test purposes T PI T S ,

the operator
R

−→ will result in the test suite CT SR(T PI T S).
Both CT SR(T PI T S) and CT SG(T PI T S) are based on the
same test purposes, so they must provide the same coverage.
That is, Cov

(
CT SR(T PI T S)

)
= Cov

(
CT SG(T PI T S)

)
.

If T PCT only = ∅ then Cov
(
CT SR(T PI T S)

)
=

Cov
(
CT SG(T Pprot)

)
, so the test suite created by our

method is just as good as if the test suite were writ-
ten in the ordinary way. But, if T PCT only , ∅ then
Cov

(
CT SR(T PI T S)

)
< Cov

(
CT SG(T Pprot)

)
, what means

that the test cases for test purposes T PCT only cannot be
constructed from the ITS.

That is, with this method it is possible to create a CTS for
T PI T S test purposes and this test suite provides the same cov-
erage as if it were written according to the current practice or in
another way. The missing test cases for T PCT only must be cre-
ated by some other method. Naturally, the number of such test
cases depend on the protocol specification but in general it is
not more than 2 − 5% of all the test purposes. We can add these

A test suite conversion method 172007 51 1-2

test cases at the end of the re-use process easily because all the
other test cases (and supporting templates, functions, altsteps,
etc.) are already available. In our test suites, there was only one
test purpose in T PCT only . According to this test purpose, if an
OSPF packet is sent in which the OSPF checksum is incorrect
then the IUT must not reply to it. We have written a test case by
copying an already existing one that sends a correct packet and
we have changed the value to an incorrect one in the checksum
field. As it can be seen from this example, the construction of
the missing test cases is fast and easy, since we do not have to
write them from scratch.

8 An OSPF example
The OSPF protocol was developed by IETF and was pub-

lished in [8]. OSPF routes IP packets based solely on the desti-
nation IP address found in the IP packet header. IP packets are
routed "as is" – they are not encapsulated in any further protocol
headers. OSPF is a dynamic routing protocol, it quickly detects
topological changes and calculates new loop-free routes after a
period of convergence. This period of convergence is short and
involves a minimum of routing traffic.

In OSPF, each router maintains a database describing the net-
work’s topology. This database is referred to as the link-state
database, and each participating router has an identical database.
All routers run the exactly same algorithm, in parallel. From the
link-state database, each router constructs a tree of shortest paths
with itself as root. This shortest-path tree gives the route to each
destination.

When a router starts, it uses the OSPF’s Hello Protocol to
acquire neighbours. The router sends Hello packets to its neigh-
bours, and in turn receives their Hello packets. The router dy-
namically detects its neighbouring routers by sending its Hello
packets to a special multicast address (AllSPFRouters). Each
broadcast network that has at least two attached routers has a
Designated Router. The Designated Router generates link-state
information for the network and has other special responsibil-
ities in the running of the protocol. This concept reduces the
amount of routing protocol traffic and the size of the link-state
database. The Hello Protocol also elects a Designated Router for
the network. Our test suites are written for the Hello protocol.

In order to demonstrate the usage of the conversion method,
we have selected the following test purpose:

Set different values for OSPF HelloInterval. An incoming

Hello packet should be discarded if the OSPF HelloInterval

does not match.

That is, if we send an incorrect Hello packet then the other
entity will not add our IP address to his neighbour list. We test
that by verifying the other party’s Hello packet and if the neigh-
bour list is empty (there are no other routers in this test) then the
IUT passed this test case. The following functions are invoked
in PTC R1 in order to configure, start and stop IUT 1 (IUT1 is a
parameter that contains the attributes of IUT1):

IUT_Config_general (IUT1, 20, 40, 1, IUT1.router_id);

IUT_Test_general (IUT1);

IUT_Stop_general (IUT1);

The very same functions are called in PTC R2 too but with
IUT2 instead of IUT1 and 10 instead of 20 (the second pa-
rameter of IUT_Config_general sets the HelloInterval).
So, the two IUTs are configured according to the selected
test purpose. The function running in the monitoring compo-
nent PTC M checks for the following messages (the template
OSPFv2Hello_r1 only accepts Hello packets with empty neigh-
bour list):

Msg1: [] OSPF.receive (OSPFv2Hello_r1 (p_IUT1.ip_addr,

ALLSPFROUTERS, p_IUT1.router_id, p_IUT1.areaid))

Msg2: [] OSPF.receive (OSPFv2Hello_r1 (p_IUT2.ip_addr,

ALLSPFROUTERS, p_IUT2.router_id, p_IUT2.areaid))

Msg3: [] OSPF.receive (OSPFv2Hello_r1 (p_IUT1.ip_addr,

ALLSPFROUTERS, p_IUT1.router_id, p_IUT1.areaid))

If the messages are received in this order then the test is suc-
cessful. The following code was cut from the constructed con-
formance test case to show how the same messages are handled.
It can be seen too, that the very same functions are called to
configure, start and stop the implementation. The code to check
Msg1 and Msg3 can be simply copied but Msg2 is now sent from
the test suite.

IUT_Config_general (IUT, 10, 40, 1, IUT.router_id);

IUT_Test_general (IUT);

...

Msg1: [] OSPF.receive (OSPFv2Hello_r1 (IUT.ip_addr,

ALLSPFROUTERS, IUT.router_id, IUT.areaid))

Msg2: OSPF.send (OSPFv2Hello_helloint_s (TESTER.ip_addr,

ALLSPFROUTERS, TESTER.router_id, TESTER.areaid, 20));

Msg3: [] OSPF.receive (OSPFv2Hello_r1 (IUT.ip_addr,

ALLSPFROUTERS, IUT.router_id, IUT.areaid))

...

IUT_Stop_general (IUT);

9 Conclusion
In this paper we have presented a method that re-uses an ex-

isting ITS to produce a CTS. We have used an ITS as a base be-
cause it is much easier to write from scratch than a conventional
CTS. First, we have written an ITS and a CTS for the OSPF
Hello protocol. We presented how the two test suites look like
and then compared them. After identifying the common parts,
we have shown how to construct the CTS from the ITS. It turned
out that some parts can be re-used without further modification
(e.g. data type definitions, constant definitions, configuration
functions). Some parts are different in the test suite, thus they
must be rewritten (e.g. component type definitions). Finally,
there are also some parts that can be extracted from the ITS and
must be restructured to be usable in the CTS (e.g. the confor-
mance test cases can be constructed from the interoperability
"test cases"4).

4Interoperability test cases create several PTCs and the behaviour of PTCs
are described in functions but we use the term "test cases" for easier understand-
ing.

Per. Pol. Elec. Eng.18 Sarolta Dibuz / Péter Krémer

We have presented a process in Section 3 that requires the
same effort to create an ITS as in the original way but then we
can save considerable amount of time by re-using the existing
ITS to create a CTS. At the end of this paper, we showed that the
test suite created by our method covers almost the same test pur-
poses as a CTS, which has been written by hand or by any other
mean. The difference comes from the test purposes that cannot
be checked by an ITS. Conformance test cases for these test pur-
poses cannot be created by our method and must be added later
but the number of such test cases are quite low.

Beside the re-using of ITS’s parts, it’s also an advantage that
the execution environment can be used for the CTS. This is
mainly done by a software module that can transmit and trans-
form protocol messages between the test tool and the underlying
service provider. The functionality of this software module de-
pends on the TTCN–3 port types. Since the port type definitions
are reusable without modification, this adaptation module is also
reusable without any modification.

References

1 OSI - Open System Interconnection, Conformance testing methodology and

framework, 1997. ISO/IEC 9646.
2 ETSI, The Testing and Test Control Notation version 3, August 2002.
3 Kang S, Shin J, Kim M, Interoperability test suite derivation for communi-

cation protocols, The International Journal of Computer and Telecommuni-
cations Networking 22 (March 2000), no. 3, 347-364.

4 Kato T, Ogishi T, Shinbo H, Miyake Y, Idoue A, Suzuki K, Testing of

Communicating Systems: Interoperability Testing System of TCP/IP Based

Communication Systems in Operational Environment, Ottawa, Canada,
September 2000.

5 Besse C, Cavalli A, Zadi F, Kim M, Testing of Communicating Systems:
Automated Generation of Interoperability Tests, Berlin, Germany, March
2002.

6 Viho C, Barbin S, Tanguy L, Formal Techniques for Networked and Dis-

tributed Systems: Towards a Formal Framework for Interoperability Testing,
Cheju Island, Korea, August 2001.

7 Dibuz S, Krémer P, Testing of Communicating Systems: Framework and

Model for Automated Interoperability Test and its Application to ROHC,
Sophia Antipolis, France, May 2003.

8 Moy J, OSPF Version 2, RFC 2328, April 1998.

A test suite conversion method 192007 51 1-2

	Introduction
	The current practice
	Method for re-using test suites
	Interoperability Test
	Conformance test

	Comparison of two test suites
	Conversion of test suite parts
	Re-usability in practice
	Coverage of the constructed test suite
	An OSPF example
	Conclusion

