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Abstract

Traditional approaches in system-level diagnosis in multipro-
cessor systems are usually based on the oversimplified PMC test
invalidation model, however Blount introduced a more general
model containing conditional probabilities as parameters for
different test invalidation situations. He suggested a lookup ta-
ble based approach, but no algorithmic solution has been elab-
orated until our P-graph based solution introduced in previous
publications. In this approach the diagnostic process is formu-
lated as an optimization problem and the optimal solution is de-
termined. Although the average behavior of the algorithm is
quite good, the worst case complexity is exponential. In this
paper we introduce a novel group of fast diagnostic algorithms
that we named gradient based algorithms. This approach only
approximates the optimal maximum likelihood or maximum a
posteriori solution, but it has a polynomial complexity of the
magnitude of O (N - NbCount + Nz), where N is the size of the
system and NbCount is number of neighbors of a single unit.

The idea of the base algorithm is that it takes an initial fault
pattern and iterates till the likelihood of the actual fault pat-
tern can be increased with a single state-change in the pattern.
Improvements of this base algorithm, complexity analysis and
simulation results are also presented.

The main, although not exclusive application field of the al-
gorithms is wafer-scale diagnosis, since the accuracy and the
performance is still good even if relative large number of faults

are present.
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1 Introduction

Diagnosis is one of the major tools for assuring the reliability
of complex systems in information technology. In such systems
the test process is often implemented on system-level: the ‘in-
telligent” components of the system test their local environment
and each other. The test results are collected, and based on this
information the good or faulty state of each system-component
is determined. This classification procedure is known as diag-
nostic process.

The early approaches that solve the diagnostic problem em-
ployed oversimplified binary fault models [15], could only de-
scribe homogeneous systems, and assumed the faults to be per-
manent. Since these conditions proved to be impractical, lately
much effort has been put into extending the limitations of tra-
ditional models [1,3]. However, the presented solutions mostly
concentrated on only one aspect of the problem.

In our previous research we applied the P-graph based model-
ing to system-level diagnosis [11] that provided a general frame-
work for supporting the solution of several different types of
problems, that previously needed numerous different modeling
approaches and solution algorithms. Furthermore, we have not
only integrated existing solution methods, but proceeding from
a more general base we have extended the set of solvable prob-
lems with new ones. The representational power of the model
was illustrated in paper [12].

Another advantage of the P-graph models is that it takes into
consideration more properties of the real system than previous
diagnostic models. Therefore its diagnostic accuracy is also bet-
ter. This means that it provides almost good diagnosis even
when half of the processors are faulty [13]. This is important
for the field of wafer scale testing [7, 16, 17], which was the pri-
mary initiator of our research.

The only disadvantage of the P-graph based diagnosis is that
it has an exponential worst case complexity although the aver-
age performance is quite good. That is why we developed this
new algorithm-family starting from the same base but using dif-
ferent modeling technique and aiming only an approximation —
although a good approximation — of the optimal solution while
having polynomial complexity.
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The paper is structured as follows. First an overview is given
about system level diagnosis in multiprocessor systems. Then
the likelihood of fault patterns and the change of likelihood upon
state-changes in the fault pattern are discussed. This serves as
base for the algorithm, which is presented next. Extensions of
the algorithm are also suggested that can improve the accuracy.
It is also shown how fault probability can be taken into account
if it is known in order to have maximum a posteriori diagnosis.
A possible implementation of the base algorithm is also given
and the time and space complexity of it is determined. Finally
simulation results are presented; the diagnostic accuracy of the
algorithms and the relationship to other algorithms are analyzed
here.

2 System-level diagnosis

System-level diagnosis considers the replaceable units of a
system, and does not deal with the exact location of faults within
these units. A system consists of an interconnected network of
independent but cooperating units (typically processors). The
fault state of each unit is either good when it behaves as speci-
fied, or faulty, otherwise. The fault pattern is the collection of
the fault states of all units in the system. A unit may test the
neighboring units connected with it via direct links. The net-
work of the units testing each other determines the fest topology.
The outcome of a test can be either passed or failed (denoted by
0/1 or G/F); this result is considered valid if it corresponds to
the actual physical state of the tested unit.

The collection of the results of every completed test is called
the syndrome. The test topology and the syndrome are repre-
sented graphically by the test graph. The vertices of a test graph
denote the units of the system, while the directed arcs represent
the tests originated at the fester and directed towards the tested
unit (UUT). The result of a test is shown as the label of the cor-
responding arc. Label O represents the passed test result, while
label 1 represents the failed one. See Fig. 1 for an example test
graph with three units.

Fig. 1. Example test graph (test topology with syndrome)

2.1 Traditional approaches
Traditional diagnostic algorithms assume that

1 faults are permanent,
2 states of units are binary (good, faulty),

3 the test results of good units are always valid, i.e. good testers
are perfect or in other words test coverage is 100%,

4 the test results of faulty units can also be invalid. The be-
havior of faulty tester units is expressed in the form of fest

invalidation models.

Fig. 2 shows the fault model of a single test and Table 1 cov-
ers the possible test invalidation models, where the selection of
c and d values determines a specific model. The most widely
used example is the so-called PMC (Preparata, Metze, Chien)
test invalidation model [15] (¢ = any, d = any), which consid-
ers the test result of a faulty tester to be independent of the state
of the tested unit. According to another well-known test invali-
dation model, the BGM (Barsi, Grandoni, Maestrini) model [2]
(c = any, d = faulty) a faulty tester will always detect the fail-
ure of the tested unit, because it is assumed that the probability
of two units failing the same way is negligible.

Ayl A B, /B,

Fig. 2. Fault model of a single test

Tab. 1. Traditional test invalidation models

State of  State of Test result
tester uuT

good good passed

good faulty failed

faulty good ¢ € {passed, failed, any}
faulty faulty d € {passed, failed, any}

The purpose of system-level diagnostic algorithms is to de-
termine the fault state of each unit from the syndrome. The dif-
ficulty comes from the possibility that a fault in the tester pro-
cessor invalidates the test result. As a consequence, multiple
“candidate” diagnoses can be compatible with the syndrome.
To provide a complete diagnosis and to select from the candi-
date diagnoses, the so-called deterministic algorithms use extra
information in addition to the syndrome, such as assumptions on
the size of the fault pattern or on the testing topology.

Alternatively, probabilistic algorithms try to determine the
most probable diagnosis assuming that a unit is more likely good
than faulty [9]. Frequently, this maximum likelihood strategy
can be expressed simply as “many faults occur less frequently
than a few faults.” Thus, the aim of diagnosis is to determine the
minimal set of faulty elements of the system that is consistent
with the syndrome.

2.2 The generalized approach

In our previous work [10—12] we used a generalized test in-
validation model, introduced by Blount [6]. In this model, prob-
abilities are assigned to both possible test outcomes for each
combination of the states of tester and tested units (Table 2).
Since the good and faulty results are complementary events, the
sum of the probabilities in each row is 1. The assumption of the
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complete fault coverage can be relaxed in the generalized model
by setting probability pp to the fault coverage of the test. Prob-
abilities p.o, pc1, pdo and pg1 express the distortion of the test
results by a faulty tester. Moreover, the generalized model is
able to encompass false alarms (a good tester finds a good unit
to be faulty) by setting probability p,; to nonzero, however, it is
not a typical situation.

Tab. 2. Generalized test model

State of State of Probability of test result
tester uuT 0 1
good good Pa0 Pal
good faulty Pbo Pbi
faulty good Peo Pel
faulty faulty Pdo Ddl

Of course, the generalized test invalidation model covers the
traditional models. Setting the probabilities as p,o = pp1 = 1,
PO = Pel = Pdo = Pdl
generalized model has the characteristics of the PMC model,

= 0.5, and p,1 = ppo = 0, the

while the configuration p,o = pp1 = pa1 = 1, pco = pe1 = 0.5
= ppo = p4o = 0 makes it behave like the BGM
Analogically, every traditional test invalidation model

and pg1
model.
can be mapped as a special case to this model.

3 Likelihood of fault patterns

3.1 Formulization of likelihood of fault patterns

To determine the maximum likelihood diagnosis the
P(syndrome | fault pattern) conditional probability should be
maximized over the fault patterns. Il.e. the fault pattern that
produces the observed syndrome with the highest probability
should be found.

Let’s denote with p,s;(z | stj) the conditional probability
mass function determining the distribution of the syndromes if
st; is the fault pattern.
Furthermore let’s denote with functions n4o(sti, z),
nai(sti, 2), npo(sti, 2), npi(sti,z), neo(sti, z), nei(sti, z),
nqo(sti, 2), nq1(sti, z) the number of the different types of tests
where st; is the fault pattern and z is the syndrome (types are
differentiated according to the states of the tester and tested unit
and according to the test result; types are denoted with indices
a0, al, b0 etc. as in Table 2.).

Probability P(syndrome | fault pattern) can be expressed
as the product of the conditional probabilities P(test result |
state of tester, state of tested unit ) if test results in the syndrome
are independent [14]. Formally,

”aO(Stl 2) na1(st,z) npo(sti,z) nbl(Stlaz)

Dzst; (2 | sti) = P4 Ppo Pp1 )
c0(sti, c1(stg, ti, ti,
pZOO(S Z)pZI 1(s Z)p%o(s Z)pgc{’l (stj,2)

3.2 Change in likelihood of fault patterns

In this section we determine the difference between the con-
ditional probabilities of a given syndrome for two fault patterns
that have 1 Hamming distance between them.

3.2.1 Effect of changing the state of a unit from good to

faulty

Let’s consider an arbitrary st; fault pattern and an arbitrary
unit (the unit that has index k; referred later as the k' k unit) that
is in good state according to this fault pattern. Let’s change the
state of this unit to faulty and denote the resulted fault pattern
with stf

As a result the values of functions n,g, 141, ..., ng1 change:
For

instance if this unit has tested another unit to be good then

the tests related to the selected unit will have new types.

this test had fype a0 and it had a factor p,o in the probability
Dzist; (2 | sti). After the change it has fype c0 and has a factor
Pco in probability p s tkf(Z | st ) This means that the given
test caused a change in probablhty P(syndrome | fault pattern)
of the amount p <0 ; as the result of the state change.

Table 3 summarlzes the possible relationships between the se-
lected unit and its neighbors and the effects of these in the con-
ditional probability P(syndrome | fault pattern). The functions
in the last column of the table have three input parameters: st;, z
and k (fng(sti, z, k), ...
ber of neighbors of the k' unit having the given type if st; is the

). These functions determine the num-

fault pattern and z is the syndrome.
The relations between the conditional mass functions can be
expressed with the functions defined in the table:

k£
letkf(Z | st.")
bngy bngy  fngo fng bnfo—l-fnfo bnygi+fngi
_ Poo Pp1 Pco Peci P pust (2 | sti)
bngot+frgy bngi+fng fﬂ/o Fap bngo bnyy Fzlst !
40 Pq1 0 Pb1 Pco” Pei

Let’s introduce the notion A ¢ (stj, k) for the quotient of the
two conditional probability:

D |stkf(Z | Stkf)

A r(sti, k _ )
A )= Pzlst; (z | sty)

1, if sti[k] = f;
hn bn fn fn bn o+ fn bn +fn
£0 gl g0 gl f0 f() fl f1
1’50 bel PZO Pfcl 1}0 - b .
ng0+ g0 )1g1+ "gl ) ngp bnygo bngy H
Pao Pai Pro” Pp1” Peo” Pei

otherwise.

3.2.2 Effect of changing the state of a unit to the opposite
Similarly to the previous section we can define stf’g as the
fault pattern derived from st; with changing the state of the k"
unit to good and we can define the change in the conditional
mass functions determining the likelihood of a syndrome in case

of these fault patterns:

k, g
ZlStk g(Z | St )

A q(sti, k —_ 3)
25 (5t ) = Paist; (2 | sti)

Combining the two case we can introduce stiz as the fault pat-
tern that differs from st; exactly in the state of the k" unit. Let’s
define function A,(stj, k) as the function that determines the
change in the likelihood P( syndrome | fault pattern) if the state
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Tab. 3. Change in the number of tests of a giVCIl Symbol kind state test type of test clfp1 fnt2
unit and given type and the effect of the change for the
likelihood of the fault pattern if the state of the unit is of the neighbor result before after
changed from good to faulty. 0 0 0 J20) 3

Y0 tested good 0 a0 O—+0) cO@—O) i [fngo
1 clfp = change in the likelihood of the fault pat- —1>O tested good 1 al (Q—1>Q) ci (.—1>O) % fng
tern, i.e. the change in the conditional probability 0 @ tested faulty 0 b0 ©—0>.) do (@ 0 o) pdo fn ro
Pb0 S
P for the gi f tes
(syndrome | fault pattern’) for the given type of test 1 tested  faulty 1 b1 1 ) d1 1 ) % fap
caused by the state-change of the selected unit 0 0 0 p:(')

2 fnt = functions determining the number of tests O tester  good 0 a0 O O b0O o) Pa0 bngo
of the given type; The abbreviations come from the o> tester  good 1 at 0»0) b1 0@ lp7177; bngj
words forward neighbour and backward neighbour; o tester  faulty 0 c0 (Q—0>o) do @-%-@) I;ig bn g

2 .
the index indicates the state of the neighbor and the 1 1 1 pd1
o— tester  faulty 1 cl @—0O) di @—e) P bn g

result of the test

of the k" unit is changed to the opposite in fault pattern st;:

_ k
Pusg@ISE) (AL (sti, k), if stik] = g;

A (sti, k) = = .
pZ|Sti(Z | Stl) AZ,g(Stin k)n lf Stl[k] =f"

“)

The value of function A,(st;, k) belonging to stj[k] = f is
the reciprocal of the value belonging to stj[k] = g because the
likelihood of a fault pattern must be unchanged if the state of
one of its unit is changed to the opposite and then back again.
This and Eq. (2) implies the final form for the A-function:

A, (sti, k)
bn bn fn fn bn ro+fn bn 1+ fn
40 gl 20 gl fOTIRFO f1 11
Poo "Pp1 "Peo Per “Pao Pai if st;[k] = g:
lzng0+flzg0 bng1+fng1 f”fO f"fl hnfo hnfl ’ 1 =&
) Pao Pay Ppo” Pp1” Peo” Pt
- b"g0+f”g0_ b’1g1+f’1gl. fnfOA f"fl_ b"f()_ b"fl
a0 Py Ppo" Ppi PO if stj[k] = f
b"g() h”gl f”g() Tngi hnf0+_fnf0 b”fl +fnf1 ) 1 - J-
Ppo- "Pp1 P "Pe1 "Pao Pai

In later sections we will refer to this A, (st;, k) function as
Az mr(sti, k), too, when this maximum likelihood version is
compared to the maximum a posteriori version of the function.

4 Gradient based algorithm

Using the notion of the previous section we can state the fol-
lowing:

If the value of the function A, for an arbitrary unit of an ar-
bitrary fault pattern is greater than I then changing the state of
this unit results a fault pattern that has larger likelihood than
the original one; thus, it is closer to the optimal solution.

The gradient based algorithm is based on this property as it is
shown in this section.

4.1 The base algorithm
The steps of the base algorithm are the followings:

1 Take an initial fault pattern (sty, i.e. i = 0).

2 Let’s count the value of function A,(st;, k) for every k (k =
1..N), i.e. let’s determine the effect of changing the state of
each single unit in the actual fault pattern upon the likelihood
of it.

3 Let’s choose the maximal A, value:
m];ax A, (sti, k).

Az,max (sti)

4 If this value is greater than I, then change the state of the
corresponding unit in the fault pattern: this will be the next
fault pattern (stj;+1); and go back to step 2.

5 If the maximal value is not greater than 1, then ready, the
result of the diagnosis is st;.

The efficiency of the algorithm is greatly depend on the initial
fault pattern. Three main types can be identified:

e cach unit is in good state
(sto = stang = gg ... 8),

e cach unit is in faulty state

(sto = stane = ff ... f),

e cach unit is in random state
(sto = Strand; P(stranalk] = g) = 0.5,k = 1..N).

According to simulations the first one results quite good diag-
nosis, the second one results quite bad and the accuracy is highly
varying in case of the third one. Thus, the first is the best choice,
however, the third one has practical significance, too, as it will
turn out later.

4.2 Algorithm extension I: Changing the state of multiple

units simultaneously

The disadvantage of the base algorithm is that it searches for
better solution only among fault patterns that are 1 Hamming
distance far from the actual pattern. Thus it finds often only
a local maximum. In order to find the global or a better local
maximum the search can be extended in each round to fault pat-
terns that are 2, 3 or more Hamming distance far from the actual
pattern.

Let’s change the state of at most H unit in each round. In this
case function A, should be defined different:

e Let’s sum the different types of tests that have a selected unit
either as a tester or as a tested unit and a non-selected as the
other one (similarly as previously), but differentiate according
to the state of the selected unit. The functions fngo e, fhg1,e,
frngroe, ...bngig, and fngo r, fngi s, frgo,f, ...bnys1y
are defined this way (see Table 3, too).
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Tab. 4. Change in the number of tests of different types and the effect of the
change for the likelihood of the fault pattern if the state of both unit is changed
to the opposite.

state of state of test type of test clfp!  fnt?
tester tested unit result before after

good good 0 a0 0-%0) do @-%-e@) PO bsqg
good good 1 al 0-%0) di @-e) % bsa1
good faulty 0 b0 O0-%>@) c0 @-2-0) g—gg bspo
good faulty 1 b1 O—»@) cl@->0) 11371 bsp)
faulty ~ good 0 c0 @-2%0) b0 0-%-@) f,—bg bseo
faulty good 1 cl @0 bt 0-He) % bsel
faulty  faulty 0 d0 @%@ a0 (0-%0) jjjlg bsqo
faulty  faulty 1 d1 @»@) al O0—»0) Pl psgy

1 clfp = change in the likelihood of the fault pattern
2t = functions determining the number of tests of the given type; The
abbreviation comes from the phrase both selected.

As previously these functions have also three input parame-
ters, but beside st; and z the third one is not the index of a
single unit (k), but the set of indices of the selected units (k).

e Those tests should be summed by types, too, that have se-
lected units both as tester and as tested unit. In these tests we
assume that the state of both units will change. The number
of these tests are defined by functions bs,g, bs41, ..., bsq1, see

Table 4. Of course these functions have st;, z and k as input

parameters.

Similarly to the previous notations let’s denote with stiE the
fault pattern that we get from st; with changing the state of units
that are contained in set k. Now function A, (st;, K) can be de-
fined as follows:

letk (| St )
A (sti, k) = ———
Pz|st; (Z | Sti)
bngo,g bngie fngoe [frnglg bnjogtfnsog bnpigtfnrig
_ P P Peo Pei d0 Pa .
bngo.g+/fng0.e bngrgtfngrg fnrog [frgig bnpog bngig
a0 al Ppo~  Ppi 0 cl
bngo, p+fngo.r bngt r+fngi s f"fw f”fl £ bngoy bngi g
a0 al bl Peo P

bngo,y bngiy frgos f”glf b"f0f+f"f0f brgip+fnpy
Ppo” " Pp1  Peo  Per T Pao Pa

bsco _bsc1 _bspo _bsp1 _bsa0 _bsqy

Pao Pa1 Ppo Pp1 Pco Per Pao Pai

bsa0 . bsa1 _bspy _bspr _bscy _bseq
Pao Pat Ppo Pp1 Pco Pei

bsqo _bsai

bsqo __bsgi
Pao Pai

Using this A(st;, k) function the steps of the gradient based
algorithm is modified in this extended version according to the
followings:

1 Take an initial fault pattern (sty; i=0).

2 Count the value of function A,(stj, k) for every set k that
contains at least 1 and at most H units.

3 Choose the maximal A, value.

4 If this value is greater than 1, then in the fault pattern change
the state of each unit in set k that corresponds to the maximal
A, value: this will be the next fault pattern (stj;1); and go
back to step 2.

5 If the maximal value is not greater than I, then ready, the
result of the diagnosis is st;.

With this extension the accuracy of the diagnosis can be im-
proved: as H tends to N — 1 the diagnosis tends to the maximum
likelihood diagnosis. But increasing H increases the complex-
ity, too. As it tends to N — 1 the complexity tends to exponential.

4.3 Algorithm extension Il: Multiple run

In this subsection such an extension is suggested that can im-
prove the diagnostic accuracy without significantly increasing
the complexity.

The main idea is to run the base algorithm multiple times
with different initial fault patterns and choose the maximal max-
imum. The steps of the algorithm in more details are the follow-
ings:

1 Take an initial fault pattern (sty 1, i.e. i=0, j=1).

2 Run the base algorithm having stg j as the initial fault pattern;
denote the result of it with sty j.

3 Determine the likelihood of the solution, i.e. the conditional
probability pjsty ; (2 | Stsolj) (see Eq. (1)).

4 If this likelihood is bigger than the likelihood of the best so-
lution found till the moment then this will be the best solution

(Stso1 = Stsol, j)-

5 If j has not reached a certain bound, the so-called run-number
then take a new initial fault pattern (stg_j+1) and go back to
step 2.

6 If j has reached the run-number then ready; the result of the
diagnosis is stge].

In this extension to choose random fault patterns as initial
ones is satisfactory if the run-number is big enough, although
it is worth to choose stayg as the first pattern, because it results
quite a good diagnosis in itself.

Although with every further round the final solution approx-
imates the optimal one better and better, we have to determine
the run-number somehow. It can be constant, although a better
choice is if it depends on the size of the system or it is determined
adaptively, i.e. the algorithm is stopped if no better solution is
found in a given number of trials after the last “best-solution up-
date’ in step 4. In the later case relatively few rounds is enough
if we found a good solution early, but should try much more fur-
ther if we found each time only a little bit better solution com-
pared to the previous one.

Simulations showed that with this extension the optimal solu-
tion can be approximated quite well only with a small increase
in the complexity.
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4.4 Model extension: Maximum a posteriori diagnosis
diagnosis the

P(fault pattern | syndrome) conditional probability should be

In case of maximum a posteriori
maximized over the fault patterns [18]. Le. the fault pattern that
has the highest probability in case of the observed syndrome
should be found. In this case that fault pattern should be chosen

for which the value

Pzlst; (z | stj) - P(st;)

is maximal. If we suppose that the units fail independently then
the probability of fault pattern st; can be expressed as the prod-
uct of the probabilities of the states of the units determined by
the fault pattern. If we suppose a homogeneous system, i.e. each
unit has the same fault probability p s, then it turns to the fol-
lowing form:

N
P(st) = [ [ PGstilk]) = (1 — pp)Ne® . p NrGW (5
k=1
where functions N, (st;) and Ny (st;) determine the number of
good and faulty units in the fault pattern st;. This implies that
maximum a posteriori diagnosis can be determined only if the
fault probabilities of units are known.

Similarly to Sec. 3.2.2 let’s define A; pap(sti, k) as the
function that determines the change in conditional probability
P(fault pattern | syndrome) if we change the state of the k"
unit to the opposite in the fault pattern st;. This function can be
formulated in the following form:

pzlsti;(z I stiE) ~P(stiE)
Pzist; (2 | sti) - P(sti)
(- pf)Ng<st?> . prf(st?)
a- pf)Ng(Sti) .prf(Sti)

Ao map(sti, k) =

= A, mL(sti, k) - (6)

Acmp(sti, k) - 720, if stifk]=g:
= 1-p .
A mrp(sti, k) - Tpf, if sti[k]=f.

This implies that in the algorithms described in previous sec-

tions only the A-values should be modified with factor 5 L 2

or

1— . . .
p—pff according to the state-change and the result will be maxi-

mum a posteriori diagnosis.

Of course, homogeneity is not a requirement; if fault prob-
abilities are specific for units then always that fault probability
should be used during counting the value A; j4p that belongs
to the unit the state of which is to be changed.

4.5 Implementation of the base algorithm

Among the steps of the base algorithm given in Sec. 4.1 only
the evaluation of function A,(st;, k) needs further discussion;
the implementation of all others is trivial (for choosing the max-
imum we use the simplest linear search).

To evaluate function A (sti, k) the functions fn,,(sti, z, k),
fngi(sti, z, k) etc. should be determined, i.e. we have to count

that in how many tests of the given type are the units involved.
But it seems to be simpler to iterate over the tests and include
the value determined by the type of the test to the A-value of
the two affected units (the phrase * A-value of the k" unit’ is an
abbreviation for A, (st;, k), where st; and z are the actual fault
pattern and syndrome). Moreover, this iteration have to be done
only once for the initial fault pattern, in later steps only the A-
values of the selected unit and its neighbors should be modified,
all others remain unaltered. It was shown that state change of
a unit reciprocates its A-value, thus in the followings only the
effect for the A-values of the neighbors should be determined.

Table 5 summarizes the change in the A-values of neighbors
in the case when the state of the selected unit is changed from
good to faulty. The opposite change in the state of the selected
unit will result a reciprocal change in the A-values of neighbors
similarly to the change in the likelihood of the fault pattern (see
Sec. 3.2.2).

Let’s introduce the following notations:

Pa0 * Pd0
Pb0 * PcO

Pal * Pdi

DIFF] = .
Pb1 * Pcl

DIFF0 = and
Table 6 summarizes with these notations the change in the A-
values of the neighbors in the different cases. It can be observed
that this change — beside the test result — depends only on the
fact that the units involved in the test are in similar or in different
states.
Taking all these into account a possible implementation of the

base algorithm can be found in Table 7.

Tab. 6. Change in the A-values of neighbors having difterent types resulted
from the state-change of the selected unit (the state change is arbitrary).

test change in A-value of the neighbor, if

symbol kind state res. the state of the selected unit changes

of the neighbor from good to faulty  from faulty to good

9, tested good 0 DIFFO DIFED
—1>Q tested good 1 DIFF1 ﬁ
9, @ tested faulty 0 ﬁ DIFFO
—1>Q tested faulty 1 ﬁ DIFF1
0-%  tester good 0 DIFFO 5D
O-1» tester good 1 DIFF1 St
o tester faulty O [ DIFFO
®—'» tester faulty 1 ST DIFF1
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Tab. 5. Change in the A-values of neighbors hav-
ing different types resulted from the state-change of
the selected unit (the state change is from good to

Sfaulty).

test A-value of the neighbor change in A-value
symbol kind state res. belonging to this test of neighbor
of the neighbor before change  after change

L0 tesed good 0 PR HAQLY) A

S0 tesed good 1 QD) PAQD) bs

O,@ tested faulty O Zzg (gﬁj) ﬁzg (:—_Z;O) % . 5738

1.@ tested fauly 1 bal G20) b (:ﬂ) boL . pel
o3 tester good 0 pe &) £a0 .401,.) Ll . LAY
ot tester  good 1 z;‘l (oi>o) % ﬁ”o—») Z—‘le . %’:
o tester faulty 0 Pad (O%’O) o (O%“H) b 20
P tester faulty 1 gj: ((.)j?é) % ﬁ“._».) z‘T’} . %i

Tab. 7. Implementation of the base version of the gradient based algorithm

(a) Parameters, variables, functions

Input: N
NbCount
TestRes(i, k)
Neighbourlnd(i, k)
BacklinkInd(i, k)
Prob(sty, sty, tr)

size of the system

number of neighbors

result of the k’" test of the i'" unit

index of the k" tested neighbor of the " unit

index of the unit that has the " unit as the k'”* tested neighbor

probability of test result 77 if the tester is in state s#; and the tested unit is in state st,, i.e. the
result of it is one of the values p,q, pa1, - .- Pa1

Used GetlniState() : stateArray
functions: CountDelta(stateArray) : deltaArray

SelectMax(array, out maxElement, out maxInd)

Neg(state) : state

determines the initial fault pattern

determines the A, values for each unit (deltaArray) if the states of units are determined by
stateArray

determines the maximal element (max Element) of the array and the index of it (max Ind)
returns the negation of the srate

Inner stateArray
variables:
deltaArray
max Delta
maxInd
nblnd

array with N element that holds the actual fault pattern (the i'" element determines the state of
the i’ unit)

array with N element; the i'h element determines the A; value belonging to the state-change of
the i unit (it corresponds to the actual fault pattern)

maximal A-value in the given round

index of the unit that has maximal A-value in the given round (i.e. it is the selected unit)

index of a neighbor of the selected unit

Output:  stateArray

at the end of the algorithm it contains the diagnosed fault pattern

(b) Function CountDelta

CountDelta(stateArray):deltaArray
begin

fori:=1to N do
deltaArrayli] := 1.0;

Initialization

fori :=1to N do

Loop on units

for k := 1 to NbCount do
begin

Loop on the tests of the actual unit

nblnd := Neighbourlnd(i, k);
Sty = stateArrayli];

Styq = stateArray[nbInd];

tr .= TestRes(i, k);

Temporary variables: index of the neighbor
state of the tester
state of the tested unit
test result

deltaArrayli] := deltaArrayli] - Problsisr sty g.47)

Prob(Neg(str),styq,tr)

; A-value belonging to this test of the i unit (— the state of the i unit changes)

deltaArray[nbInd] := deltaArray[nbInd] -

Prob(styr,Neg(styq),tr) .
Prob(styy,styq,tr)

A-value belonging to this test of the unit having index nbiInd (— the state of the
nbInd'" unit changes)

end;
end;
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(c) The Body of the Algorithm

stateArray := GetlniState();
deltaArray := CountDelta(stateArray);

Initialization

SelectMax(deltaArray, max Delta, maxInd);

Determination of the maximal A-value

while max Delta > 1.0 do
begin

Loop while the diagnosis can be improved

for k := 1 to NbCount do
begin

Loop on the neighbors

nblnd := Neighbourlnd(maxInd, k);
if stateArray[nbInd] = stateArray{maxInd] then
if TestRes(maxInd, k) = g then
deltaArray[nbInd] := deltaArray[nbind] - DI FFO;
else
deltaArray[nbInd] := deltaArray[nbInd] - DI FF1;
else
if TestRes(maxInd, k) = g then
deltaArray[nbInd] := deltaArray[nbInd]/DI F FO;
else
deltaArray[nbInd] := deltaArraylnbInd]/DIFF1;

Modification of the A-value of the k" tested neighbor of the selected
unit

nbInd = BacklinkInd(maxInd, k);
if stateArray[nbInd] = stateArraylmax Ind] then
if TestRes(nbInd, k) = g then
deltaArray[nbInd] := deltaArray[nbInd] - DI F F0;
else
deltaArray[nbInd] := deltaArray[nbInd] - DIFF1;
else
if TestRes(nbInd, k) = g then
deltaArray[nbInd] := deltaArray[nbInd]/DIF FO,
else
deltaArray[nbInd] := deltaArray[nbInd]/DIFF1;

Modification of the A-value of the tester unit that has the selected
unit as the k" tested neighbor

end;

stateArray[max Ind] := Neg(stateArray[maxInd]);
deltaArraylmax Ind] := 1/deltaArray[maxInd];

Modification of the state and A-value of the selected unit

SelectMax(deltaArray, max Delta, maxInd);

Determination of the maximal A-value

end.

4.6 Complexity of the algorithm

4.6.1 Time complexity

The complexity of the functions used in the base algorithm is
different:

e Functions TestRes(i, k), Prob(sty, sty, tr),
Neighbournd(i, k) and BacklinkInd(i, k) are executed
in constant time as these return only an element of an array.

e Functions GetIniState() and SelectMax() are executed in time
O (N).

e The Iinitialization of the arrays behind functions
NeighbourInd(i, k) and BacklinkInd(i, k) need steps in
the magnitude O (N - NbCount).

The complexity of running function CountDelta(stateArray)
onceis O (N + N - NbCount) = O (N - NbCount).

Now using these information let’s determine the complexity
of the steps of the base algorithm:

e The determination of the initial fault pattern needs O (N)
time.

e To count the initial A-values O (N - NbCount) time is
needed.

e The maximum of the initial A-values can be chosen in O (N)
time.

e The body of the while loop runs in O (NbCount) + O (N) =
O (NbCount + N) time.
That is a more complex task to determine the number the loop
will iterate. Theoretically it can happen that the state of cer-
tain units will change back and forth many times till the so-
lution is found. But it is more probable that the state of most
units has to be changed at most once and there are only a
few units the state of which has to be changed back because
of the changes in the environment. The reason why this is
more probable is that a state change results a reciprocal A-
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value what — considering that it was the highest A-value — re-
sults an expectably small value. This can grow only in small
amounts through the state changes of the neighbors thus a lot
of changes are needed in the environment this value to be in-
creased above 1 and the state of the unit to be able to change
again.

For instance if the initial fault pattern contains only good
states then practically only the state of the faulty units changes
once and the state of those good units changes twice that are
surrounded by faulty units. Accordingly we can state — and
simulations validate it — that the loop-body runs

— Ny times if initial fault pattern is stayg (N7 is the number
of faulty units),

— N/2 times on the average if initial fault pattern is Styand,

— but at most N times in worst case.

Thus it can be stated that the while loop depending on the
initial fault pattern needs O (NbCount - Ny 4+ N - Ny), butin
worst case at most O (NbCount -N+N 2) time.

Summarizing the complexity of the steps the follow-
ing arises: the average time complexity of the base algo-
rithm is O (N -NbCount + Ny - NbCount + N - Nf) if initial
fault pattern contains only good states and it is at most
o (N - NbCount + Nz) in other cases.

4.6.2 Space complexity

In the base algorithm we use variables and one-dimensional
arrays (stateArray and deltaArray) that have N elements.
Further arrays needed for the functions TestRes(i, k),
NeighbourInd(i, k) and BacklinkInd(i, k) that have N - NbCount
elements. Thus the space complexity of the base algorithm is
O (N - NbCount).

5 Simulation results

We have implemented a simulation program and the gradient
based and other diagnostic algorithms. The program simulates
the behavior of multiprocessor systems and measures various
properties of the algorithms and compares them.

In the simulation program the most general toroidal mesh
topology is implemented having size and number of neighbors
as parameters. It generates the fault pattern using a given fault
probability and generates a syndrome for it using the probabili-
ties defined in the Blount test invalidation model (these are also
input parameters). The program determines the diagnosis ac-
cording to the different algorithms, compares it to the original
fault pattern and calculates several accuracy and complexity re-
lated properties of the diagnosis that are cumulated over several
simulation rounds. In this section two accuracy related proper-
ties are presented:

e the average number of misdiagnosed processors relative to the
system size (mavg) and

e the rate of rounds that contained at least one misdiagnosed
processor (mn).

During simulations we used fault probability as varying pa-
rameter over a wide range. In everyday systems the maximum
value should be below a few percent but in wafer scale diagnosis
a larger part of the system can be faulty: it can even happen that
much more than the half of the processors are faulty.

5.1 Comparison and analysis of gradient based algorithms
5.1.1 Parameters

Size of mesh: 10 x 10

Number of tested neighbors : 4

Fault probability: 01-02-03—-...-09-1

Test invalidation: pao = 1, pro = 0, poo = 0.5,
pao = 0.5

Number of simulation rounds: 500

Algorithms:

base algorithm, sty = stang (bag)

algorithm extended for 10 runs, sty = Styang (mra,10)
algorithm extended for 100 runs, sty = Styana (mrayi00)

. Stane, 1X;
algorithm extended for 10 runs, sty = allg X (mrag r9)
Strand, 9X. ’
. stang, 1x;
algorithm extended for 100 runs, sty = (mrag ;99)
Strand, 99X. ’

algorithm extended for 2 Hamming distance search (Ha)
algorithm extended for 3 Hamming distance search (Has3)
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Fig. 3. Accuracy related properties of gradient based algorithms
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5.1.2 Discussion

The diagnostic accuracy related properties are shown on
Fig. 3 and in Table 8. The table and the figure contains the same
data except that Hap and Has are included only in the table.

It can be seen that all algorithms except mra,1o provide al-
ways the good diagnosis if the fault probability is 10%. It means
that these algorithms can be used in installed systems where the
aim of the diagnosis is to keep the integrity of the network of
cooperating processors.

If the algorithms are used in wafer scale diagnosis then higher
fault rates are also interesting. Even the base algorithm with ini-
tial fault pattern containing good states (bag) provides a quite
good diagnosis, but it can be improved if the algorithm is run
multiple times having random initial fault patterns from the sec-
ond run. However, the best results are achieved by extending the
algorithm for multiple Hamming distance search. Nevertheless
it is not sure that this is the most useful algorithm, because it has
weak performance properties: while the base algorithm needs
about 0.2 seconds to run 100 times, the Ha, algorithm needs
some seconds and the H a3 algorithm needs minutes for a single
run.

Comparing algorithms mra,19 and mra, 9 it can be seen that
it is worth on every account to use Stayg as initial fault pat-
tern. The difference decreases as the number of initial random
patterns increases but it can be observed in case of algorithms
mray100 and mrag 199, t0O.

The results that can be seen on Fig. 4(a) and 4(b) verify the
considerations described in Sec. 4.6.1. Fig. 4(c) shows the av-
erage time needed to run the algorithms. It can be seen on the
first two figures that only the complexity of the ba, algorithm
depends on the number of the faulty units.

5.2 Comparison of gradient based algorithms to other al-

gorithms

There is only one solution in the literature for the Blount test
invalidation model, namely the one that Blount himself sug-
gested. It is based on a lookup table that is calculated in advance
and which contains the solution for all situations. Although this
is the fastest solution that can be created, it has no practical sig-
nificance because of its memory consumption and preprocessing
work. Consequently, we can compare our algorithms only to so-
lutions that are based on the traditional test invalidation models,
and to our previously developed P-graph based algorithm.

During simulations the well-known algorithms taken from the
literature were the LDA1 algorithm of Somani and Agarwal [19,
20], the Dahbura, Sabnani and King (DSK) algorithm [8] and
the limited multiplication of inference matrix (LMIM) algorithm
developed by Bartha and Selenyi [4, 5] from the area of local
information diagnosis.

We have examined three situation:

e expectations of other algorithms are met, i.e. PMC test inval-
idation is used (good testers are perfect, faulty testers can say

100
80
g’ . | /‘/k—‘\‘
S e ————e——
2 40 v i T it
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100
faults [%]
—&—ba_g mra_ri0 —+—mra_r100
mra_g,r9 mra_g,r99
(a) Average iteration count of the loop-body
100
80 /—A/H\A
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£ /rw=qan=*-:’i,-;=_-
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0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100
faults [%]
—&—ba_g —&—mra_r10 —+—mra_r100
mra_g,r9 mra_g,r99
(b) Maximum of the iteration counts of the loop body
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-
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Fig. 4. Complexity related properties of gradient based algorithms

anything with equal probability)

e cxpectations of other algorithms are nearly met, i.e. PMC-
like test invalidation is used (good testers are perfect, faulty
testers can say anything but with different probabilities)

e test coverage is less than 100% (i.e. good testers are not per-
fect)
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Tab. 8. Accuracy related properties of gradient

(a) Average number of misdiagnosed processors relative to system size

based algorithms mavg[%] fault probability [%]
algorithm 10 20 30 40 50 60 70 80 90 100
bag 0 0.01 0.07 0.58 2.3 6.34 14.4 22.3 30.8 35.6
mray 0.03 0.8 2.5 4.92 6.77 8.77 9.23 9.46 9.36 10.9
mra100 0 0 0.03 0.41 1.44 2.88 413 5.46 7.21 8.44
mrdg r9 0 0.01 0.05 0.49 1.96 5.52 8.64 9.91 9.86 11.1
mrag, 99 0 0 0.01 0.17 0.85 2.38 4.39 5.85 7.15 8.27
Hay 0 0.16 2.02 10.18 17.16
Haz 0 0.1 1.2 5.81 10.17
(b) Rate of rounds containing misdiagnosed processors
mn[%] fault probability [%]
algorithm 10 20 30 40 50 60 70 80 920 100
bag 0 0.4 3 19.6 55 86.4 99 100 100 100
mrag 0.4 10.2 35 67.4 86 95.2 98.6 100 99.8 100
mra;100 0 0 2 15.4 42.6 71.2 89.8 96.8 99.8 100
mrdg r9 0 0.6 3 15.4 46.4 83.8 98.4 99.8 99.8 100
mrag, 99 0 0.2 1 9.6 33.6 67.6 90.2 98 99.8 100
Hay 0.4 8.8 58.2 98.8 100
Haz 0 6.8 48.4 96.4 99.8
5.2.1 Parameters o /1 B
8
. 7 / )(/47
Size of mesh: 10 x 10 T 6 /
()
Number of tested neighborys : 4 o> 5 / /
o > 4
Fault probability: 0,1-0,2—-0,3—...—-0,9—-1 g 3
pao= 1 1 1 2 / )‘(/
1 4
o ~ 0 0 o s
Test invalidation: pro 0 b ‘ ‘ ‘
DPco = 0.5 09 0.5 10 20 30 40 50 60 70 80 90 100
pao= 05 0.1 0.5 faults [%]
Number of simulation rounds: 500
——LMIM ——DSK —&— LDA1

Algorithm: LMIM, DSK, LDAI1, P-graph,

mrag,rgg

5.2.2 Discussion

The results when PMC test invalidation is assumed are shown
on Fig. 5. It is trivial that P-graph based algorithm provides bet-
ter results, because it determines the optimal diagnosis using the
Blount test invalidation model. But it can be seen that gradient
based algorithms can provide nearly the same results, but the
complexity of it is about O (n?)-O (n?) (in later case the run-
number is directly proportional to the system size) in contrast
to the worst-case exponential complexity of the P-graph based
algorithm.

The results on Fig. 6 and 7 and other performed simulations
showed that in most cases other algorithms could handle the
non-standard situations, too, but the diagnostic accuracy of these
changed very differently in different situations. The diagnostic
accuracy was varying in case of the gradient based algorithm,
too, but it provided the best results in every situation.

—>—mra_g,r99 —¥— P-graf

Average number of misdiagnosed processors relative to system size
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Fig. 5. Gradient based algorithm compared to other algorithms assuming
PMC test invalidation
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Fig. 6. Diagnostic accuracy of the different algorithms if PMC like test in-
validation is assumed (p.g = 0,9 and pgzo =0, 1)

6 Conclusions

In this paper a new family of solution algorithms, called gra-
dient based algorithms are presented that provide system level
diagnosis in multiprocessor systems. The novelty of the algo-
rithms is that it approaches the problem from a more general
base than traditional algorithms, namely it uses the Blount test
invalidation model that describes the behavior of the testing pro-
cess with probabilities. The base algorithm differs from our pre-
vious P-graph based algorithm in that it is very fast, though on
the other hand it only approximates the maximum likelihood di-
agnosis even if it provides a good approximation.

The idea of the base algorithm is that it takes an initial fault
pattern and examines the change in the likelihood if the state of a
unit is changed in the pattern. It selects the maximal likelihood-
delta and performs the corresponding state-change. This process
is iterated till the delta is greater than 1, i.e. till the likelihood
of the actual fault pattern can be increased with a single state-
change.

Two extensions of the algorithm are also presented. The first
tries to increase the likelihood with multiple state-changes in the
actual fault pattern. Its accuracy tends to the optimal if cardinal-
ity of the multiple state-changes tends to the system size, but
its complexity meanwhile tends to the exponential. The second

30 g
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10 1
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Average number of misdiagnosed processors relative to system size
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Fig. 7. Diagnostic accuracy of the different algorithms if fault coverage of
tests is 80%

extension is a quite straightforward one: the base algorithm has
to be run multiple times started from random initial fault pat-
terns and the best should be chosen from the set of resulted fault
patterns that have locally maximum likelihoods. According to
simulations with this second extension the optimal solution can
be approximated quite well.

It was also demonstrated how the fault probability should be
inserted into the calculations in order to determine the maximum
a posteriori diagnosis.

A further remarkable strength of the algorithms is that these
can be applied not only in installed systems, but also in wafer
scale diagnosis where the fault probability can be even around
or above 30-40%. The simulations performed and partially pre-
sented in the last section confirmed these good properties and
the usefulness of the developed algorithms.

The next step in our research is the elaboration of a new
version of the gradient based approximation algorithm that can
solve problems formalized with P-graph models.
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