
Ŕ periodica polytechnica

Electrical Engineering
51/1-2 (2007) 21–31

doi: 10.3311/pp.ee.2007-1-2.03
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Aspect-oriented modelling and analysis
of information systems
Péter Domokos / István Majzik

Received 2006-05-19

Abstract
In this paper we introduce an approach of aspect-oriented

modelling and analysis of information systems. First we give an
overview of the concepts of Aspect Oriented Programming and
provide an outlook to model aspect-oriented programs. On the
basis of this introduction, we describe a method of using aspects
at the modelling level and weaving them into a single integrated
model. Finally, we extend this framework with the automatic
construction of analysis models based on separate aspect mod-
els. In our example, fault tolerance structures are modelled by
aspects and the analysis model is a dependability model that is
used to determine the non-functional properties of the system
like reliability and availability. In this way the separate design
of the functionality and the dependability is supported and the
design decisions concerning fault tolerance can be analysed on
the basis of the dependability model.

Keywords
Aspect Oriented Programming · model-based design · de-

pendability analyzis

Péter Domokos

Department of Measurement and Information Systems, BME, H-1117 Budapest
Magyar Tudósok krt. 2., Hungary
e-mail: pdomokos@mit.bme.hu

István Majzik

Department of Measurement and Information Systems, BME, H-1117 Budapest
Magyar Tudósok krt. 2., Hungary
e-mail: majzik@mit.bme.hu

1 Introduction
As software systems are growing in size and complexity,

modularization becomes more and more important. As an early
step, procedural programming languages were introduced. An
important milestone in the history of modularization is the Ob-
ject Oriented Programming paradigm (OOP), which provides a
way to encapsulate real-world objects or similar concepts into a
single unit.

Although OOP is a well-known and widely used paradigm,
there may be several concerns in a program that crosscut the
boundaries of OOP, thus, they can not be captured this way.
These concerns are called crosscutting concerns. Typical ex-
amples for crosscutting concerns are logging debug informa-
tion (e.g. class and method call sequences, with their param-
eters), performance analysis (how often classes and methods are
called, how long they run etc.), authentication, persistence etc.
Even if these concerns can be modularized into a single object,
the calls to these objects are scattered through the code causing
code scattering. The mission of Aspect Oriented Programming
(AOP) is the modularization of crosscutting concerns into a sin-
gle unit [1].

Modelling is an important phase of the object oriented design
process. The use of standard models, like the Unified Modelling
Language (UML), improves the communication between the de-
signers and provides a basis of both analysis and automated code
generation. The need for modelling the crosscutting concerns,
i.e., modelling the aspects, and this way integrating the aspect-
oriented paradigm into a model-based design environment is a
current topic of research. Besides the above mentioned general
advantages, the model-based aspect-oriented approach gives us
the opportunity to support the design process by model-based
analysis. Namely, the analysis of non-functional properties like
dependability and persistence can be performed more easily if
those crosscutting concerns that determine these properties are
modularized at the level of modelling. The UML-based models
of the core system and the aspects can be processed systemat-
ically to derive the analysis model that can be solved by well-
established tools.

This approach can be illustrated by the analysis of depend-

Aspect-oriented modelling and analysis of information systems 212007 51 1-2

http://www.pp.bme.hu/ee

ability. The basis of dependability modelling in an early phase
of the design process is the static structure model of the sys-
tem under design extended with local dependability attributes of
the system components. We aim at modularizing fault tolerance
concepts (e.g. the management of redundant components) in
aspects and using these enhanced models for model-based anal-
ysis. In this case the core structure model of the system and the
models of the aspects are processed together, and the analysis
model is generated in the form of a Stochastic Petri net. The
modularization of the dependability-related concerns allows the
automatic construction of the analysis model and the re-use of
both the fault tolerance concepts (aspect models) and the corre-
sponding analysis models (subnets in Petri nets). The complete
analysis model is solved to derive system-level dependability at-
tributes like reliability and availability.

In this paper, we overview AOP to give the reader an
idea about the aspect oriented approach, and summarize the
approaches about the modelling of aspect-oriented programs.
Then we introduce our proposal for integrating aspect-oriented
modelling and analysis.

Accordingly, the paper is structured as follows. The next sec-
tion introduces the idea of the separation of crosscutting con-
cerns, and different approaches to the realization of this idea.
This is followed by the introduction of aspect-oriented pro-
gramming through a concrete AOP implementation, AspectJ.
The following sections introduce several proposals for mod-
elling aspect-oriented systems both from the point of view of
structural and behavioural modelling. The next section intro-
duces our proposal for creating aspect oriented models, that is,
applying the concept of aspect orientation at the modelling level.
Section 6 will introduce our approach to the analysis of aspect-
oriented models and presents its advantages. The final section
concludes the paper.

The new results in our paper can be summarized in the follow-
ing. We elaborate an approach and the corresponding notation
for aspect-oriented modelling in UML, and present a method to
derive analysis model on the basis of these aspect-oriented UML
models. The method is applied in the case of dependability anal-
ysis in the early phase of system design.

2 Separation of Crosscutting Concerns
Separation of concerns is an important principle in software

engineering. OOP is intended to map the concerns into classes
according to real-world objects or concepts. However, there are
concerns that do not fit these modules; instead, they crosscut the
boundaries of classes. These are called crosscutting concerns.
Aspect Oriented Programming (AOP) aims at the encapsulation
of the crosscutting concerns.

There are several approaches to the separation of the cross-
cutting concerns. Such approaches are the ones used by AOP
implementations like Hyper/J [9] or AspectJ [2], and reflective
programming also realizes this concept. In the following, we
give a short introduction to Hyper/J and reflective programming,

and a more detailed introduction to AspectJ.
Hyper/J is based on the concept of the multidimensional sep-

aration of concerns (MDSOC). Hyper/J modularizes the cross-
cutting concerns into hyperslices.

Hyper/J allows developers to identify and noninvasively en-
capsulate new concerns, including concerns that affect and are
scattered across, and tangled within existing software. This ca-
pability is called on-demand remodularization: the ability to add
new modularizations and needed to reflect new concerns, with-
out disturbing any of the existing modularizations and maintain
existing relationships between concerns.

Crosscutting concerns are modularized into hyperslices, the
supported granularity is at the method level. With Hyper/J, a
concern mapping is defined for each software configuration, that
is, the same software can be modularized from different view-
points at the same time.

We opted to follow the concepts and the terminology of As-
pectJ in contrary to Hyper/J, because we chose AspectJ as the
implementation language for a feasibility study about the im-
plementation of fault tolerance using AOP. The reason for our
choice was that in our case, there was no need to handle mul-
tiple decompositions and the composability of aspects, only a
modularized specification of scattered behaviour was needed.

Reflection is the ability of a program to observe and possibly
modify its structure and behaviour. Reflection typically refers to
runtime or dynamic reflection. In reflective software, there are
two levels connected by the metaobject protocol: (1) the base
level (containing objects that implement the business logic) and
(2) the meta level (containing meta objects that influence the
behaviour of the business logic objects). Each base level object
is connected to a meta object.

“Mechanisms” are redirected at the meta level, that is, instead
of a method call, an appropriate method of the meta object is
called which can forward the request to the base level object.
Fault tolerance can be implemented in the meta objects: the
meta objects retrieve the requests sent to the base level objects,
they implement the appropriate fault tolerance logic, and return
the results.

However, it seems that AspectJ is nearer to our concepts.
In case of reflection, the intervention points are designated in
the base level object, while in case of AspectJ, the intervention
points (join points, in AspectJ terminology) are specified with
the crosscutting concern (advices in AspectJ terminology).

3 An Introduction to Aspect Oriented Programming
In this section, a short introduction is given to AOP concepts

and programming structures as they appear in AspectJ, an AOP
implementation for Java [2]. Note that this section is not in-
tended to teach AspectJ programming, but to give an idea about
the possibilities of AOP. Following this introduction, the mod-
elling approaches of AspectJ programs will be discussed.

Per. Pol. Elec. Eng.22 Péter Domokos / István Majzik

3.1 Aspect Oriented Programming Using AspectJ
AOP, and more specifically, AspectJ introduce several con-

cepts. The core concern is the basic functionality of the system,
i.e. the business logic. The crosscutting concerns are the func-
tions that crosscut the boundaries of traditional programming
constructs, e.g. logging or performance monitoring of selected
code pieces. Aspects are the units that modularize the cross-
cutting concerns, similar to classes in case of OOP. An advice is
contained by an aspect, and it is a piece of code that is inserted at
one or more specific points of the core concern (e.g. at the start
of specific methods). The advice can be executed either before
the original piece of code is executed or after the original code
was executed, or it can be executed around the original piece
of code (manipulating the input parameters, changing the return
value or making a decision, whether the original code should be
executed at all). A join point is a point in the execution, where
an advice is inserted (e.g. at the start of specific methods). A
pointcut is a language construct that designates a join point.

In the following, a few types of pointcuts are introduced
through examples.

Join points can be designated at method calls, including the
call to the constructor. The pointcut can be restricted by the vis-
ibility, the return type, the class and the signature of the method,
but some or all of these parameters can be omitted. The ad-
vice is executed after the arguments of the method are evalu-
ated, but before the method itself is called. Examples: call (pub-
lic void MyClass.myMethod(String)) designates a join point at
the call of myMethod in MyClass that takes a String argument,
the return type is void and has public access. As another ex-
ample, call (MyClass.new(..)) points to the call of MyClass’s
constructor, with any signature. The call (* *.myMethod(..))
pointcut designates any myMethod call in any class in the de-
fault package, while call (MyClass+.myM*(String, ..)) defines
a pointcut to any method starting with myM in MyClass or in
any of its subclasses, taking a String as a first argument.

Field access pointcuts capture read and write access to a field
(attribute) of a class. For example, get (PrintStream System.out)
designates read access to the field out of type PrintStream in
class System, while set (int MyClass.x) designates write access
to the field x of type int in MyClass. It depends on the advice
type (before, after or around), whether the corresponding advice
is executed before, after or around the variable access designated
by the pointcut.

Exception handler pointcuts capture the execution of excep-
tion handlers. For example, handler (IOException+) designates
the execution of catch blocks handling IOException or its sub-
classes.

This is a far not complete introduction to AOP or AspectJ, it
is only intended to give you an idea how AOP is used. For more
informations, refer to [2] and [3].

3.2 Modelling Aspect Oriented Programs
There is a demanding need for model-based software develop-

ment. The Unified Modelling Language (UML) is a well known,
industry standard modelling language for object oriented sys-
tems. UML does not support the concepts introduced by AOP,
but it is extensible. The extension mechanism of UML intro-
duces stereotypes that allow the creation of subtypes of model
elements at the meta-level and tagged values that extend the
model elements with additional attributes. Using stereotypes
and tagged values, a UML profile can be defined to model a
specific domain. Accordingly, UML can be extended with new
constructs to be able to express the concepts introduced by AOP.

There are at least two interpretations of the expression “As-
pect Oriented Modelling” depending on which “meta-level”
aspect-orientation is interpreted: (1) we can talk about the
modelling of an aspect-oriented program, in which case, the
crosscutting structures and language-specific artifacts must be
denoted in a diagram, or (2) the model itself can be aspect-
oriented, that is, the model can consist of core and crosscutting
concerns that can be woven into an integrated model (e.g. for
the sake of code generation). In the following, these interpre-
tations will be discussed. In this section, we discuss the first
interpretation, while our concept of aspect-oriented modelling
is introduced in Section 5.

The modelling of aspect-oriented programs aims at creating
models that depict the core concern, the crosscutting concerns
and the join points. There are two basic approaches in this case:
(1) the definition of a UML profile which allows the use of ex-
isting UML tools, or (2) the extension of the UML metamodel
and the definition of an appropriate visual notation.

The first approach, i.e. the definition of an UML profile, is
followed in [4]. The aspect can be considered as a subtype of
Class in the original UML metamodel. Accordingly, the aspect
appears in the class diagram as a class stereotyped 〈〈aspect〉〉,
and contains the advices as operations. The advice type is de-
noted with a stereotype associated to the operation. The valid
values are the following:

• 〈〈before〉〉: the advice is executed before a given point (des-
ignated by the pointcut) of the extended program,

• 〈〈after〉〉: the advice is executed after a given point of the
extended program,

• 〈〈around〉〉: the advice can decide whether to execute the
matched join point, and if yes, at which point of the advice,

• 〈〈replace〉〉: the advice modifies a given point of the extended
program implementation by replacing it, or by modifying the
extended objects implementation,

• 〈〈role〉〉: the advice can be invoked on the objects that are
extended by the aspect-class that the advice belongs to, more-
over, the advice implementation can access the extended class
attributes and the aspect-class attributes.

Aspect-oriented modelling and analysis of information systems 232007 51 1-2

So far, a notation is defined for the definition of aspects and
advices. A notation is still necessary for pointcuts, that is, for
the designation of the point(s) in the extended class(es), where
the advice needs to be executed. For this designation, the au-
thors propose the use of stereotyped associations. A stereotype
associated 〈〈pointcut〉〉 leads from the aspect to the crosscutted
class. Roles are used to designate both the exact location, where
the advice is executed, and the advice itself. The role name (r1)

at the aspect class denotes the advice, while the role name (r2)

at the crosscutted class denotes the crosscutted method.
The form of r2 is T[expr], where T ∈ {!, ?, 〈N 〉, 〈U 〉, 〈C〉,

〈R〉, 〈E〉, ∼, !∼, ˆ } and expr is an optional expression that spec-
ifies the T set of points. ! denotes method invocation points, and
it can be followed by a regular expression that matches the meth-
ods names or by a logical expression containing keywords like
ALL, CONSTRUCTORS, SETTERS, GETTERS etc. A ? denotes
the method execution point, followed by the same expressions
as !. (For a complete introduction of this notation, please refer
to [4].) Fig. 1 (a) depicts the notation of pointcuts introduced
here, and Fig. 1 (b) introduces the notation of advices.

The second approach introduces the extension of the UML
metamodel to support AOP constructs. However, such heavy-
weight extensions are complex to implement, especially in the
case of a rapidly evolving technology, like AOP. Therefore, the
authors of [5] follow a slightly different approach defining a
metamodel for AspectJ, which can be used for forward and re-
verse engineering between AspectJ models and AspectJ pro-
grams. This approach requires much less effort if one is only
interested in building a dedicated tool supporting AspectJ, rather
than extending an existing UML CASE tool. For interoperabil-
ity with other tools, it is sufficient to define a mapping of the
metamodel to UML.

Fig. 2 depicts how the AspectJ metamodel is derived from
the UML metamodel. First, the UML metamodel is specialized
to express the static structure of the Java language. The Java
metamodel is built tailoring the UML metaclasses to the Java 2
specification, eliminating irrelevant generality (unnecessary at-
tributes and associations). Most of the remaining metaclasses
use the same names as the corresponding UML metaclasses, ex-
cept ArrayType (which corresponds to MultiplicityElement in
the UML metamodel), Field (Property), Constructor (Method
and Operation).

Fig. 3 depicts a modified version of the AspectJ metamodel.
We modified the original metamodel proposed in the paper in
order to be able to provide a graphical representation that is sup-
ported by standard UML modelling tools.

The AspectJ metamodel adds to the Java metamodel the
concept of pointcut, advice, inter-type declaration and aspect.
Pointcuts and advice affect program flow, inter-type declarations
affect a program’s class hierarchy and features, and aspects en-
capsulate these new constructs.

The modified AspectJ metamodel expands four Java meta-
classes: Class, Generalization, Feature and Operation with new

6

Fig. 1. A notation to depict AOP constructs in UML

Fig. 2 depicts how the AspectJ metamodel is derived from the UML metamodel. First, the

UML metamodel is specialized to express the static structure of the Java language. The Java
metamodel is built tailoring the UML metaclasses to the Java 2 specification, eliminating
irrelevant generality (unnecessary attributes and associations). Most of the remaining metaclasses
use the same names as the corresponding UML metaclasses, except ArrayType (which
corresponds to MultiplicityElement in the UML metamodel), Field (Property),
Constructor (Method and Operation).

tailors extends

follows follows

UML
Meta-Classes

Java
MetaModel

AspectJ
MetaModel

Java
Language

Specification

AspectJ Language
Specification

Fig. 2. The AspectJ metamodel extends the Java metamodel

Fig. 3 depicts a modified version of the AspectJ metamodel. We modified the original

metamodel proposed in the paper in order to be able to provide a graphical representation that is
supported by standard UML modelling tools.

The AspectJ metamodel adds to the Java metamodel the concept of pointcut, advice, inter-
type declaration and aspect. Pointcuts and advice affect program flow, inter-type declarations
affect a program’s class hierarchy and features, and aspects encapsulate these new constructs.

The modified AspectJ metamodel expands four Java metaclasses: Class,
Generalization, Feature and Operation with new associations, and it adds eight
new metaclasses: Aspect, Pointcut, PrimitivePointcut, DeclareSoft,
DeclareWarning, DeclareError, DeclarePrecedence and Advice.

(a) (b)

Cache

+getValue():Object
+setValue(Object)
+invalidate()

<<pointcut>>
p

r2

r1

<<aspect>>
A

C

<<aspect>>
Caching

+<<after>> whenWrite()
+<<around>> whenRead(boolean forceInvalidate)

Fig. 1. A notation to depict AOP constructs in UML

associations, and it adds eight new metaclasses: Aspect, Point-
cut, PrimitivePointcut, DeclareSoft, DeclareWarning, Decla-
reError, DeclarePrecedence and Advice.

tailors extends

follows follows

UML

Meta-Classes

Java

MetaModel

AspectJ

MetaModel

Java

Language

Specification

AspectJ Language

Specification

Fig. 2. The AspectJ metamodel extends the Java metamodel

The notation we propose is demonstrated in Fig. 4 through an
example. This example is introduced below.

The core program consists of a single class Communication
that has a sendBuffer attribute and a send command. The send
command sends the sendBuffer’s contents to the specified output
(in the running example, to System.out).

Before sending the message, encryption should be added in an
aspect. The EncryptAspect introduces a new attribute, encrypt-
edBuffer in the Communication class which will contain the en-
crypted message. An around advice, named readBuffer takes
care to read the encryptedBuffer instead of sendBuffer when-
ever the send command is activated. The before advice encrypt
encrypts the message, if the send command is called. (By en-
crypting the message on the calling of the send command, and
replacing get access to the sendBuffer with access to encrypt-
edBuffer, it is assured that the encryption takes place only once
even if the buffer is accessed several times in the send command
e.g. for calculating a checksum.)

Finally, a warning is declared using the DeclareWarning con-
struct. The read access to sendBuffer in the send command was
replaced by read access to the encryptedBuffer, therefore, modi-
fication of the sendBuffer is likely to be an error. If sendBuffer is
modified in the send method, a warning is given by the compiler.

4 Separation of Concerns in Redundancy Management
As software systems are used in high availability and safety-

critical systems (where the failure of the software can lead to
major loss, or even injuries or death), the dependability of soft-
ware is an important issue. The dependability can be increased
by using more dependable components and/or applying redun-

Per. Pol. Elec. Eng.24 Péter Domokos / István Majzik

AspectKind

issingleton (default)

perthis (Pointcut)

pertarget (Pointcut)

percflow (Pointcut)

percflowbelow (Pointcut)

<<DataType>>

Class

<<Java>>

Operation

<<Java>>

Parameter

<<Java>>

PrimitivePointcut

Generalization

<<Java>>

AdviceSpec

before

around

after

after returning

after throwing

<<DataType>>

Feature

<<Java>>

DeclareWarning

message : String

DeclareError

message : String

Advice

isStrictfp : Boolean

spec : AdviceSpec

throws : ExceptionList

body : Block

0..*

0..1

0..*{ordered}

0..1

DeclarePrecedence

DeclareSoft

Exception

<<Java>>

+exception
Aspect

isPrivileged : Boolean

perClause : AspectKind

0..1

0..*

0..1

+introducedGeneralization

0..*

0..1

0..*

0..1

+introducedFeature
0..*

0..*0..*+declarer

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

+higher

+lower
Pointcut

pce : String

0..*

0..1

0..*
{ordered}

0..1

+pointcut

+pointcut

+pointcut

+pointcut

Fig. 3. The modified AspectJ metamodel

SBRead

pce = get(String Communication.sendBuffer) && withincode(void send(..))

<<Pointcut>>

sendMsg

pce = call(void Communication.send(..))

<<Pointcut>>

Communication

sendBuffer : String

send(channel : java.io.PrintStream) : bool

encryptedBuffer

visibility = public

<<Feature>>

EncryptAspect

<<around>> readBuffer() : String

<<before>> encrypt()

<<aspect>>

warnSendRead

message = The sendBuffer should not be set here

<<DeclareWarning>>

warnPC

pce = set(String Communication.sendBuffer) && withincode(void Communication.send(..))

<<Pointcut>>

+pointcut

+readBuffer
+encrypt

Fig. 4. Graphical notation

Aspect-oriented modelling and analysis of information systems 252007 51 1-2

dancy. Neither way is effective on its own: increasing the qual-
ity of components is expensive and has its boundaries; and poor
quality components will result in poor quality system, no matter
what redundancy is applied.

In this paper, we focus on the application of redundancy, more
specifically, how the redundancy management can be separated
from the business logic.

The separation of redundancy management code at program
code level is a well-researched area. Library calls to pre-defined
mechanisms [11], reflection [12] and meta-object protocols [13]
are mature and well-tried techniques that address the separation
of dependability and functional requirements.

We examined the applicability of AOP for the separation of
redundancy management in case of legacy code. We opted for
AOP for the following reasons:

• In the case of library calls, the non-functional activities like
redundancy management are collected into the library, but
calls to the library functions are scattered in the original code.
AOP provides a more clear separation by supporting the mod-
ularized implementation of the crosscutting concerns.

• In contrary to AspectJ, the previous techniques do not al-
low fine grade parameterization of the modifications, e.g. by
supporting name-based, property-based, location- or caller-
specific modifications.

AOP has already been examined from the viewpoint of sep-
aration of concerns in case of concurrency and transactions in
[10]. The conclusion is that AOP is hard to use and its use re-
quires great attention in those cases; however, the reason for
this is that these concerns are “part of the phenomenon that the
objects should simulate”. That is, in case of concurrency and
transactions, the authors of the paper were trying to make a se-
mantical separation, they were trying to separate concerns that
are semantically coupled.

In the case of redundancy management, a syntactical separa-
tion is needed; that is, the redundancy management is a cross-
cutting concern, and not a part of the semantics of the logic.

We have already examined the separation of redundancy man-
agement at the code level using AOP. In this paper, we examine
how these concepts can be used at the modelling level to sep-
arate the modelling of the business logic and redundancy man-
agement, and to aid the automated construction of dependability
models.

5 Using the AO Concept for Modelling Redundancy
Structures
aspect-oriented modelling (AOM) aims at applying the AOP

concepts at the modelling level, and providing a modularization
of crosscutting concerns in the model. In the case of AOP, a
weaver integrates the aspects and the core, and e.g. in case of
AspectJ, produces an integrated source code. In the case of
AOM, the core and the aspects are UML model pieces, and the

weaver produces an integrated model based on the core and the
aspect models. The integrated model can be used further as if
it was a traditional UML model created by the designer, e.g. for
code generation, further refinement or documentation. For anal-
ysis purposes, it is advantageous to deal with the separated core
and aspect models, as we will present in Section 6.

Note that the clear distinction of core and aspect models helps
the designer to separate functional and non-functional design
(the functional architecture can be designed without dealing
with the crosscutting concerns) and to re-use the aspect models.
Moreover, changes in the functional design and in the crosscut-
ting concerns can be performed independently, and traceability
and assessment of these modifications is provided.

The modelling of aspect-oriented programs introduced the
concept of aspect classes containing the advices, and specific
notations for pointcuts. We will follow this approach of aspect
modularization, but extend the code weaving to model weaving
and separate a weaving layer in the model in order to support
the re-use of advice.

10

Fig. 5. Aspect oriented modelling process

Fig. 5 depicts our approach to the aspect oriented design. The model consists of (1) a base

model, which is the core concern, (2) advice models, which are the crosscutting concerns and (3)
a weaving layer that provides a designation, how the base and advice models are to be integrated.
The model weaver creates the integrated model, which can be input of further refinement or
program source code generation. Additionally, on the basis of the base model, the advice models
and the weaving layer, analysis models can be constructed (e.g. a dependability model for
dependability analysis).

In case of Aspect Oriented Programming, the situation is rather straightforward: crosscutting
concerns are encapsulated in individual modules and are woven into the core concern as
designated by the pointcuts. Pointcuts are defined with literals according to a grammar defined in
the language specification. This way, the definition of the core concern, the crosscutting concern
and the pointcuts is homogeneous: all are defined in a textual language.

In the case of UML models, a graphical notation is used. Naturally, UML models also contain
textual information (like the name of a class, but also stereotypes that contain information about
the type of a class), but the model entities and their relations are expressed graphically.
Therefore, in order to keep the readability of the models, a graphical notation is needed to express
pointcuts. This enforces two opposite requirements in case of AOM: in order to express relations
between the components graphically, they need to be on the same diagram; which is conflicting
with the aim of aspect orientation to handle these concepts separately.

This contradiction can be resolved by using the modularization techniques of UML. The base
model, the advice models and the weaving layer are created in separate packages – but in the
same model space. This allows the designer to represent the core concern on diagram C, an
aspect on diagram A, and to create connections between the classes of C and A on a separate
diagram, W, which is contained by the weaving layer. The model space built according to this
profile forms the input of the model weaver, which constructs the integrated model. In the
following, our approach is introduced through an example.

In this example, we focus on fault tolerance as crosscutting concern and later (in Section 6)
aim at the dependability analysis of the system built from known components [6].

Our example is a web server, which accepts connections from the client browsers, performs
some tasks and returns the results. The web server uses a dependable database server (DB
Server). The dependability bottleneck in this configuration is the web server, which performs
complex computations and therefore may be overloaded, or crashed and therefore unable to fulfil
some or all of the requests. The example aims at making the web server redundant using the
Recovery block fault tolerance scheme. Fig. 6 (a) depicts the basic system. The dashed line
represents the border between the server and the client system.

Base model

Weaving layer

Advice models

Model
weaver

Integrated model

Analysis model

Fig. 5. aspect-oriented modelling process

Fig. 5 depicts our approach to the aspect-oriented design. The
model consists of (1) a base model, which is the core concern,
(2) advice models, which are the crosscutting concerns and (3)
a weaving layer that provides a designation, how the base and
advice models are to be integrated. The model weaver creates
the integrated model, which can be input of further refinement
or program source code generation. Additionally, on the basis
of the base model, the advice models and the weaving layer,
analysis models can be constructed (e.g. a dependability model
for dependability analysis).

In case of Aspect Oriented Programming, the situation is
rather straightforward: crosscutting concerns are encapsulated
in individual modules and are woven into the core concern as
designated by the pointcuts. Pointcuts are defined with literals
according to a grammar defined in the language specification.
This way, the definition of the core concern, the crosscutting
concern and the pointcuts is homogeneous: all are defined in a
textual language.

In the case of UML models, a graphical notation is used. Nat-
urally, UML models also contain textual information (like the
name of a class, but also stereotypes that contain information
about the type of a class), but the model entities and their re-
lations are expressed graphically. Therefore, in order to keep
the readability of the models, a graphical notation is needed to
express pointcuts. This enforces two opposite requirements in

Per. Pol. Elec. Eng.26 Péter Domokos / István Majzik

case of AOM: in order to express relations between the compo-
nents graphically, they need to be on the same diagram; which
is conflicting with the aim of aspect orientation to handle these
concepts separately.

This contradiction can be resolved by using the modulariza-
tion techniques of UML. The base model, the advice models
and the weaving layer are created in separate packages – but
in the same model space. This allows the designer to represent
the core concern on diagram C , an aspect on diagram A, and to
create connections between the classes of C and A on a sepa-
rate diagram, W , which is contained by the weaving layer. The
model space built according to this profile forms the input of
the model weaver, which constructs the integrated model. In the
following, our approach is introduced through an example.

In this example, we focus on fault tolerance as crosscutting
concern and later (in Section 6) aim at the dependability analysis
of the system built from known components [6].

Our example is a web server, which accepts connections from
the client browsers, performs some tasks and returns the re-
sults. The web server uses a dependable database server (DB
Server). The dependability bottleneck in this configuration is the
web server, which performs complex computations and there-
fore may be overloaded, or crashed and therefore unable to ful-
fil some or all of the requests. The example aims at making the
web server redundant using the Recovery block fault tolerance
scheme. Fig. 6 (a) depicts the basic system. The dashed line
represents the border between the server and the client system.

Fig. 6 (b) depicts the redundant system. In the recovery block
fault tolerance scheme, the component that is made redundant is
replaced by a recovery block controller unit. This provides the
interface to the system that it expects. In our case, the WebR-
Bcontrol will accept the connections instead of the web server
and provide the answers. This controller does not process the
requests, it simply forwards them to one of the variants. A
variant is an implementation of the task to execute. There are
a number of variants which can be used by the controller to
perform the task. An acceptance test is also available, which
checks if the answer seems to be correct. If yes, the result is
returned, if no, and there is still a variant that has not yet ex-
ecuted this task, then this variant is executed. In our case, the
variants are Web Server 1 and Web Server 2, and the acceptance
test is rather simple: if a variant provides a syntactically correct
answer within a given time, then it is considered correct. If a
timeout occurs, the request is forwarded to the other server. The
flowchart in Fig. 7 illustrates the recovery block scheme.

According to the aspect-oriented modelling approach, the
Web Server and the DB Server belong to the core concern, that
is, these objects form the base model. The fault tolerance struc-
ture, that is, the recovery block controller, the acceptance test
and the additional variants belong to the crosscutting concern,
that is, they form the advice model. The designation how these
constructs are integrated belongs to the weaving layer.

In the following, our proposed notation for the representation

11

Fig. 6 (b) depicts the redundant system. In the recovery block fault tolerance scheme, the
component that is made redundant is replaced by a recovery block controller unit. This provides
the interface to the system that it expects. In our case, the WebRBcontrol will accept the
connections instead of the web server and provide the answers. This controller does not process
the requests, it simply forwards them to one of the variants. A variant is an implementation of the
task to execute. There are a number of variants which can be used by the controller to perform the
task. An acceptance test is also available, which checks if the answer seems to be correct. If yes,
the result is returned, if no, and there is still a variant that has not yet executed this task, then this
variant is executed. In our case, the variants are Web Server 1 and Web Server 2, and the
acceptance test is rather simple: if a variant provides a syntactically correct answer within a given
time, then it is considered correct. If a timeout occurs, the request is forwarded to the other
server. The flowchart in Fig. 7 illustrates the recovery block scheme.

According to the aspect oriented modelling approach, the Web Server and the DB Server
belong to the core concern, that is, these objects form the base model. The fault tolerance
structure, that is, the recovery block controller, the acceptance test and the additional variants
belong to the crosscutting concern, that is, they form the advice model. The designation how
these constructs are integrated belongs to the weaving layer.

Fig. 6. The structure of the example system

In the following, our proposed notation for the representation of the weaving information in

UML is introduced through this example. Note that the base model and the aspect model are
common UML diagrams.

The top level of the design contains 3 kinds of packages: one package containing the core
concern (stereotyped as Core), one containing the crosscutting concern (the advice model as a
fault tolerance structure stereotyped as FTS in our case) and one package containing the weaving
layer (stereotyped as WeavingLayer in Fig. 8).

Browser

Web Server

DB Server

Browser

WebRBControl AccTest

Web Server 1 Web Server 2

DB Server

(a) Basic configuration (b) Redundant configuration

Fig. 6. The structure of the example system

of the weaving information in UML is introduced through this
example. Note that the base model and the aspect model are
common UML diagrams.

The top level of the design contains 3 kinds of packages: one
package containing the core concern (stereotyped as Core), one
containing the crosscutting concern (the advice model as a fault
tolerance structure stereotyped as FTS in our case) and one pack-
age containing the weaving layer (stereotyped as WeavingLayer
in Fig. 8).

12

Fig. 7. The flowchart of the Recovery block pattern

������

��	

����

��

�����	
�������

��

Fig. 8. The top level package contains the Core, the FTS and the WeavingLayer

As depicted in Fig. 9, the base model (the Core package) contains a single web server and a

database server connected to each other. Fig. 10 shows the advice model (the FTS package), that
is, in our case, the recovery block structure. It consists of a controller (RBControl), two variants
(Variant1 and Variant2) and an acceptance test (AccTest).

����������

�	�������

������������

�����������

�����
��
�����
�����

	������

������	������

�������

� ��	�
��

�������

� ��	�
��

�������

��������!�

��� ��	�
�"
��� ��	�
�#

Fig. 9. The base model Fig. 10. The advice model

All that is left is the weaving layer designating that we want the RBControl to replace the

Web Server, and we want to use web servers as variants. Before defining the weaving layer, the
following properties of our approach have to be emphasized:

• The advice is constructed in the form of a design pattern that is available in a library of
patterns. In this way the re-use of the advice is directly propagated. Moreover, it is easy to
replace the advice model by another one if required (e.g. when the recovery block concept
turns to be not optimal for the given application).

yes

no OK

Execute (next) variant

Acc. Test?

End

Avail.
variants?

Fail

Failure

Fig. 7. The flowchart of the Recovery block pattern

12

Fig. 7. The flowchart of the Recovery block pattern

������

��	

����

��

�����	
�������

��

Fig. 8. The top level package contains the Core, the FTS and the WeavingLayer

As depicted in Fig. 9, the base model (the Core package) contains a single web server and a

database server connected to each other. Fig. 10 shows the advice model (the FTS package), that
is, in our case, the recovery block structure. It consists of a controller (RBControl), two variants
(Variant1 and Variant2) and an acceptance test (AccTest).

����������

�	�������

������������

�����������

�����
��
�����
�����

	������

������	������

�������

� ��	�
��

�������

� ��	�
��

�������

��������!�

��� ��	�
�"
��� ��	�
�#

Fig. 9. The base model Fig. 10. The advice model

All that is left is the weaving layer designating that we want the RBControl to replace the

Web Server, and we want to use web servers as variants. Before defining the weaving layer, the
following properties of our approach have to be emphasized:

• The advice is constructed in the form of a design pattern that is available in a library of
patterns. In this way the re-use of the advice is directly propagated. Moreover, it is easy to
replace the advice model by another one if required (e.g. when the recovery block concept
turns to be not optimal for the given application).

yes

no OK

Execute (next) variant

Acc. Test?

End

Avail.
variants?

Fail

Failure

Fig. 8. The top level package contains the Core, the FTS and the Weav-
ingLayer

As depicted in Fig. 9, the base model (the Core package) con-
tains a single web server and a database server connected to each
other. Fig. 10 shows the advice model (the FTS package), that
is, in our case, the recovery block structure. It consists of a con-
troller (RBControl), two variants (Variant1 and Variant2) and an
acceptance test (AccTest).

All that in left is the weaving layer designating that we want
the RBControl to replace the Web Server, and we want to use
web servers as variants. Before defining the weaving layer, the
following properties of our approach have to be emphasized:

• The advice is constructed in the form of a design pattern that
is available in a library of patterns. In this way the re-use
of the advice is directly propagated. Moreover, it is easy to

Aspect-oriented modelling and analysis of information systems 272007 51 1-2

12

Fig. 7. The flowchart of the Recovery block pattern

������

��	

����

��

�����	
�������

��

Fig. 8. The top level package contains the Core, the FTS and the WeavingLayer

As depicted in Fig. 9, the base model (the Core package) contains a single web server and a

database server connected to each other. Fig. 10 shows the advice model (the FTS package), that
is, in our case, the recovery block structure. It consists of a controller (RBControl), two variants
(Variant1 and Variant2) and an acceptance test (AccTest).

����������

�	�������

������������

�����������

�����
��
�����
�����

	������

������	������

�������

� ��	�
��

�������

� ��	�
��

�������

��������!�

��� ��	�
�"
��� ��	�
�#

Fig. 9. The base model Fig. 10. The advice model

All that is left is the weaving layer designating that we want the RBControl to replace the

Web Server, and we want to use web servers as variants. Before defining the weaving layer, the
following properties of our approach have to be emphasized:

• The advice is constructed in the form of a design pattern that is available in a library of
patterns. In this way the re-use of the advice is directly propagated. Moreover, it is easy to
replace the advice model by another one if required (e.g. when the recovery block concept
turns to be not optimal for the given application).

yes

no OK

Execute (next) variant

Acc. Test?

End

Avail.
variants?

Fail

Failure

Fig. 9. The base model

12

Fig. 7. The flowchart of the Recovery block pattern

������

��	

����

��

�����	
�������

��

Fig. 8. The top level package contains the Core, the FTS and the WeavingLayer

As depicted in Fig. 9, the base model (the Core package) contains a single web server and a

database server connected to each other. Fig. 10 shows the advice model (the FTS package), that
is, in our case, the recovery block structure. It consists of a controller (RBControl), two variants
(Variant1 and Variant2) and an acceptance test (AccTest).

����������

�	�������

������������

�����������

�����
��
�����
�����

	������

������	������

�������

� ��	�
��

�������

� ��	�
��

�������

��������!�

��� ��	�
�"
��� ��	�
�#

Fig. 9. The base model Fig. 10. The advice model

All that is left is the weaving layer designating that we want the RBControl to replace the

Web Server, and we want to use web servers as variants. Before defining the weaving layer, the
following properties of our approach have to be emphasized:

• The advice is constructed in the form of a design pattern that is available in a library of
patterns. In this way the re-use of the advice is directly propagated. Moreover, it is easy to
replace the advice model by another one if required (e.g. when the recovery block concept
turns to be not optimal for the given application).

yes

no OK

Execute (next) variant

Acc. Test?

End

Avail.
variants?

Fail

Failure

Fig. 10. The advice model

replace the advice model by another one if required (e.g. when
the recovery block concept turns to be not optimal for the
given application).

• Since the model of the advice is general, it does not contain
implementation details that are specific to the core concern.
Accordingly, the weaving layer has to contain all details that
are required to integrate the advice with the core model. Be-
sides the designation of the join points (i.e. pointcuts in the
AOP terminology), the implementation of the abstract classes
defined in the advice has to be provided as well.

Accordingly, Fig. 11 depicts the implementation of the vari-
ants, the redundancy manager and the adjudicator in the weaving
layer. The Variant1, Variant2, RBControl and AccTest classes
originate from the corresponding aspect model (〈〈FTS〉〉 RB in
our case). Variant1 is implemented by Web Server 1, Variant2 is
implemented by Web Server 2, the RBControl is implemented
by WebRBControl and the AccTest is implemented by a TODe-
tect time-out detector.

13

• Since the model of the advice is general, it does not contain implementation details that
are specific to the core concern. Accordingly, the weaving layer has to contain all details
that are required to integrate the advice with the core model. Besides the designation of
the join points (i.e. pointcuts in the AOP terminology), the implementation of the abstract
classes defined in the advice has to be provided as well.

Accordingly, Fig. 11 depicts the implementation of the variants, the redundancy manager and
the adjudicator in the weaving layer. The Variant1, Variant2, RBControl and AccTest
classes originate from the corresponding aspect model (<<FTS>> RB in our case). Variant1 is
implemented by Web Server 1, Variant2 is implemented by Web Server 2, the
RBControl is implemented by WebRBControl and the AccTest is implemented by a
TODetect time-out detector.

� ��	�
��

�������

� ��	�
��

�������

������������ ������������ ���
	������

�����
��
�����
�����

	������

��������

������	������

�������

Fig. 11. Refinement of abstract classes

���
	����������������

���$%���!�

Fig. 12. Replacement of Web Server

Fig. 12 depicts the pointcut itself, i.e., the replaces relation between the WebRBControl

and the original Web Server. This relation designates that the WebRBControl plays the role of
the Web Server in the integrated (woven) model. Therefore, the Web Server will be removed
from the original model during the weaving process, and all of its associations, relations (if any)
will be inherited by WebRBControl. In our example, the association between the Browser and
the Web Server will appear as an association between the Browser and WebRBControl in
the integrated model.

Note that other relations (like e.g. the removal of a base class) can also be specified by a
stereotyped UML dependency relation. Using this notation, aspect oriented models can be created
that can be woven into an integrated model using a model weaver.

6. Analysis of System Properties on the Basis of Aspect
Oriented Models

The aspect oriented design of information systems supports the creation of analysis models

on the basis of the aspect oriented model of the system. The approach is demonstrated in this

Fig. 11. Refinement of abstract classes

Fig. 12 depicts the pointcut itself, i.e., the replaces relation
between the WebRBControl and the original Web Server. This
relation designates that the WebRBControl plays the role of the
Web Server in the integrated (woven) model. Therefore, the

13

• Since the model of the advice is general, it does not contain implementation details that
are specific to the core concern. Accordingly, the weaving layer has to contain all details
that are required to integrate the advice with the core model. Besides the designation of
the join points (i.e. pointcuts in the AOP terminology), the implementation of the abstract
classes defined in the advice has to be provided as well.

Accordingly, Fig. 11 depicts the implementation of the variants, the redundancy manager and
the adjudicator in the weaving layer. The Variant1, Variant2, RBControl and AccTest
classes originate from the corresponding aspect model (<<FTS>> RB in our case). Variant1 is
implemented by Web Server 1, Variant2 is implemented by Web Server 2, the
RBControl is implemented by WebRBControl and the AccTest is implemented by a
TODetect time-out detector.

� ��	�
��

�������

� ��	�
��

�������

������������ ������������ ���
	������

�����
��
�����
�����

	������

��������

������	������

�������

Fig. 11. Refinement of abstract classes

���
	����������������

���$%���!�

Fig. 12. Replacement of Web Server

Fig. 12 depicts the pointcut itself, i.e., the replaces relation between the WebRBControl

and the original Web Server. This relation designates that the WebRBControl plays the role of
the Web Server in the integrated (woven) model. Therefore, the Web Server will be removed
from the original model during the weaving process, and all of its associations, relations (if any)
will be inherited by WebRBControl. In our example, the association between the Browser and
the Web Server will appear as an association between the Browser and WebRBControl in
the integrated model.

Note that other relations (like e.g. the removal of a base class) can also be specified by a
stereotyped UML dependency relation. Using this notation, aspect oriented models can be created
that can be woven into an integrated model using a model weaver.

6. Analysis of System Properties on the Basis of Aspect
Oriented Models

The aspect oriented design of information systems supports the creation of analysis models

on the basis of the aspect oriented model of the system. The approach is demonstrated in this

Fig. 12. Replacement of Web Server

Web Server will be removed from the original model during the
weaving process, and all of its associations, relations (if any)
will be inherited by WebRBControl. In our example, the asso-
ciation between the Browser and the Web Server will appear as
an association between the Browser and WebRBControl in the
integrated model.

Note that other relations (like e.g. the removal of a base class)
can also be specified by a stereotyped UML dependency rela-
tion. Using this notation, aspect-oriented models can be cre-
ated that can be woven into an integrated model using a model
weaver.

6 Analysis of System Properties on the Basis of Aspect
Oriented Models
The aspect-oriented design of information systems supports

the creation of analysis models on the basis of the aspect-
oriented model of the system. The approach is demonstrated
in this paper by the systematic construction of a system-level
dependability model (as the analysis model) on the basis of the
structural UML model of the system.

The dependability model of a system is a mathematical model
that describes the failure and repair processes of the components
and the error propagation among them. The computation of
the system level attributes like reliability and availability is per-
formed on the basis of the analysis (sub)-models corresponding
to these processes. Stochastic models like Stochastic Petri nets
(SPN) having sophisticated tool support and solution methods
are used for this purpose.

To allow the construction of the system-level dependability
model, each component of the system is assigned a failure and
a repair SPN subnet that models the failure and repair process
of the given component. Each error propagation path between
two components is assigned an error propagation subnet that de-
scribes the error propagation between the components. The con-
struction of the dependability model is rather straightforward,
if fault tolerance is not in scope, because components are as-
signed similar subnets that are customized using the appropriate
dependability attributes available in the structural model (UML
class diagram) [7].

However, fault tolerance applied in the system modifies this
simple transformation. Since fault tolerance structures are used
to detect and mask failures of components, the traditional error
propagation model is not appropriate. A more involved subnet
shall describe the non-trivial error propagation among subsys-
tems consisting of redundant components and their clients. Typ-
ically, a fault tree (more exactly, the mathematical model of a
fault tree) can be used to describe under which conditions the

Per. Pol. Elec. Eng.28 Péter Domokos / István Majzik

failure of one or more components is propagated to a higher
level. Note that the fault tree is specific to the applied fault tol-
erance pattern that determines the “management” of redundant
components.

The systematic construction of the dependability model in-
volves the following tasks:

• The dependability subnets of non-redundant components (in-
cluding the error propagation among them) are assigned me-
chanically. As an example, failure subnet of a stateful com-
ponent is presented in Fig. 13 (the possible subnets and their
construction are described in detail in [7]). In this SPN sub-
net, three places represent the possible states of the compo-
nent: a token in place H (healthy) represents a correct status,
while a token in place E (error) represents that the component
is in an erroneous state. The transition from H to E occurs
with an intensity proportional to the fault occurrence. If there
is a token in E, a token can be injected into place F (failure)
which represents the case when the erroneous status of the
component results in a failure which can be observed outside
of the component. The stochastic parameters of the subnets
are derived from the extensions (tagged values) introduced
into the UML model. The connection of subnets is possible
through the interface places H, E, and F that represent the
healthy, erroneous and failure status of the components, re-
spectively.

14

paper by the systematic construction of a system-level dependability model (as the analysis
model) on the basis of the structural UML model of the system.

The dependability model of a system is a mathematical model that describes the failure and
repair processes of the components and the error propagation among them. The computation of
the system level attributes like reliability and availability is performed on the basis of the analysis
(sub)-models corresponding to these processes. Stochastic models like Stochastic Petri nets
(SPN) having sophisticated tool support and solution methods are used for this purpose.

To allow the construction of the system-level dependability model, each component of the
system is assigned a failure and a repair SPN subnet that models the failure and repair process of
the given component. Each error propagation path between two components is assigned an error
propagation subnet that describes the error propagation between the components. The
construction of the dependability model is rather straightforward, if fault tolerance is not in
scope, because components are assigned similar subnets that are customized using the appropriate
dependability attributes available in the structural model (UML class diagram) [7].

However, fault tolerance applied in the system modifies this simple transformation. Since
fault tolerance structures are used to detect and mask failures of components, the traditional error
propagation model is not appropriate. A more involved subnet shall describe the non-trivial error
propagation among subsystems consisting of redundant components and their clients. Typically,
a fault tree (more exactly, the mathematical model of a fault tree) can be used to describe under
which conditions the failure of one or more components is propagated to a higher level. Note that
the fault tree is specific to the applied fault tolerance pattern that determines the “management”
of redundant components.

The systematic construction of the dependability model involves the following tasks:

• The dependability subnets of non-redundant components (including the error propagation
among them) are assigned mechanically. As an example, failure subnet of a stateful
component is presented in Fig. 13 (the possible subnets and their construction are
described in detail in [7]). In this SPN subnet, three places represent the possible states of
the component: a token in place H (healthy) represents a correct status, while a token in
place E (error) represents that the component is in an erroneous state. The transition from
H to E occurs with an intensity proportional to the fault occurrence. If there is a token in
E, a token can be injected into place F (failure) which represents the case when the
erroneous status of the component results in a failure which can be observed outside of
the component. The stochastic parameters of the subnets are derived from the extensions
(tagged values) introduced into the UML model. The connection of subnets is possible
through the interface places H, E, and F that represent the healthy, erroneous and failure
status of the components, respectively.

E

latency

STATEFUL

[m(E)=1]
H F

fault

Subnet <node_name>_fail

Fig. 13. Failure model of a component

• The fault tree-like error propagation subnets of the fault tolerance patterns (containing

redundant components) are defined a priori in the library of design patterns together with
the functional model of the pattern. A fault tree with an OR gate and the corresponding

Fig. 13. Failure model of a component

• The fault tree-like error propagation subnets of the fault toler-
ance patterns (containing redundant components) are defined
a priori in the library of design patterns together with the
functional model of the pattern. A fault tree with an OR gate
and the corresponding SPN subnet is illustrated in Fig. 14.
Note that the SPN subnets in the library of patterns are defined
using the UML notation according to the grammar defined by
the Petri net metamodel (Fig. 15). In this way functional and
analysis models can be handled in the same model weaving
framework.

• The analysis model is constructed in parallel with the inte-
grated UML model during the weaving process. The com-
ponents of the core model are assigned the default failure,
repair and error propagation subnets as described above. The
weaving layer contains and modularizes all information (in
the form of references, refinement relations and dependen-
cies) which is needed to determine the mapping of the abstract
classes of the redundancy pattern to the classes of the im-
plementation. Following this mapping, the error propagation

15

SPN subnet is illustrated in Fig. 14. Note that the SPN subnets in the library of patterns
are defined using the UML notation according to the grammar defined by the Petri net
metamodel (Fig. 15). In this way functional and analysis models can be handled in the
same model weaving framework.

(a)

FaultTreeH FaultTreeF

FTor

ComparatorFVoterF

T3

T2T1

FaultTreeH

ComparatorFVoterF

(b)
Fig. 14. A fault tree (a) and its SPN representation (b)

InputArc OutputArcToken

Place
name

+fromPlace

+toPlace

+tokens

Arc
inhibitor : Boolean
weight

Transition
name
intensity
priority

+toTransition
+fromTransition

Net

+places +arcs +transitions

+subnet

Fig. 14 The Petri net metamodel

Fig. 15. The Petri net metamodel

• The analysis model is constructed in parallel with the integrated UML model during the
weaving process. The components of the core model are assigned the default failure,
repair and error propagation subnets as described above. The weaving layer contains and
modularizes all information (in the form of references, refinement relations and
dependencies) which is needed to determine the mapping of the abstract classes of the
redundancy pattern to the classes of the implementation. Following this mapping, the
error propagation subnet belonging to the redundancy pattern can be connected to the
interface places of the subnets of the proper implementation classes. This is exactly what
the model weaver does when it creates the system level dependability model: when the
redundancy pattern is woven into the integrated model, the subnets belonging to the
newly introduced classes are also inserted into the model and the dependability subnet of

Fig. 14. A fault tree (a) and its SPN representation (b)

15

SPN subnet is illustrated in Fig. 14. Note that the SPN subnets in the library of patterns
are defined using the UML notation according to the grammar defined by the Petri net
metamodel (Fig. 15). In this way functional and analysis models can be handled in the
same model weaving framework.

(a)

FaultTreeH FaultTreeF

FTor

ComparatorFVoterF

T3

T2T1

FaultTreeH

ComparatorFVoterF

(b)
Fig. 14. A fault tree (a) and its SPN representation (b)

InputArc OutputArcToken

Place
name

+fromPlace

+toPlace

+tokens

Arc
inhibitor : Boolean
weight

Transition
name
intensity
priority

+toTransition
+fromTransition

Net

+places +arcs +transitions

+subnet

Fig. 14 The Petri net metamodel

Fig. 15. The Petri net metamodel

• The analysis model is constructed in parallel with the integrated UML model during the
weaving process. The components of the core model are assigned the default failure,
repair and error propagation subnets as described above. The weaving layer contains and
modularizes all information (in the form of references, refinement relations and
dependencies) which is needed to determine the mapping of the abstract classes of the
redundancy pattern to the classes of the implementation. Following this mapping, the
error propagation subnet belonging to the redundancy pattern can be connected to the
interface places of the subnets of the proper implementation classes. This is exactly what
the model weaver does when it creates the system level dependability model: when the
redundancy pattern is woven into the integrated model, the subnets belonging to the
newly introduced classes are also inserted into the model and the dependability subnet of

Fig. 15. The Petri net metamode

subnet belonging to the redundancy pattern can be connected
to the interface places of the subnets of the proper implemen-
tation classes. This is exactly what the model weaver does
when it creates the system level dependability model: when
the redundancy pattern is woven into the integrated model,
the subnets belonging to the newly introduced classes are also
inserted into the model and the dependability subnet of the
redundancy pattern replaces the default one. The interface
places are connected according to the associations inherited
and the mapping defined in the weaving layer.

If more detailed information or experience is available then a
dependability expert can refine both the default subnets of the
core model and the subnets of the implementation classes de-
fined in the weaving layer. Without this manual refinement, the
construction of the dependability model is performed fully auto-
matically by the model weaver. Finally, the dependability model
serves as the input of an appropriate analysis tool (e.g. SPNP).

7 The Workflow of Aspect Oriented Design and Analy-
sis
The system design process starts with the construction of the

core model by the designer of the business logic (7). Then the
dependability expert can work on the weaving layer by link-
ing together the implementation of the variants and selecting the
fault tolerance structure.

The integrated model and the analysis model are constructed
automatically in the weaving process. The dependability expert

Aspect-oriented modelling and analysis of information systems 292007 51 1-2

16

the redundancy pattern replaces the default one. The interface places are connected
according to the associations inherited and the mapping defined in the weaving layer.

Create core
model

Core
model

Create
variants

variants

Define Weaving
Layer

Default dep. model
of variants?

Create Variant
dep. model

[no]

Check model

Model
correct?

[no]

Check dep.
properties

[yes]

Dep.
properties ok?

[yes]

Fault Tolerance
problem?

[no]

Create
Variants

Variants

Model
packages

Refined dep.
model

FTS
Library

Weave
model

[yes]

Weaved UML
model

Dependability
model

Dep. model
solving

Dep.
properties

[yes]

[no]

Designer Dependability expert Model weaver

Fig. 16. Aspect oriented design of system architecture with dependability analysis

If more detailed information or experience is available then a dependability expert can refine
both the default subnets of the core model and the subnets of the implementation classes defined
in the weaving layer. Without this manual refinement, the construction of the dependability

Fig. 16. Aspect-oriented design of system architecture with dependability analysis

Per. Pol. Elec. Eng.30 Péter Domokos / István Majzik

can initiate the solution of the analysis model. Based on the re-
sults, the core model and/or the weaving layer can be refined
or modified (e.g. a different fault tolerance scheme can be se-
lected), and another iteration can be executed until the depend-
ability requirements of the system are fulfilled.

8 Conclusion
In this paper, we first shortly introduced the concept of aspect-

oriented programming and gave an overview of approaches that
aim at modelling of aspect-oriented programs.

On the basis of this introduction, we presented our approach
of aspect oriented modelling and analysis. We described a
method of creating aspects at the modelling level and weaving
them into a single integrated model. We extended this frame-
work with the automatic creation of analysis models based on
the aspect-oriented model and the analysis sub-models assigned
to the advice. Finally, we introduced the workflow of aspect-
oriented design and dependability analysis.

Our approach is characterized by the following advan-
tages [6]:

• Separation of functional and non-functional design: The
functional architecture is designed without dealing with fault
tolerance and redundancy management issues. Design deci-
sions related to fault tolerance are modularized in a separate
model package called the weaving layer that is used to desig-
nate those locations of the architecture that need redundancy
support and select the architecture pattern to be applied.

• Reuse of fault tolerant architecture patterns and analysis sub-
models: A library of design patterns is provided. Moreover,
the architecture patterns are assigned the corresponding anal-
ysis models.

• Automatic construction of the integrated architecture and the
analysis model: Based on the information available in the
weaving layer, our model weaver constructs automatically
both the integrated model of the application (available for fur-
ther refinements) and the corresponding dependability model
(available for solution by external solvers). In this way fault
tolerance mechanisms can be systematically analised when
they are integrated into the system, supporting this way the
selection of optimal solutions.

We provided prototype tool support for UML architecture dia-
grams (class and deployment diagrams). The notation for the
weaving layer is defined by using the standard extension mech-
anism of UML (stereotypes), and the model weaver is imple-
mented as a plug-in of the Rational Rose UML modelling tool.
The result of the model weaving process is generated as a sepa-
rate UML package. The dependability model is to be exported
from the UML tools as an SPN analised by SPNP [8]. A few
patterns of the design pattern library are already defined, but the
library has to be extended in the near future.

References

1 Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes CV, Loingtier

JM, Irwin J, Aspect Oriented Programming, Proc. European Conference
on Object-Oriented Programming (ECOOP), Springer Verlag, 1997. LNCS
1241.

2 Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG,
Getting started with AspectJ, Communications of the ACM 44 (Oct. 2001.),
no. 10, 59-65.

3 Laddad R, I want my AOP! Separate software concerns with aspect ori-

ented programming, January 2002, available at http://www.javaworld.
com/javaworld/jw-01-2002/jw-0118-aspect_p.html. JavaWorld.

4 Pawlak R, Duchien L, Florin G, Legond-Aubry F, Seinturier L, Maretlli

L, A UML Notation for Aspect Oriented Software Design. AOSD 2002.,
available at http://www2.umassd.edu/swsoc/workshops/aosd2002/
asoduml.html.

5 Yan Han, Kniesel G, Cremers AB, Towards Visual AspectJ by a Meta

Model and Modeling Notation. AOSD 2005., available at http://dawis.
informatik.uni-essen.de/events/AOM_AOSD2005/papers.shtml.

6 Domokos P, Majzik I, Desing and analysis of Fault Tolerant Architectures

by Model Weaving (2005). Accepted to the High Assurance Systems Engi-
neering Conference (HASE 2005),.

7 Majzik I, Pataricza A, Bondavalli A, Stochastic Dependability Analysis of

System Architecture Based on UML Models, Architecting Dependable Sys-
tems. LNCS-2677 (de Lemos R, Gacek C, Romanovsky A, eds.), Springer
Verlag, 2003, pp. 219-244.

8 Ciardo G, Muppala J, Trivedi KS, SPNP: stochastic Petri net package,
Proc. International Conference on Petri Nets and Performance Models, 1989.

9 Ossher H, Tarr P, Communications of the ACM: Using Multidimensional

Separation of Concerns to (Re)Shape Evolving Software, Vol. 44, October
2001.

10 Kienzle J, Guerraoui R, AOP: Does it Make Sense? The Case of Concur-

rency and Failures, Technical report (2002).
11 Birman KJ, Replication and Fault Tolerance in the ISIS System, ACM OS

Review 19 (1985), no. 5, 79-86.
12 Agha G, Frolund S, Panwar R, Sturman D, A Linguistic Framework for

Dynamic Composition of Dependability Protocols, 1993.
13 Fabre JC, Nicomette V, Wu Z, Implementing Fault Tolerant Applications

using Reflective Object-Oriented Programming, Proc. FTCS-25, 1995.

Aspect-oriented modelling and analysis of information systems 312007 51 1-2

http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect_p.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect_p.html
http://www2.umassd.edu/swsoc/workshops/aosd2002/asoduml.html
http://www2.umassd.edu/swsoc/workshops/aosd2002/asoduml.html
http://dawis.informatik.uni-essen.de/events/AOM_AOSD2005/papers.shtml
http://dawis.informatik.uni-essen.de/events/AOM_AOSD2005/papers.shtml

	Introduction
	Separation of Crosscutting Concerns
	An Introduction to Aspect Oriented Programming
	Aspect Oriented Programming Using AspectJ
	Modelling Aspect Oriented Programs

	Separation of Concerns in Redundancy Management
	Using the AO Concept for Modelling Redundancy Structures
	Analysis of System Properties on the Basis of Aspect Oriented Models
	The Workflow of Aspect Oriented Design and Analysis
	Conclusion

