
Ŕ periodica polytechnica

Electrical Engineering
51/1-2 (2007) 43–55

doi: 10.3311/pp.ee.2007-1-2.05
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Gradient based system-level diagnosis
Balázs Polgár / Endre Selényi

Received 2006-02-12

Abstract
Traditional approaches in system-level diagnosis in multipro-

cessor systems are usually based on the oversimplified PMC test
invalidation model, however Blount introduced a more general
model containing conditional probabilities as parameters for
different test invalidation situations. He suggested a lookup ta-
ble based approach, but no algorithmic solution has been elab-
orated until our P-graph based solution introduced in previous
publications. In this approach the diagnostic process is formu-
lated as an optimization problem and the optimal solution is de-
termined. Although the average behavior of the algorithm is
quite good, the worst case complexity is exponential. In this
paper we introduce a novel group of fast diagnostic algorithms
that we named gradient based algorithms. This approach only
approximates the optimal maximum likelihood or maximum a
posteriori solution, but it has a polynomial complexity of the
magnitude of O

(
N · NbCount + N 2), where N is the size of the

system and NbCount is number of neighbors of a single unit.
The idea of the base algorithm is that it takes an initial fault

pattern and iterates till the likelihood of the actual fault pat-
tern can be increased with a single state-change in the pattern.
Improvements of this base algorithm, complexity analysis and
simulation results are also presented.

The main, although not exclusive application field of the al-
gorithms is wafer-scale diagnosis, since the accuracy and the
performance is still good even if relative large number of faults
are present.
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1 Introduction
Diagnosis is one of the major tools for assuring the reliability

of complex systems in information technology. In such systems
the test process is often implemented on system-level: the ‘in-
telligent’ components of the system test their local environment
and each other. The test results are collected, and based on this
information the good or faulty state of each system-component
is determined. This classification procedure is known as diag-
nostic process.

The early approaches that solve the diagnostic problem em-
ployed oversimplified binary fault models [15], could only de-
scribe homogeneous systems, and assumed the faults to be per-
manent. Since these conditions proved to be impractical, lately
much effort has been put into extending the limitations of tra-
ditional models [1, 3]. However, the presented solutions mostly
concentrated on only one aspect of the problem.

In our previous research we applied the P-graph based model-
ing to system-level diagnosis [11] that provided a general frame-
work for supporting the solution of several different types of
problems, that previously needed numerous different modeling
approaches and solution algorithms. Furthermore, we have not
only integrated existing solution methods, but proceeding from
a more general base we have extended the set of solvable prob-
lems with new ones. The representational power of the model
was illustrated in paper [12].

Another advantage of the P-graph models is that it takes into
consideration more properties of the real system than previous
diagnostic models. Therefore its diagnostic accuracy is also bet-
ter. This means that it provides almost good diagnosis even
when half of the processors are faulty [13]. This is important
for the field of wafer scale testing [7, 16, 17], which was the pri-
mary initiator of our research.

The only disadvantage of the P-graph based diagnosis is that
it has an exponential worst case complexity although the aver-
age performance is quite good. That is why we developed this
new algorithm-family starting from the same base but using dif-
ferent modeling technique and aiming only an approximation –
although a good approximation – of the optimal solution while
having polynomial complexity.
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The paper is structured as follows. First an overview is given
about system level diagnosis in multiprocessor systems. Then
the likelihood of fault patterns and the change of likelihood upon
state-changes in the fault pattern are discussed. This serves as
base for the algorithm, which is presented next. Extensions of
the algorithm are also suggested that can improve the accuracy.
It is also shown how fault probability can be taken into account
if it is known in order to have maximum a posteriori diagnosis.
A possible implementation of the base algorithm is also given
and the time and space complexity of it is determined. Finally
simulation results are presented; the diagnostic accuracy of the
algorithms and the relationship to other algorithms are analyzed
here.

2 System-level diagnosis
System-level diagnosis considers the replaceable units of a

system, and does not deal with the exact location of faults within
these units. A system consists of an interconnected network of
independent but cooperating units (typically processors). The
fault state of each unit is either good when it behaves as speci-
fied, or faulty, otherwise. The fault pattern is the collection of
the fault states of all units in the system. A unit may test the
neighboring units connected with it via direct links. The net-
work of the units testing each other determines the test topology.
The outcome of a test can be either passed or failed (denoted by
0/1 or G/F); this result is considered valid if it corresponds to
the actual physical state of the tested unit.

The collection of the results of every completed test is called
the syndrome. The test topology and the syndrome are repre-
sented graphically by the test graph. The vertices of a test graph
denote the units of the system, while the directed arcs represent
the tests originated at the tester and directed towards the tested
unit (UUT). The result of a test is shown as the label of the cor-
responding arc. Label 0 represents the passed test result, while
label 1 represents the failed one. See Fig. 1 for an example test
graph with three units.

A

CB
1

Fig. 1. Example test graph (test topology with syndrome)

2.1 Traditional approaches
Traditional diagnostic algorithms assume that

1 faults are permanent,

2 states of units are binary (good, faulty),

3 the test results of good units are always valid, i.e. good testers
are perfect or in other words test coverage is 100%,

4 the test results of faulty units can also be invalid. The be-
havior of faulty tester units is expressed in the form of test
invalidation models.

Fig. 2 shows the fault model of a single test and Table 1 cov-
ers the possible test invalidation models, where the selection of
c and d values determines a specific model. The most widely
used example is the so-called PMC (Preparata, Metze, Chien)
test invalidation model [15] (c = any, d = any), which consid-
ers the test result of a faulty tester to be independent of the state
of the tested unit. According to another well-known test invali-
dation model, the BGM (Barsi, Grandoni, Maestrini) model [2]
(c = any, d = faulty) a faulty tester will always detect the fail-
ure of the tested unit, because it is assumed that the probability
of two units failing the same way is negligible.
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Fig. 2. Fault model of a single test

Tab. 1. Traditional test invalidation models

State of State of Test result

tester UUT

good good passed

good faulty failed

faulty good c ∈ {passed, failed, any}

faulty faulty d ∈ {passed, failed, any}

The purpose of system-level diagnostic algorithms is to de-
termine the fault state of each unit from the syndrome. The dif-
ficulty comes from the possibility that a fault in the tester pro-
cessor invalidates the test result. As a consequence, multiple
“candidate” diagnoses can be compatible with the syndrome.
To provide a complete diagnosis and to select from the candi-
date diagnoses, the so-called deterministic algorithms use extra
information in addition to the syndrome, such as assumptions on
the size of the fault pattern or on the testing topology.

Alternatively, probabilistic algorithms try to determine the
most probable diagnosis assuming that a unit is more likely good
than faulty [9]. Frequently, this maximum likelihood strategy
can be expressed simply as “many faults occur less frequently
than a few faults.” Thus, the aim of diagnosis is to determine the
minimal set of faulty elements of the system that is consistent
with the syndrome.

2.2 The generalized approach
In our previous work [10–12] we used a generalized test in-

validation model, introduced by Blount [6]. In this model, prob-
abilities are assigned to both possible test outcomes for each
combination of the states of tester and tested units (Table 2).
Since the good and faulty results are complementary events, the
sum of the probabilities in each row is 1. The assumption of the
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complete fault coverage can be relaxed in the generalized model
by setting probability pb1 to the fault coverage of the test. Prob-
abilities pc0, pc1, pd0 and pd1 express the distortion of the test
results by a faulty tester. Moreover, the generalized model is
able to encompass false alarms (a good tester finds a good unit
to be faulty) by setting probability pa1 to nonzero, however, it is
not a typical situation.

Tab. 2. Generalized test model

State of State of Probability of test result

tester UUT 0 1

good good pa0 pa1

good faulty pb0 pb1

faulty good pc0 pc1

faulty faulty pd0 pd1

Of course, the generalized test invalidation model covers the
traditional models. Setting the probabilities as pa0 = pb1 = 1,
pc0 = pc1 = pd0 = pd1 = 0.5, and pa1 = pb0 = 0, the
generalized model has the characteristics of the PMC model,
while the configuration pa0 = pb1 = pd1 = 1, pc0 = pc1 = 0.5
and pa1 = pb0 = pd0 = 0 makes it behave like the BGM
model. Analogically, every traditional test invalidation model
can be mapped as a special case to this model.

3 Likelihood of fault patterns
3.1 Formulization of likelihood of fault patterns
To determine the maximum likelihood diagnosis the

P( syndrome | fault pattern ) conditional probability should be
maximized over the fault patterns. I.e. the fault pattern that
produces the observed syndrome with the highest probability
should be found.

Let’s denote with pz|sti(z | sti) the conditional probability
mass function determining the distribution of the syndromes if
sti is the fault pattern.

Furthermore let’s denote with functions na0(sti, z),
na1(sti, z), nb0(sti, z), nb1(sti, z), nc0(sti, z), nc1(sti, z),
nd0(sti, z), nd1(sti, z) the number of the different types of tests
where sti is the fault pattern and z is the syndrome (types are
differentiated according to the states of the tester and tested unit
and according to the test result; types are denoted with indices
a0, a1, b0 etc. as in Table 2.).

Probability P( syndrome | fault pattern ) can be expressed
as the product of the conditional probabilities P( test result |

state of tester, state of tested unit ) if test results in the syndrome
are independent [14]. Formally,

pz|sti(z | sti) = pna0(sti,z)
a0 pna1(sti,z)

a1 pnb0(sti,z)
b0 pnb1(sti,z)

b1 ·

pnc0(sti,z)
c0 pnc1(sti,z)

c1 pnd0(sti,z)
d0 pnd1(sti,z)

d1

(1)

3.2 Change in likelihood of fault patterns
In this section we determine the difference between the con-

ditional probabilities of a given syndrome for two fault patterns
that have 1 Hamming distance between them.

3.2.1 Effect of changing the state of a unit from good to
faulty
Let’s consider an arbitrary sti fault pattern and an arbitrary

unit (the unit that has index k; referred later as the kth unit) that
is in good state according to this fault pattern. Let’s change the
state of this unit to faulty and denote the resulted fault pattern
with stk,f

i .
As a result the values of functions na0, na1, . . . , nd1 change:

the tests related to the selected unit will have new types. For
instance if this unit has tested another unit to be good then
this test had type a0 and it had a factor pa0 in the probability
pz|sti(z | sti). After the change it has type c0 and has a factor
pc0 in probability pz|stk,f

i
(z | stk,f

i ). This means that the given
test caused a change in probability P( syndrome | fault pattern )

of the amount pc0
pa0

as the result of the state change.
Table 3 summarizes the possible relationships between the se-

lected unit and its neighbors and the effects of these in the con-
ditional probability P( syndrome | fault pattern ). The functions
in the last column of the table have three input parameters: sti, z
and k ( f ng0(sti, z, k), . . . ). These functions determine the num-
ber of neighbors of the kth unit having the given type if sti is the
fault pattern and z is the syndrome.

The relations between the conditional mass functions can be
expressed with the functions defined in the table:

pz|stk,f
i

(z | stk,f
i )

=
p

bng0
b0 p

bng1
b1 p

f ng0
c0 p

f ng1
c1 p

bn f 0+ f n f 0
d0 p

bn f 1+ f n f 1
d1

p
bng0+ f ng0
a0 p

bng1+ f ng1
a1 p

f n f 0
b0 p

f n f 1
b1 p

bn f 0
c0 p

bn f 1
c1

· pz|sti(z | sti)

Let’s introduce the notion 1z, f (sti, k) for the quotient of the
two conditional probability:

1z, f (sti, k) =

pz|stk,f
i

(z | stk,f
i )

pz|sti(z | sti)
(2)

=


1, if sti[k] = f ;
p

bng0
b0 p

bng1
b1 p

f ng0
c0 p

f ng1
c1 p

bn f 0+ f n f 0
d0 p

bn f 1+ f n f 1
d1

p
bng0+ f ng0
a0 p

bng1+ f ng1
a1 ·p

f n f 0
b0 p

f n f 1
b1 p

bn f 0
c0 p

bn f 1
c1

, otherwise.

3.2.2 Effect of changing the state of a unit to the opposite
Similarly to the previous section we can define stk, g

i as the
fault pattern derived from sti with changing the state of the kth

unit to good and we can define the change in the conditional
mass functions determining the likelihood of a syndrome in case
of these fault patterns:

1z,g(sti, k) =

pz|stk, g
i

(z | stk, g
i )

pz|sti(z | sti)
(3)

Combining the two case we can introduce stk
i as the fault pat-

tern that differs from sti exactly in the state of the kth unit. Let’s
define function 1z(sti, k) as the function that determines the
change in the likelihood P( syndrome | fault pattern ) if the state
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Tab. 3. Change in the number of tests of a given
unit and given type and the effect of the change for the
likelihood of the fault pattern if the state of the unit is
changed from good to faulty.

1 clfp = change in the likelihood of the fault pat-

tern, i.e. the change in the conditional probability
P( syndrome | fault pattern ) for the given type of test
caused by the state-change of the selected unit

2 fnt = functions determining the number of tests

of the given type; The abbreviations come from the
words forward neighbour and backward neighbour;
the index indicates the state of the neighbor and the
result of the test

symbol kind state test type of test clfp1 fnt2

of the neighbor result before after

- e0 tested good 0 a0 ( e- e0 ) c0 ( u- e0 ) pc0
pa0

f ng0

- e1 tested good 1 a1 ( e- e1 ) c1 ( u- e1 ) pc1
pa1

f ng1

- u0 tested faulty 0 b0 ( e- u0 ) d0 ( u- u0 ) pd0
pb0

f n f 0

- u1 tested faulty 1 b1 ( e- u1 ) d1 ( u- u1 ) pd1
pb1

f n f 1e-0 tester good 0 a0 ( e- e0 ) b0 ( e- u0 ) pb0
pa0

bng0e-1 tester good 1 a1 ( e- e1 ) b1 ( e- u1 ) pb1
pa1

bng1u-0 tester faulty 0 c0 ( u- e0 ) d0 ( u- u0 ) pd0
pc0

bn f 0u-1 tester faulty 1 c1 ( u- e1 ) d1 ( u- u1 ) pd1
pc1

bn f 1

of the kth unit is changed to the opposite in fault pattern sti:

1z(sti, k) =

p
z|stk

i
(z | stk

i )

pz|sti(z | sti)
=

{
1z, f (sti, k), if sti[k] = g;
1z,g(sti, k), if sti[k] = f.

(4)

The value of function 1z(sti, k) belonging to sti[k] = f is
the reciprocal of the value belonging to sti[k] = g because the
likelihood of a fault pattern must be unchanged if the state of
one of its unit is changed to the opposite and then back again.
This and Eq. (2) implies the final form for the 1-function:

1z(sti, k)

=


p

bng0
b0 ·p

bng1
b1 ·p

f ng0
c0 ·p

f ng1
c1 ·p

bn f 0+ f n f 0
d0 ·p

bn f 1+ f n f 1
d1

p
bng0+ f ng0
a0 ·p

bng1+ f ng1
a1 ·p

f n f 0
b0 ·p

f n f 1
b1 ·p

bn f 0
c0 ·p

bn f 1
c1

, if sti[k] = g;

p
bng0+ f ng0
a0 ·p

bng1+ f ng1
a1 ·p

f n f 0
b0 ·p

f n f 1
b1 ·p

bn f 0
c0 ·p

bn f 1
c1

p
bng0
b0 ·p

bng1
b1 ·p

f ng0
c0 ·p

f ng1
c1 ·p

bn f 0+ f n f 0
d0 ·p

bn f 1+ f n f 1
d1

, if sti[k] = f .

In later sections we will refer to this 1z(sti, k) function as
1z,M L(sti, k), too, when this maximum likelihood version is
compared to the maximum a posteriori version of the function.

4 Gradient based algorithm
Using the notion of the previous section we can state the fol-

lowing:
If the value of the function 1z for an arbitrary unit of an ar-

bitrary fault pattern is greater than 1 then changing the state of
this unit results a fault pattern that has larger likelihood than
the original one; thus, it is closer to the optimal solution.

The gradient based algorithm is based on this property as it is
shown in this section.

4.1 The base algorithm
The steps of the base algorithm are the followings:

1 Take an initial fault pattern (st0, i.e. i = 0).

2 Let’s count the value of function 1z(sti, k) for every k (k =

1..N ), i.e. let’s determine the effect of changing the state of
each single unit in the actual fault pattern upon the likelihood
of it.

3 Let’s choose the maximal 1z value: 1z,max (sti) =

max
k

1z(sti, k).

4 If this value is greater than 1, then change the state of the
corresponding unit in the fault pattern: this will be the next
fault pattern (sti+1); and go back to step 2.

5 If the maximal value is not greater than 1, then ready, the
result of the diagnosis is sti.

The efficiency of the algorithm is greatly depend on the initial
fault pattern. Three main types can be identified:

• each unit is in good state
(st0 = stallg = gg . . . g),

• each unit is in faulty state
(st0 = stallf = f f . . . f ),

• each unit is in random state
(st0 = strand; P(strand[k] = g) = 0.5, k = 1..N ).

According to simulations the first one results quite good diag-
nosis, the second one results quite bad and the accuracy is highly
varying in case of the third one. Thus, the first is the best choice,
however, the third one has practical significance, too, as it will
turn out later.

4.2 Algorithm extension I: Changing the state of multiple
units simultaneously
The disadvantage of the base algorithm is that it searches for

better solution only among fault patterns that are 1 Hamming
distance far from the actual pattern. Thus it finds often only
a local maximum. In order to find the global or a better local
maximum the search can be extended in each round to fault pat-
terns that are 2, 3 or more Hamming distance far from the actual
pattern.

Let’s change the state of at most H unit in each round. In this
case function 1z should be defined different:

• Let’s sum the different types of tests that have a selected unit
either as a tester or as a tested unit and a non-selected as the
other one (similarly as previously), but differentiate according
to the state of the selected unit. The functions f ng0,g , f ng1,g ,
f n f 0,g , . . . bn f 1,g , and f ng0, f , f ng1, f , f n f 0, f , . . . bn f 1, f

are defined this way (see Table 3, too).
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Tab. 4. Change in the number of tests of different types and the effect of the
change for the likelihood of the fault pattern if the state of both unit is changed
to the opposite.

state of state of test type of test clfp1 fnt2

tester tested unit result before after

good good 0 a0 ( e- e0 ) d0 ( u- u0 ) pd0
pa0

bsa0

good good 1 a1 ( e- e1 ) d1 ( u- u1 ) pd1
pa1

bsa1

good faulty 0 b0 ( e- u0 ) c0 ( u- e0 ) pc0
pb0

bsb0

good faulty 1 b1 ( e- u1 ) c1 ( u- e1 ) pc1
pb1

bsb1

faulty good 0 c0 ( u- e0 ) b0 ( e- u0 ) pb0
pc0

bsc0

faulty good 1 c1 ( u- e1 ) b1 ( e- u1 ) pb1
pc1

bsc1

faulty faulty 0 d0 ( u- u0 ) a0 ( e- e0 ) pa0
pd0

bsd0

faulty faulty 1 d1 ( u- u1 ) a1 ( e- e1 ) pa1
pd1

bsd1

1 clfp = change in the likelihood of the fault pattern
2 fnt = functions determining the number of tests of the given type; The

abbreviation comes from the phrase both selected.

As previously these functions have also three input parame-
ters, but beside sti and z the third one is not the index of a
single unit (k), but the set of indices of the selected units (k).

• Those tests should be summed by types, too, that have se-
lected units both as tester and as tested unit. In these tests we
assume that the state of both units will change. The number
of these tests are defined by functions bsa0, bsa1, ..., bsd1, see
Table 4. Of course these functions have sti, z and k as input
parameters.

Similarly to the previous notations let’s denote with stk
i the

fault pattern that we get from sti with changing the state of units
that are contained in set k. Now function 1z(sti, k) can be de-
fined as follows:

1z(sti, k) =

pz|stk
i
(z | stk

i )

pz|sti(z | sti)

=
p

bng0,g
b0 p

bng1,g
b1 p

f ng0,g
c0 p

f ng1,g
c1 p

bn f 0,g+ f n f 0,g
d0 p

bn f 1,g+ f n f 1,g
d1

p
bng0,g+ f ng0,g
a0 p

bng1,g+ f ng1,g
a1 p

f n f 0,g
b0 p

f n f 1,g
b1 p

bn f 0,g
c0 p

bn f 1,g
c1

·

p
bng0, f + f ng0, f
a0 p

bng1, f + f ng1, f
a1 p

f n f 0, f
b0 p

f n f 1, f
b1 p

bn f 0, f
c0 p

bn f 1, f
c1

p
bng0, f
b0 p

bng1, f
b1 p

f ng0, f
c0 p

f ng1, f
c1 p

bn f 0, f + f n f 0, f
d0 p

bn f 1, f + f n f 1, f
d1

·

pbsd0
a0 pbsd1

a1 pbsc0
b0 pbsc1

b1 pbsb0
c0 pbsb1

c1 pbsa0
d0 pbsa1

d1

pbsa0
a0 pbsa1

a1 pbsb0
b0 pbsb1

b1 pbsc0
c0 pbsc1

c1 pbsd0
d0 pbsd1

d1

Using this 1z(sti, k) function the steps of the gradient based
algorithm is modified in this extended version according to the
followings:

1 Take an initial fault pattern (st0; i=0).

2 Count the value of function 1z(sti, k) for every set k that
contains at least 1 and at most H units.

3 Choose the maximal 1z value.

4 If this value is greater than 1, then in the fault pattern change
the state of each unit in set k that corresponds to the maximal
1z value: this will be the next fault pattern (sti+1); and go
back to step 2.

5 If the maximal value is not greater than 1, then ready, the
result of the diagnosis is sti.

With this extension the accuracy of the diagnosis can be im-
proved: as H tends to N −1 the diagnosis tends to the maximum
likelihood diagnosis. But increasing H increases the complex-
ity, too. As it tends to N −1 the complexity tends to exponential.

4.3 Algorithm extension II: Multiple run
In this subsection such an extension is suggested that can im-

prove the diagnostic accuracy without significantly increasing
the complexity.

The main idea is to run the base algorithm multiple times
with different initial fault patterns and choose the maximal max-
imum. The steps of the algorithm in more details are the follow-
ings:

1 Take an initial fault pattern (st0,1, i.e. i=0, j=1).

2 Run the base algorithm having st0,j as the initial fault pattern;
denote the result of it with stsol,j.

3 Determine the likelihood of the solution, i.e. the conditional
probability pz|stsol,j(z | stsol,j) (see Eq. (1)).

4 If this likelihood is bigger than the likelihood of the best so-
lution found till the moment then this will be the best solution
(stsol = stsol,j).

5 If j has not reached a certain bound, the so-called run-number
then take a new initial fault pattern (st0,j+1) and go back to
step 2.

6 If j has reached the run-number then ready; the result of the
diagnosis is stsol.

In this extension to choose random fault patterns as initial
ones is satisfactory if the run-number is big enough, although
it is worth to choose stallg as the first pattern, because it results
quite a good diagnosis in itself.

Although with every further round the final solution approx-
imates the optimal one better and better, we have to determine
the run-number somehow. It can be constant, although a better
choice is if it depends on the size of the system or it is determined
adaptively, i.e. the algorithm is stopped if no better solution is
found in a given number of trials after the last ’best-solution up-
date’ in step 4. In the later case relatively few rounds is enough
if we found a good solution early, but should try much more fur-
ther if we found each time only a little bit better solution com-
pared to the previous one.

Simulations showed that with this extension the optimal solu-
tion can be approximated quite well only with a small increase
in the complexity.
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4.4 Model extension: Maximum a posteriori diagnosis
In case of maximum a posteriori diagnosis the

P( fault pattern | syndrome ) conditional probability should be
maximized over the fault patterns [18]. I.e. the fault pattern that
has the highest probability in case of the observed syndrome
should be found. In this case that fault pattern should be chosen
for which the value

pz|sti(z | sti) · P(sti)

is maximal. If we suppose that the units fail independently then
the probability of fault pattern sti can be expressed as the prod-
uct of the probabilities of the states of the units determined by
the fault pattern. If we suppose a homogeneous system, i.e. each
unit has the same fault probability p f , then it turns to the fol-
lowing form:

P(sti) =

N∏
k=1

P(sti[k]) = (1 − p f )
Ng(sti) · p f

N f (sti), (5)

where functions Ng(sti) and N f (sti) determine the number of
good and faulty units in the fault pattern sti. This implies that
maximum a posteriori diagnosis can be determined only if the
fault probabilities of units are known.

Similarly to Sec. 3.2.2 let’s define 1z,M AP (sti, k) as the
function that determines the change in conditional probability
P( fault pattern | syndrome ) if we change the state of the kth

unit to the opposite in the fault pattern sti. This function can be
formulated in the following form:

1z,M AP (sti, k) =

p
z|stk

i
(z | stk

i ) · P(stk
i )

pz|sti(z | sti) · P(sti)

= 1z,M L(sti, k) ·
(1 − p f )

Ng(stk
i ) · p f

N f (stk
i )

(1 − p f )
Ng(sti) · p f

N f (sti)

=

{
1z,M L(sti, k) ·

p f
1−p f

, if sti[k]=g;

1z,M L(sti, k) ·
1−p f

p f
, if sti[k]=f.

(6)

This implies that in the algorithms described in previous sec-
tions only the 1-values should be modified with factor p f

1−p f
or

1−p f
p f

according to the state-change and the result will be maxi-
mum a posteriori diagnosis.

Of course, homogeneity is not a requirement; if fault prob-
abilities are specific for units then always that fault probability
should be used during counting the value 1z,M AP that belongs
to the unit the state of which is to be changed.

4.5 Implementation of the base algorithm
Among the steps of the base algorithm given in Sec. 4.1 only

the evaluation of function 1z(sti, k) needs further discussion;
the implementation of all others is trivial (for choosing the max-
imum we use the simplest linear search).

To evaluate function 1z(sti, k) the functions f ng0(sti, z, k),
f ng1(sti, z, k) etc. should be determined, i.e. we have to count

that in how many tests of the given type are the units involved.
But it seems to be simpler to iterate over the tests and include
the value determined by the type of the test to the 1-value of
the two affected units (the phrase ’1-value of the kth unit’ is an
abbreviation for 1z(sti, k), where sti and z are the actual fault
pattern and syndrome). Moreover, this iteration have to be done
only once for the initial fault pattern, in later steps only the 1-
values of the selected unit and its neighbors should be modified,
all others remain unaltered. It was shown that state change of
a unit reciprocates its 1-value, thus in the followings only the
effect for the 1-values of the neighbors should be determined.

Table 5 summarizes the change in the 1-values of neighbors
in the case when the state of the selected unit is changed from
good to faulty. The opposite change in the state of the selected
unit will result a reciprocal change in the 1-values of neighbors
similarly to the change in the likelihood of the fault pattern (see
Sec. 3.2.2).

Let’s introduce the following notations:

DIFF0 =
pa0 · pd0

pb0 · pc0
and DIFF1 =

pa1 · pd1

pb1 · pc1
.

Table 6 summarizes with these notations the change in the 1-
values of the neighbors in the different cases. It can be observed
that this change – beside the test result – depends only on the
fact that the units involved in the test are in similar or in different
states.

Taking all these into account a possible implementation of the
base algorithm can be found in Table 7.

Tab. 6. Change in the 1-values of neighbors having different types resulted
from the state-change of the selected unit (the state change is arbitrary).

test change in 1-value of the neighbor, if

symbol kind state res. the state of the selected unit changes

of the neighbor from good to faulty from faulty to good

- e0 tested good 0 DIFF0 1
DIFF0

- e1 tested good 1 DIFF1 1
DIFF1

- u0 tested faulty 0 1
DIFF0 DIFF0

- u1 tested faulty 1 1
DIFF1 DIFF1e-0 tester good 0 DIFF0 1

DIFF0e-1 tester good 1 DIFF1 1
DIFF1u-0 tester faulty 0 1

DIFF0 DIFF0u-1 tester faulty 1 1
DIFF1 DIFF1
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Tab. 5. Change in the 1-values of neighbors hav-
ing different types resulted from the state-change of
the selected unit (the state change is from good to
faulty).

test 1-value of the neighbor change in 1-value

symbol kind state res. belonging to this test of neighbor

of the neighbor before change after change

- e0 tested good 0 pb0
pa0

( c- s0c- c0

) pd0
pc0

( s- s0s- c0

) pa0
pb0

·
pd0
pc0

- e1 tested good 1 pb1
pa1

( c- s1c- c1

) pd1
pc1

( s- s1s- c1

) pa1
pb1

·
pd1
pc1

- u0 tested faulty 0 pa0
pb0

( c- c0c- s0

) pc0
pd0

( s- c0s- s0

) pb0
pa0

·
pc0
pd0

- u1 tested faulty 1 pa1
pb1

( c- c1c- s1

) pc1
pd1

( s- c1s- s1

) pb1
pa1

·
pc1
pd1e-0 tester good 0 pc0

pa0

( s- c0c- c0

) pd0
pb0

( s- s0c- s0

) pa0
pc0

·
pd0
pb0e-1 tester good 1 pc1

pa1

( s- c1c- c1

) pd1
pb1

( s- s1c- s1

) pa1
pc1

·
pd1
pb1u-0 tester faulty 0 pa0

pc0

( c- c0s- c0

) pb0
pd0

( c- s0s- s0

) pc0
pa0

·
pb0
pd0u-1 tester faulty 1 pa1

pc1

( c- c1s- c1

) pb1
pd1

( c- s1s- s1

) pc1
pa1

·
pb1
pd1

Tab. 7. Implementation of the base version of the gradient based algorithm

(a) Parameters, variables, functions

Input: N size of the system

NbCount number of neighbors

TestRes(i, k) result of the kth test of the i th unit

NeighbourInd(i, k) index of the kth tested neighbor of the i th unit

BacklinkInd(i, k) index of the unit that has the i th unit as the kth tested neighbor

Prob(st1, st2, tr) probability of test result tr if the tester is in state st1 and the tested unit is in state st2, i.e. the

result of it is one of the values pa0, pa1, . . . pd1

Used GetIniState() : stateArray determines the initial fault pattern

functions: CountDelta(stateArray) : deltaArray determines the 1z values for each unit (deltaArray) if the states of units are determined by

stateArray

SelectMax(array, out maxElement, out maxInd) determines the maximal element (max Element) of the array and the index of it (max I nd)

Neg(state) : state returns the negation of the state

Inner

variables:

stateArray array with N element that holds the actual fault pattern (the i th element determines the state of

the i th unit)

deltaArray array with N element; the i th element determines the 1z value belonging to the state-change of

the i th unit (it corresponds to the actual fault pattern)

max Delta maximal 1-value in the given round

max I nd index of the unit that has maximal 1-value in the given round (i.e. it is the selected unit)

nbI nd index of a neighbor of the selected unit

Output: stateArray at the end of the algorithm it contains the diagnosed fault pattern

(b) Function CountDelta

CountDelta(stateArray):deltaArray

begin

for i := 1 to N do Initialization

deltaArray[i] := 1.0;

for i := 1 to N do Loop on units

for k := 1 to NbCount do Loop on the tests of the actual unit

begin

nbI nd := NeighbourInd(i, k); Temporary variables: index of the neighbor

sttr := stateArray[i]; state of the tester

sttd := stateArray[nbI nd]; state of the tested unit

tr := TestRes(i, k); test result

deltaArray[i] := deltaArray[i] ·
Prob(Neg(sttr ),sttd ,tr)

Prob(sttr ,sttd ,tr) ; 1-value belonging to this test of the i th unit (→ the state of the i th unit changes)

deltaArray[nbI nd] := deltaArray[nbI nd] ·
Prob(sttr ,Neg(sttd ),tr)

Prob(sttr ,sttd ,tr) ; 1-value belonging to this test of the unit having index nbInd (→ the state of the

nbIndth unit changes)

end;
end;
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(c) The Body of the Algorithm

stateArray := GetIniState(); Initialization

deltaArray := CountDelta(stateArray);

SelectMax(deltaArray, max Delta, max I nd); Determination of the maximal 1-value

while max Delta > 1.0 do Loop while the diagnosis can be improved

begin

for k := 1 to NbCount do Loop on the neighbors

begin

nbI nd := NeighbourInd(max I nd, k);

if stateArray[nbI nd] = stateArray[max I nd] then
Modification of the 1-value of the kth tested neighbor of the selected

unit

if TestRes(max I nd, k) = g then
deltaArray[nbI nd] := deltaArray[nbI nd] · DI F F0;

else
deltaArray[nbI nd] := deltaArray[nbI nd] · DI F F1;

else
if TestRes(max I nd, k) = g then

deltaArray[nbI nd] := deltaArray[nbI nd]/DI F F0;

else
deltaArray[nbI nd] := deltaArray[nbI nd]/DI F F1;

nbI nd = BacklinkInd(max I nd, k);

if stateArray[nbI nd] = stateArray[max I nd] then
Modification of the 1-value of the tester unit that has the selected

unit as the kth tested neighbor

if TestRes(nbI nd, k) = g then
deltaArray[nbI nd] := deltaArray[nbI nd] · DI F F0;

else
deltaArray[nbI nd] := deltaArray[nbI nd] · DI F F1;

else
if TestRes(nbI nd, k) = g then

deltaArray[nbI nd] := deltaArray[nbI nd]/DI F F0;

else
deltaArray[nbI nd] := deltaArray[nbI nd]/DI F F1;

end;

stateArray[max I nd] := Neg(stateArray[max I nd]); Modification of the state and 1-value of the selected unit

deltaArray[max I nd] := 1/deltaArray[max I nd];

SelectMax(deltaArray, max Delta, max I nd); Determination of the maximal 1-value

end.

4.6 Complexity of the algorithm
4.6.1 Time complexity
The complexity of the functions used in the base algorithm is

different:

• Functions TestRes(i, k), Prob(st1, st2, tr),
NeighbourInd(i, k) and BacklinkInd(i, k) are executed
in constant time as these return only an element of an array.

• Functions GetIniState() and SelectMax() are executed in time
O (N ).

• The initialization of the arrays behind functions
NeighbourInd(i, k) and BacklinkInd(i, k) need steps in
the magnitude O (N · NbCount).
The complexity of running function CountDelta(stateArray)
once is O (N + N · NbCount) = O (N · NbCount).

Now using these information let’s determine the complexity
of the steps of the base algorithm:

• The determination of the initial fault pattern needs O (N )

time.

• To count the initial 1-values O (N · NbCount) time is
needed.

• The maximum of the initial 1-values can be chosen in O (N )

time.

• The body of the while loop runs in O (NbCount) + O (N ) =

O (NbCount + N ) time.
That is a more complex task to determine the number the loop
will iterate. Theoretically it can happen that the state of cer-
tain units will change back and forth many times till the so-
lution is found. But it is more probable that the state of most
units has to be changed at most once and there are only a
few units the state of which has to be changed back because
of the changes in the environment. The reason why this is
more probable is that a state change results a reciprocal 1-
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value what – considering that it was the highest 1-value – re-
sults an expectably small value. This can grow only in small
amounts through the state changes of the neighbors thus a lot
of changes are needed in the environment this value to be in-
creased above 1 and the state of the unit to be able to change
again.
For instance if the initial fault pattern contains only good
states then practically only the state of the faulty units changes
once and the state of those good units changes twice that are
surrounded by faulty units. Accordingly we can state – and
simulations validate it – that the loop-body runs

– N f times if initial fault pattern is stallg (N f is the number
of faulty units),

– N/2 times on the average if initial fault pattern is strand,
– but at most N times in worst case.

Thus it can be stated that the while loop depending on the
initial fault pattern needs O

(
NbCount · N f + N · N f

)
, but in

worst case at most O
(
NbCount · N + N 2) time.

Summarizing the complexity of the steps the follow-
ing arises: the average time complexity of the base algo-
rithm is O

(
N · NbCount + N f · NbCount + N · N f

)
if initial

fault pattern contains only good states and it is at most
O

(
N · NbCount + N 2) in other cases.

4.6.2 Space complexity
In the base algorithm we use variables and one-dimensional

arrays (stateArray and deltaArray) that have N elements.
Further arrays needed for the functions TestRes(i, k),
NeighbourInd(i, k) and BacklinkInd(i, k) that have N ·NbCount
elements. Thus the space complexity of the base algorithm is
O (N · NbCount).

5 Simulation results
We have implemented a simulation program and the gradient

based and other diagnostic algorithms. The program simulates
the behavior of multiprocessor systems and measures various
properties of the algorithms and compares them.

In the simulation program the most general toroidal mesh
topology is implemented having size and number of neighbors
as parameters. It generates the fault pattern using a given fault
probability and generates a syndrome for it using the probabili-
ties defined in the Blount test invalidation model (these are also
input parameters). The program determines the diagnosis ac-
cording to the different algorithms, compares it to the original
fault pattern and calculates several accuracy and complexity re-
lated properties of the diagnosis that are cumulated over several
simulation rounds. In this section two accuracy related proper-
ties are presented:

• the average number of misdiagnosed processors relative to the
system size (mavg) and

• the rate of rounds that contained at least one misdiagnosed
processor (mn).

During simulations we used fault probability as varying pa-
rameter over a wide range. In everyday systems the maximum
value should be below a few percent but in wafer scale diagnosis
a larger part of the system can be faulty: it can even happen that
much more than the half of the processors are faulty.

5.1 Comparison and analysis of gradient based algorithms
5.1.1 Parameters

Size of mesh: 10 × 10
Number of tested neighbors : 4
Fault probability: 0.1 − 0.2 − 0.3 − . . . − 0.9 − 1
Test invalidation: pa0 = 1, pb0 = 0, pc0 = 0.5,

pd0 = 0.5
Number of simulation rounds: 500

Algorithms:
base algorithm, st0 = stallg (bag)

algorithm extended for 10 runs, st0 = strand (mrar10)

algorithm extended for 100 runs, st0 = strand (mrar100)

algorithm extended for 10 runs, st0 =

{
stallg, 1x;
strand, 9x.

(mrag,r9)

algorithm extended for 100 runs, st0 =

{
stallg, 1x;
strand, 99x.

(mrag,r99)

algorithm extended for 2 Hamming distance search (Ha2)

algorithm extended for 3 Hamming distance search (Ha3)
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Fig. 3. Accuracy related properties of gradient based algorithms

Gradient based system-level diagnosis 512007 51 1-2



5.1.2 Discussion
The diagnostic accuracy related properties are shown on

Fig. 3 and in Table 8. The table and the figure contains the same
data except that Ha2 and Ha3 are included only in the table.

It can be seen that all algorithms except mrar10 provide al-
ways the good diagnosis if the fault probability is 10%. It means
that these algorithms can be used in installed systems where the
aim of the diagnosis is to keep the integrity of the network of
cooperating processors.

If the algorithms are used in wafer scale diagnosis then higher
fault rates are also interesting. Even the base algorithm with ini-
tial fault pattern containing good states (bag) provides a quite
good diagnosis, but it can be improved if the algorithm is run
multiple times having random initial fault patterns from the sec-
ond run. However, the best results are achieved by extending the
algorithm for multiple Hamming distance search. Nevertheless
it is not sure that this is the most useful algorithm, because it has
weak performance properties: while the base algorithm needs
about 0.2 seconds to run 100 times, the Ha2 algorithm needs
some seconds and the Ha3 algorithm needs minutes for a single
run.

Comparing algorithms mrar10 and mrag,r9 it can be seen that
it is worth on every account to use stallg as initial fault pat-
tern. The difference decreases as the number of initial random
patterns increases but it can be observed in case of algorithms
mrar100 and mrag,r99, too.

The results that can be seen on Fig. 4(a) and 4(b) verify the
considerations described in Sec. 4.6.1. Fig. 4(c) shows the av-
erage time needed to run the algorithms. It can be seen on the
first two figures that only the complexity of the bag algorithm
depends on the number of the faulty units.

5.2 Comparison of gradient based algorithms to other al-
gorithms
There is only one solution in the literature for the Blount test

invalidation model, namely the one that Blount himself sug-
gested. It is based on a lookup table that is calculated in advance
and which contains the solution for all situations. Although this
is the fastest solution that can be created, it has no practical sig-
nificance because of its memory consumption and preprocessing
work. Consequently, we can compare our algorithms only to so-
lutions that are based on the traditional test invalidation models,
and to our previously developed P-graph based algorithm.

During simulations the well-known algorithms taken from the
literature were the LDA1 algorithm of Somani and Agarwal [19,
20], the Dahbura, Sabnani and King (DSK) algorithm [8] and
the limited multiplication of inference matrix (LMIM) algorithm
developed by Bartha and Selenyi [4, 5] from the area of local
information diagnosis.

We have examined three situation:

• expectations of other algorithms are met, i.e. PMC test inval-
idation is used (good testers are perfect, faulty testers can say
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Fig. 4. Complexity related properties of gradient based algorithms

anything with equal probability)

• expectations of other algorithms are nearly met, i.e. PMC-
like test invalidation is used (good testers are perfect, faulty
testers can say anything but with different probabilities)

• test coverage is less than 100% (i.e. good testers are not per-
fect)
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Tab. 8. Accuracy related properties of gradient
based algorithms

(a) Average number of misdiagnosed processors relative to system size

mavg[%] fault probability [%]

algorithm 10 20 30 40 50 60 70 80 90 100

bag 0 0.01 0.07 0.58 2.3 6.34 14.4 22.3 30.8 35.6

mrar10 0.03 0.8 2.5 4.92 6.77 8.77 9.23 9.46 9.36 10.9

mrar100 0 0 0.03 0.41 1.44 2.88 4.13 5.46 7.21 8.44

mrag,r9 0 0.01 0.05 0.49 1.96 5.52 8.64 9.91 9.86 11.1

mrag,r99 0 0 0.01 0.17 0.85 2.38 4.39 5.85 7.15 8.27

Ha2 0 0.16 2.02 10.18 17.16

Ha3 0 0.1 1.2 5.81 10.17

(b) Rate of rounds containing misdiagnosed processors

mn[%] fault probability [%]

algorithm 10 20 30 40 50 60 70 80 90 100

bag 0 0.4 3 19.6 55 86.4 99 100 100 100

mrar10 0.4 10.2 35 67.4 86 95.2 98.6 100 99.8 100

mrar100 0 0 2 15.4 42.6 71.2 89.8 96.8 99.8 100

mrag,r9 0 0.6 3 15.4 46.4 83.8 98.4 99.8 99.8 100

mrag,r99 0 0.2 1 9.6 33.6 67.6 90.2 98 99.8 100

Ha2 0.4 8.8 58.2 98.8 100

Ha3 0 6.8 48.4 96.4 99.8

5.2.1 Parameters

Size of mesh: 10 × 10
Number of tested neighborys : 4
Fault probability: 0, 1−0, 2−0, 3− . . .−0, 9−1

Test invalidation:

pa0 = 1 1 1
pb0 = 0 0 0.2
pc0 = 0.5 0.9 0.5
pd0 = 0.5 0.1 0.5

Number of simulation rounds: 500
Algorithm: LMIM, DSK, LDA1, P-graph,

mrag,r99

5.2.2 Discussion
The results when PMC test invalidation is assumed are shown

on Fig. 5. It is trivial that P-graph based algorithm provides bet-
ter results, because it determines the optimal diagnosis using the
Blount test invalidation model. But it can be seen that gradient
based algorithms can provide nearly the same results, but the
complexity of it is about O

(
n2)-O

(
n3) (in later case the run-

number is directly proportional to the system size) in contrast
to the worst-case exponential complexity of the P-graph based
algorithm.

The results on Fig. 6 and 7 and other performed simulations
showed that in most cases other algorithms could handle the
non-standard situations, too, but the diagnostic accuracy of these
changed very differently in different situations. The diagnostic
accuracy was varying in case of the gradient based algorithm,
too, but it provided the best results in every situation.
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6 Conclusions
In this paper a new family of solution algorithms, called gra-

dient based algorithms are presented that provide system level
diagnosis in multiprocessor systems. The novelty of the algo-
rithms is that it approaches the problem from a more general
base than traditional algorithms, namely it uses the Blount test
invalidation model that describes the behavior of the testing pro-
cess with probabilities. The base algorithm differs from our pre-
vious P-graph based algorithm in that it is very fast, though on
the other hand it only approximates the maximum likelihood di-
agnosis even if it provides a good approximation.

The idea of the base algorithm is that it takes an initial fault
pattern and examines the change in the likelihood if the state of a
unit is changed in the pattern. It selects the maximal likelihood-
delta and performs the corresponding state-change. This process
is iterated till the delta is greater than 1, i.e. till the likelihood
of the actual fault pattern can be increased with a single state-
change.

Two extensions of the algorithm are also presented. The first
tries to increase the likelihood with multiple state-changes in the
actual fault pattern. Its accuracy tends to the optimal if cardinal-
ity of the multiple state-changes tends to the system size, but
its complexity meanwhile tends to the exponential. The second
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Fig. 7. Diagnostic accuracy of the different algorithms if fault coverage of
tests is 80%

extension is a quite straightforward one: the base algorithm has
to be run multiple times started from random initial fault pat-
terns and the best should be chosen from the set of resulted fault
patterns that have locally maximum likelihoods. According to
simulations with this second extension the optimal solution can
be approximated quite well.

It was also demonstrated how the fault probability should be
inserted into the calculations in order to determine the maximum
a posteriori diagnosis.

A further remarkable strength of the algorithms is that these
can be applied not only in installed systems, but also in wafer
scale diagnosis where the fault probability can be even around
or above 30-40%. The simulations performed and partially pre-
sented in the last section confirmed these good properties and
the usefulness of the developed algorithms.

The next step in our research is the elaboration of a new
version of the gradient based approximation algorithm that can
solve problems formalized with P-graph models.
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