
Ŕ periodica polytechnica

Electrical Engineering
51/1-2 (2007) 57–64

doi: 10.3311/pp.ee.2007-1-2.06
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Throughput analysis of Scalable TCP
congestion control
Mohamed Tekala / Róbert Szabó

Received 2006-05-19

Abstract
Scalable TCP (STCP) has been proposed a congestion con-

trol algorithm for high speed networks. We present a mathe-
matical analysis of STCP’s congestion window through the slow
start and the congestion avoidance phases. We analyse the evo-
lution of congestion windows for single and multiple flows and
for DropTail queues with and without random loss. We derive
throughput formulas for the different setups and reveal the in-
herent unfairness between different round trip times flows. Our
mathematical analysis is compared to state-of-the-art network
simulator (ns) results, which verifies our model’s accuracy. With
our analysis we want to adaptively control STCP’s fixed param-
eters in order to overcome the fairness problems. These exper-
iments are work in progress and will be presented in a sequel
paper.

Keywords
Scalable TCP analysis · throughput · TCP fairness

Mohamed Tekala

Department of Telecommunications and Media Informatics, BME, H-1117 Bu-
dapest Magyar Tudósok krt. 2., Hungary
e-mail: tekala@qosip.tmit.bme.hu

Róbert Szabó

Department of Telecommunications and Media Informatics, BME, H-1117 Bu-
dapest Magyar Tudósok krt. 2., Hungary
e-mail: szabo@tmit.bme.hu

1 Introduction
Transmission Control Protocol (TCP) is a reliable and widely

used internet transport protocol. Well known examples of its ap-
plication include the Hyper Text Transfer Protocol (HTTP) and
the File Transfer Protocol (FTP), both of which are based on
TCP. Communication networks often experience periods where
their offered traffic exceeds their available transmission capac-
ity; during such periods, the network is said to be congested.
Congestion control [6] algorithms have been introduced into
TCP to relieve the problem of network collapse during these
periods. Such algorithms attempt to share network resources
between flows during periods of congestion, generally leading
to similar throughputs for flows with similar round trip times.

The basic TCP flow control algorithm uses a sliding window
and end-to-end acknowledgments to provide reliable data trans-
fer across a network. TCP congestion management is gener-
ally implemented in two phases: i) slow-start and i i) congestion
avoidance. This breakdown allows TCP to increase the over-
all data transmission rate rapidly without overwhelming the net-
work. In particular, TCP uses the congestion window variable
(W) to describe the maximum number of unacknowledged bytes
present in the network. The receiver also advertises to the sender
a receive window (rwnd), which is the size of the socket receive
buffer available for this connection. The receive window allows
the receiving application to exert some control over the flow.

The lesser of W and rwnd determines the maximum number
of packets that can be present in the network waiting for ac-
knowledgments. The congestion window W provides flow con-
trol during periods in which the network is congested. Packet
loss is detected either through the time-out of an unacknowl-
edged packet, the receipt of several duplicate acknowledgments,
or through selective acknowledgment (SACK) reports [12] sent
by the receiver. Both packet loss and explicit congestion notifi-
cation (ECN) are taken as evidence of congestion [13]. A TCP
sender updates its congestion window whenever it receives an
acknowledgment of received packets, as well as on detection of
congestion. The performance of a TCP connection is dependent
on the network bandwidth, the round trip time and the packet
loss.

Throughput analysis of Scalable TCP congestion control 572007 51 1-2

http://www.pp.bme.hu/ee

There has been much research on improving the performance
of TCP in situations where the product of network bandwidth
and delay is high (see related works in [5, 6, 8–10]).

Scalable TCP (STCP) [10] is one result of this work. STCP
is a simple sender-side extension to TCP; specially designed
for use in high-speed, wide-area links. It updates the conges-
tion window using fixed increase/decrease parameters. Unfortu-
nately, under this protocol heterogeneous flows (i.e., flows with
different round trip times) sharing the same bottleneck link will
not receive equal portions of the available bandwidth [14].

The goal of this work is to obtain a detailed understanding
of the performance of Scalable TCP over asymmetric networks.
We conducted a mathematical analysis of the behaviour of Scal-
able TCP for a single flow and multiple flows competing on bot-
tleneck link, where both synchronous as well as asynchronous
losses are considered. Our analysis of Scalable TCP shows that
the throughput of connections is inversely proportional to its
round trip time (RTT). This behaviour is the source of the Scal-
able TCP unfairness problem. Finally, a set of network simula-
tions is implemented to verify our expressions.

The rest of the paper is organized as follows: Sec. 2 summa-
rizes the related works, and an introduction to STCP is provided
in Sec. 2.1. In Sec. 3 we present analytical expressions for the
performance of Scalable TCP in different environments. Sim-
ulation results of Sec. 4 verify our analytical analysis. Finally,
Sec. 5 concludes our work.

2 Related Works
Several TCP variants have recently been proposed. Analytical

studies of these protocols can be used to improve existing con-
gestion control algorithms and TCP implementations, as well
as to evaluate new techniques. One analytical study and simu-
lation of TCP (Tahoe and Reno) with no reverse path conges-
tion has been presented by Lakshman and Madhow [11]. These
authors studied the RTT unfairness of standard TCP in high
bandwidth-delay product networks, and reported that under a
DropTail queue system throughput is inversely proportional to
RTT. In [4], Firoiu and Borden also investigate the interaction
between TCP and active queue management (AQM) algorithms.

Scalable TCP [10], which is specifically designed for use in
networks with a high bandwidth-delay product, updates the con-
gestion window using fixed parameters.

Altman et al. have studied the window behaviour of Scal-
able TCP in the presence of Markovian window-independent
losses [1]. Another important research direction related to con-
gestion control protocol is the fairness issue, which arises when
multiple sources must share a common link. Chiu and Jain,
for example, have shown that multiplicative increase - multi-
plicative decrease (MIMD) algorithms (e.g., Scalable TCP) are
unfair in the presence of synchronous losses [3]. On the other
hand, Altman et al. have also studied MIMD congestion control
algorithms and have shown that fairness can be achieved by in-
troducing asynchronous losses [2]. Furthermore, they have also

investigated the difference in achievable throughput between ad-
ditive increase-multiplicative decrease (AIMD) sessions (e.g.,
NewReno) and MIMD sessions in the presence of synchronous
losses.

In a previous work [14], we studied the performance of Scal-
able TCP under different network environments and its fairness
in allocating bandwidth to connections with different RTTs. The
studies mentioned above have motivated us to model the be-
haviour of Scalable TCP mathematically to understand the rea-
sons behind the weakness of Scalable TCP.

2.1 Scalable TCP
Scalable TCP (STCP) involves a simple sender-side alteration

to the standard TCP congestion window update algorithm. It ro-
bustly improves performance in high-speed, wide-area networks
using traditional TCP receivers. Scalable TCP updates its con-
gestion window using fixed increase and decrease parameters.

The Scalable TCP window update algorithm, as defined
in [10], is divided into two phases.

Slow-start phase: in which the congestion window is increased
by one packet for each acknowledgment received:

W = W + 1 Ack; (1)

Congestion avoidance phase: If congestion has not been de-
tected in at least one round trip time, the window responds to
each acknowledgment received with the update

W = W + α, (2)

where α ∈ (0, 1) is a constant parameter. In the event of con-
gestion, the congestion window is multiplicatively decreased
as follows:

W = β · W, (3)

where β ∈ (0, 1) is also constant. Typical values of these
parameters are α = 0.01 and β = 0.875. Further details on
the Scalable TCP algorithm are available in [10].

3 Analytical Analysis
Our goal in analysing Scalable TCP is to later derive the func-

tions α(·) and β(·) that optimize throughput and fairness, in con-
trast to the approach of heuristically setting α and β to constant
values. In order to accomplish this, we first introduce our sys-
tem model, and then investigate single and multiple Scalable
TCP connection(s) with and without random losses.

3.1 System model
In our analysis we follow the system model presented by Lak-

shman and Madhow [11], but apply it to the multiplicative in-
crease - multiplicative decrease (MIMD) type of Scalable TCP
just described. We briefly list the assumptions of the system
model:

• Data sources are infinite; there are always sufficient data to
send packets of the maximum segment size (MSS);

Per. Pol. Elec. Eng.58 Mohamed Tekala / Róbert Szabó

• There is a single bottleneck, with a capacity of µ packets per
second and buffer size B (in packets). The bottleneck uses
FIFO queuing (DropTail) unless otherwise specified;

• Random loss is introduced in addition to buffer overflow;

• The round trip time (RTT) is defined as the sum of two parts.
First is the fixed (propagation) delay T , which includes all
fixed delays of processing, transmission, and propagation. A
variable delay denoted D(t) is also introduced to represent
the random queuing delay (service time). The total RTT is
thus T + D(t), or Ti + D(t) for the i th connection when the
distinction is necessary;

• Each connection uses a window-based flow control protocol.
Wi (t) denotes the window size of the i th connection at time t ,
i.e., the maximum number of unacknowledged packets. The
maximum window size is W max

i = maxt Wi (t). This gives
the result W max

i = µTi + Bi when the bottleneck buffer is
fully occupied and there are µTi packets in flight and Bi pack-
ets in the buffer.

Scalable TCP, just like most other TCPs, evolves in two dis-
tinct phases: i) a “slow start” phase, which begins at W = 1
and continues either until W exceeds an initially chosen value
of the threshold ssthresh or until packet loss occurs; and ii) a
congestion avoidance phase where the window increases more
slowly until packet loss occurs. If packets are lost, then a recov-
ery method is invoked where the congestion window is reduced
to βW max and the threshold is reset to ssthresh = W max/2.
We analyse the throughput and fairness of such Scalable TCP
connections both with and without random packet loss.

3.2 STCP without random loss
In this scenario the only source of loss is buffer overflow,

which happens when the bottleneck link has been fully utilized.
The scenario analysed incorporates both of the phases described
above (see Fig. 1).

C=ssthresh

W

2C

B*W

Initial
ssthresh

Time [sec]

S
lo

w
-s

ta
rt

tss tc tl

Tl

S
lo

w
-s

ta
rt

to

C
on

ge
st

io
n

av
oi

da
nc

e
lin

ea
r

in
cr

ea
se

C
on

ge
st

io
n

av
oi

da
nc

e
lin

ea
r

in
cr

ea
se

Congestion avoidance
exponential increase

Figure 1:W growth as a function of time

3.2.1 Slow-start phase

In the traditional TCP slow-start phase, the congestion window (W) is increased by one maximum
size segment (MSS) for every received acknowledgment. Thismethod basically doublesW every
RTT cycle (T), resulting in very rapid increases for large bandwidth-delay product (BDP) net-
works. On the one hand this approach is favorable, as it quickly utilizes the available bandwidth.
If not stopped before overflow, however, then thousands of packets can be dropped in a single RTT
– resulting in severe congestion, serious retransmissions, and timeouts. In a recent work by Sally
Floyd, a limited slow-start (LSS) phase was proposed that places an upper bound on the window
growth [5]. LetdW/dt denote the rate of window growth with respect to time,dW/da the window
growth per arriving acknowledgment, andda/dt the rate at which acknowledgments are arriving.
A multiplicative increase phase, whereW = W + α for each acknowledgment, can be described
by the rates

dW/da = α (4)

and
da

dt
=

{

W/T when W ≤ C
µ when W > C

, (5)

whereC = µT is the pipe size (capacity) of the connection.
In slow-start phase, for reasonable buffers sizesssthresh is less thanC. In generalB = γµT ,

whereγ = B/(µT) is the normalized buffer size. Ifγ = 1 then the buffer is set to the BDP of the
network. In large BDP networks, we haveγ ≤ 1 in most cases. Whenγ ≤ 1, settingssthresh
to half the congestion window ensures thatda/dt = W/T . Combining Eq. (4) with Eq. (5) and
integrating the rsult fromt = 0 to t yields

W (t) = exp(α
t

T
), (6)

whereα = 1 (for traditional TCP slow-start phase). If we denote byWss the initially chosen value
of ssthresh, then we can calculate the timetss required for the congestion window to attain this
level:

tss = T ln Wss. (7)

Fig. 1. The growth of W as a function of time

3.2.1 Slow-start phase
In the traditional TCP slow-start phase, the congestion win-

dow (W) is increased by one maximum size segment (MSS) for
every received acknowledgment. This method basically dou-
bles W every RTT cycle (T), resulting in very rapid increases
for large bandwidth-delay product (BDP) networks. On the one
hand this approach is favourable, as it quickly utilizes the avail-
able bandwidth. If not stopped before overflow, however, then
thousands of packets can be dropped in a single RTT – resulting
in severe congestion, serious retransmissions, and timeouts. In a
recent work by Sally Floyd, a limited slow-start (LSS) phase was
proposed that places an upper bound on the window growth [5].
Let dW/dt denote the rate of window growth with respect to
time, dW/da the window growth per arriving acknowledgment,
and da/dt the rate at which acknowledgments are arriving. A
multiplicative increase phase, where W = W + α for each ac-
knowledgment, can be described by the rates

dW/da = α (4)

and
da
dt

=

{
W/T when W ≤ C
µ when W > C

, (5)

where C = µT is the pipe size (capacity) of the connection.
In slow-start phase, for reasonable buffers sizes ssthresh is

less than C . In general B = γµT , where γ = B/(µT) is the
normalized buffer size. If γ = 1 then the buffer is set to the BDP
of the network. In large BDP networks, we have γ ≤ 1 in most
cases. When γ ≤ 1, setting ssthresh to half the congestion
window ensures that da/dt = W/T . Combining Eq. (4) with
Eq. (5) and integrating the result from t = 0 to t yields

W (t) = exp(α
t
T

), (6)

where α = 1 (for traditional TCP slow-start phase). If we denote
the initially chosen value of ssthresh by Wss , then we can cal-
culate the time tss required for the congestion window to attain
this level:

tss = T ln Wss . (7)

To calculate the number of sent packets n(t), one must integrate
the instantaneous rate – which is best approximated by the rate
of acknowledgments given in Eq. (5). In our case α = 1, so
where W ≤ C this yields

nss = n(tss) = W (tss), (8)

and the TCP throughput is thus nss/tss .

3.2.2 Congestion avoidance phase
In Scalable TCP the congestion avoidance phase is very sim-

ilar to the slow-start phase; in Kelly’s work [10], however, the α

parameter is fixed to 0.01. For the purposes of our analysis, this
phase is further divided into an non-congested phase (W ≤ C)
and an accumulating backlog phase (W > C).

Throughput analysis of Scalable TCP congestion control 592007 51 1-2

Non-congested phase (W ≤ C):

For the non-congested phase RT T ≡ T . Following Eqs. (4) and
(5), defined in the slow-start phase, the window function evolves
as follows:

W (t) = W (tss)eα t−tss
T ∀t : tC > t ≥ tss, (9)

where tc is defined as W (tc) = C (see Fig. 1).
The length of this period is therefore

τc = tc − tss =
T
α

ln
(C

ssthresh

)
. (10)

Backlog accumulation phase (W > C):

When W (t) > C , Eq. (5) uses µ as the rate of acknowledge-
ments. We thus have λ ≡ µ, where λ is the achieved through-
put. This will lead to a linear increase of the congestion window
until packet loss occurs (Fig. 1), after which

W (t) = C + αµt, ∀t : tl > t ≥ tc. (11)

We define tl as the value of the congestion window when the
first loss happens; i.e., W max

= W (tl). The backlog accumu-
lation time, from the start of this phase to the first packet drop
(recall that the bottleneck uses DropTail FIFO queuing), can be
expressed as

τl =
W max

− C
αµ

. (12)

3.2.3 Buffer overflow
At tl in Fig. 1, some packet drops must occur. When the

sender receives reports of packet loss, it decreases the current
congestion window to W = βW max and continues with the
congestion avoidance phase. Let W max now denote the value
of the congestion window before this reduction takes place. If
B ≥ (1−β)W max, then the buffer is never empty. The flow con-
tinues to fully utilize the bottleneck, and thus maintains a high
throughput.

3.2.4 Multiple connections
When multiple flows are present, let the index i denote a par-

ticular flow. Suppose that in steady-state operation synchronized
losses occur for all flows with a period of τl . That is, every τl

seconds increase the congestion windows until the bottleneck’s
buffer is full. Since the losses are assumed to occur simultane-
ously (due to the DropTail mechanism), the period τl must be
the same for all competing connections, even those with differ-
ent RTTs (Fig. 2).

Let W max
i denote the maximum congestion window of flow

i . With synchronized losses each flow reduces its congestion
window to Wi = βW max

i at the same time. The bottleneck link,
however, is still fully utilized at this point (see Sec. 3.2.3). Dur-
ing the steady state of a congestion avoidance phase (see Fig. 1),
the congestion window of flow i increases at the linear rate α re-
sulting in the trigonometric formula:

tan(α) =
W max(1 − β)

τl
. (13)

3.2.4 Multiple connections

When multiple flows are present, let the indexi denote a particular flow. Suppose that in steady-
state operation synchronized losses occur for all flows witha period ofτl. That is, everyτl seconds
the congestion windows increase until the bottleneck’s buffer is full. Since the losses are assumed
to occur simultaneously (due to the DropTail mechanism), the periodτl must be the same for all
competing connections, even those with different RTTs (Fig.2).

0

1000

2000

3000

4000

5000

6000

0 4 8 12 16
Simulation time [Sec]

W
 [
P
a
c
k
e
ts

]

W of STCP (T=30ms)

W of STCP (T=56ms)

W of STCP (T=82ms)

Figure 2: Window growth for three competing STCP flows (µ=1Gbps,Tbase=30msec) experiencing
synchronized losses with periodτl.

Let Wmax
i denote the maximum congestion window of flowi. With synchronized losses each

flow reduces its congestion window toWi = βWmax
i at the same time. The bottleneck link,

however, is still fully utilized at this point (see Sec. 3.2.3). During the steady state of a congestion
avoidance phase (see Fig. 1), the congestion window of flowi increases at the linear rateα resulting
in the trigonometric formula:

tan(α) =
W max(1 − β)

τl

. (13)

Turning this expression around so thatW max is the subject yields

W max =
τl tan(α)

(1 − β)
; (14)

hence, the average congestion window of flowi is

W avg =
τl · tan(α)(1 + β)

2(1 − β)
. (15)

The instantaneous throughput for flowi can be approximated using Little’s law:

λi(t) =
Wi(t)

Ti + Di(t)
, (16)

whereDi(t) is the instantaneous waiting time in the queue for a packet from connectioni. This

delay has an initial value ofβ
∑

W max

i
−C

µ
, and attains a maximum value ofB/µ when the buffer is

Fig. 2. Window growth for three competing STCP flows (µ=1Gbps,
Tbase=30msec) experiencing synchronized losses with period τl .

Turning this expression around so that W max is the subject yields

W max
=

τl tan(α)

(1 − β)
; (14)

hence, the average congestion window of flow i is

W avg
=

τl · tan(α)(1 + β)

2(1 − β)
. (15)

The instantaneous throughput for flow i can be approximated
using Little’s law:

λi (t) =
Wi (t)

Ti + Di (t)
, (16)

where Di (t) is the instantaneous waiting time in the queue for
a packet from connection i . This delay has an initial value of
β

∑
W max

i −C
µ , and attains a maximum value of B/µ when the

buffer is full. At any given instant, the queuing delay Di (t) can
be taken as a good measure of the average delay. It is also as-
sumed that the average queuing delays Di are the same for all
connections, where

D =
β

∑
W max

i − C + B
2µ

. (17)

Combining Eqs. (15) and (16) yields the following formula
for the average steady-state throughput (λi) of flow i :

λi =
τl tan(α)(1 + β)

2(Ti + D)(1 − β)
. (18)

It can be seen that the throughput is proportional to the conges-
tion window increase parameter α, monotonic in the decrease
parameter β, and inversely proportional to the average round
trip time.

3.3 STCP with random loss
3.3.1 Single flow
TCP treats the loss of packets as a signal of network conges-

tion and reduces its window when this occurs. Losses not due
to congestion are mostly caused by transmission errors. If we
assume that the probability for a packet to be lost due to link

Per. Pol. Elec. Eng.60 Mohamed Tekala / Róbert Szabó

errors is q , then on average 1/q packets are successfully trans-
mitted before a loss occurs. More formally, we can write

1
q

=

tl+τl∫
tl

λ(t)dt. (19)

The limits of the integral are tl , the last time that a loss occurred,
and tl + τl , the expected time of the next loss. If we assume that
W (tl) > C ∀ t > tl , then according to Eq. (5) we have

1
q

=

tl+τl∫
tl

µdt. (20)

Hence, the expected duration of the next cycle can be expressed
as Eq. (21),

τl =
1

qµ
. (21)

According to Eq. (11), the congestion window increase over this
interval will be given by 1Wl = α µ τl . This allows us to note
the equivalence

Wl = βWl + αµτl , (22)

assuming that βWl +αµτl −µT < B. Combining Eq. (21) with
Eq. (22) yields the relation

Wl =
α

q(1 − β)
. (23)

The maximum of the congestion window is again propor-
tional to the increase parameter α and monotonic in the decrease
parameter β; it is also inversely proportional to the loss proba-
bility q. Hence, the average throughput of the flow is given by

λ =
α(1 + β)

2q(T + D)(1 − β)
. (24)

4 Numerical Results
For our numerical analysis we used a dumbbell network with

one bottleneck link, as shown in Fig. 3. In all the scenar-
ios described below, the capacity of the shared link was either
100 Mbps, 1 Gbps or 2.4 Gbps. Link delays vary from scenario
to scenario. The two routers use FIFO queuing and DropTail
buffer management. Their buffers were set to the bandwidth-
delay product of the network. The bandwidth between hosts and
their routers was 10 Gbps, and the link delay between hosts and
their routers was 1 ms. The packet size was set to 1,500 bytes,
and the maximum window size was large enough (83,000 pack-
ets) to saturate the bottleneck. We used TCP SACK [12] for
both clients and servers. In addition to the TCP agents we used
an FTP application to transmit large datasets. All FTPs begin
transmitting simultaneously (at time zero), and the simulation
ran for a total of 100 sec unless indicated otherwise. The indi-
vidual traffic mixing scenarios are discussed in detail below.

The maximum of the congestion window is again proportional to the increase parameterα and
monotonic in the decrease parameterβ; it is also inversely proportional to the loss probabilityq.
Hence,the average throughput of the flow is given by

λ =
α(1 + β)

2q(T + D)(1 − β)
. (24)

4 Numerical Results

For our numerical analysis we used a dumbbell network with one bottleneck link, as shown
in Fig. 3. In all the scenarios described below, the capacityof the shared link is either 100 Mbps,
1 Gbps or 2.4 Gbps. Link delays vary from scenario to scenario. The two routers use FIFO queu-
ing and DropTail buffer management. Their buffers were set to the bandwidth-delay product of the
network. The bandwidth between hosts and their routers was 10 Gbps, and the link delay between
hosts and their routers was 1 ms. The packet size was set to 1,500 bytes, and the maximum window
size was large enough (83,000 packets) to saturate the bottleneck. We used TCP SACK [12] for
both clients and servers. In addition to the TCP agents we used an FTP application to transmit large
datasets. All FTPs begin transmitting simultaneously (at time zero), and the simulation ran for a
total of 100 sec unless indicated otherwise. The individualtraffic mixing scenarios are discussed
in detail below.

Router_0 Router_1

Source_1

Source_n

Receiver_1

Receiver_n

Bottleneck link [C]

Figure 3: Network topology with a single bottleneck link

4.1 Congestion window behavior

To verify the two regimes of the window growth expressions presented in Sec. 3.2, a set of simula-
tions were carried out for different RTT connections and 1 Gbps. Fig. 4 shows congestion window
plot of 100 ms round trip time for both analytical and numerical analysis. The first regime of a con-
gestion avoidance phase is exponentially increased followed by the linear increase regime. When
loss occurs, the congestion window is reduced toβW max, then the window starts increase linearlly
until it reachesW max, this takesτl period, in eachτl period the congestion windows increase until
the bottleneck link’s buffer is full. Due to this oscillation, steady state case is obtained.

Fig. 3. Network topology with a single bottleneck link

4.1 Congestion window behaviour
To verify the two regimes of the window growth expressions

presented in Sec. 3.2, a set of simulations were carried out for
different RTT connections and 1 Gbps. Fig. 4 shows congestion
window plot of 100 ms round trip time for both analytical and
numerical analysis. The first regime of a congestion avoidance
phase is exponentially increased followed by the linear increase
regime. When loss occurs, the congestion window is reduced to
βW max, then the window starts increase linearly until it reaches
W max, this takes τl period, in each τl period the congestion win-
dows increases until the bottleneck link’s buffer is full. Due to
this oscillation, steady state case is obtained.

0

3000

6000

9000

12000

15000

18000

0 20 40 60 80 100

Simulation time [Sec]

W
 [
P

a
c
k
e
ts

]

Numerical

Analytical (exponential growth)

Analytical (linear growth)

exponential to linear point

Figure 4: W of STCP flow with DropTail queue(µ = 1Gbps, RTT = 100ms)

4.2 Lossy link condition

According to our loss (link failure) model presented in Sec.3.3, any packet served at the forward
link may be lost with probabilityq, and such losses are independent. To focus on the effect of ran-
dom loss on the congestion window we execute a set of simulations with different RTTs andq loss
probabilities. We used the simulator’s error model to simulate losses in the bottleneck link. This
loss model was set to drop a packet with defined average drop rate. To observe the behavior of the
performance of STCP flows with different round trip time whensubjected to systemic losses. We
simulated two STCP flows competing on bottleneck link, the bottleneck bandwidth was 1 Gbps
and the buffer size was large enough not to have tail drops. Hence, the congestion window was
controlled by the introduced random loss instead of buffer overflow. Figure 5 shows the conges-
tion window plot for the two STCP flows when the round trip times were 30 ms and 56 ms for
flow_0 and flow_1 respectively. The probability of loss was 1.5e-4. The Figure nicely shows that
the numerical result coincides with Sec 3.3’s analysis. Figure 6 shows comparison between the
numerical throughput achieved by the simulation and the analytical analysis presented in Sec 3.3.
One can see that the two results are almost identical.

0

200

400

600

800

1000

1200

0 20 40 60 80 100
Simulation time [Sec]

W
 [
P
a
c
k
e
ts
]

Measured W of STCP (T=30ms)

Measured W of STCP (T=56ms)

Calculated W of STCP (q=1.5e-4)

Figure 5: W of two STCP flows under random loss (µ = 1Gbps, q = 1.5e − 4)

Fig. 4. W of STCP flow with DropTail queue(µ = 1Gbps, RT T = 100ms)

4.2 Lossy link condition
According to our loss (link failure) model presented in

Sec. 3.3, any packet served at the forward link may be lost with
probability q , and such losses are independent from each other.
To focus on the effect of random loss on the congestion win-
dow we execute a set of simulations with different RTTs and q
loss probabilities. We used the simulator’s error model to sim-
ulate losses in the bottleneck link. This loss model was set to
drop a packet with a defined average drop rate. To observe
the behaviour of the performance of STCP flows with differ-
ent round trip time when subjected to systemic losses, we sim-
ulated two STCP flows competing on bottleneck link, the bot-
tleneck bandwidth was 1 Gbps and the buffer size was large
enough not to have tail drops. Hence, the congestion window

Throughput analysis of Scalable TCP congestion control 612007 51 1-2

was controlled by the introduced random loss instead of buffer
overflow. Fig. 5 shows the congestion window plot for the two
STCP flows when the round trip times were 30 ms and 56 ms
for flow_0 and flow_1 respectively. The probability of loss was
1.5e-4. The Fig. 5 nicely shows that the numerical result coin-
cides with Sec 3.3’s analysis. Fig. 6 shows comparison between
the numerical throughput achieved by the simulation and the an-
alytical analysis presented in Sec 3.3. One can see that the two
results are almost identical.

0

3000

6000

9000

12000

15000

18000

0 20 40 60 80 100

Simulation time [Sec]

W
 [
P

a
c
k
e
ts

]

Numerical

Analytical (exponential growth)

Analytical (linear growth)

exponential to linear point

Figure 4: W of STCP flow with DropTail queue(µ = 1Gbps, RTT = 100ms)

4.2 Lossy link condition

According to our loss (link failure) model presented in Sec.3.3, any packet served at the forward
link may be lost with probabilityq, and such losses are independent. To focus on the effect of ran-
dom loss on the congestion window we execute a set of simulations with different RTTs andq loss
probabilities. We used the simulator’s error model to simulate losses in the bottleneck link. This
loss model was set to drop a packet with defined average drop rate. To observe the behavior of the
performance of STCP flows with different round trip time whensubjected to systemic losses. We
simulated two STCP flows competing on bottleneck link, the bottleneck bandwidth was 1 Gbps
and the buffer size was large enough not to have tail drops. Hence, the congestion window was
controlled by the introduced random loss instead of buffer overflow. Figure 5 shows the conges-
tion window plot for the two STCP flows when the round trip times were 30 ms and 56 ms for
flow_0 and flow_1 respectively. The probability of loss was 1.5e-4. The Figure nicely shows that
the numerical result coincides with Sec 3.3’s analysis. Figure 6 shows comparison between the
numerical throughput achieved by the simulation and the analytical analysis presented in Sec 3.3.
One can see that the two results are almost identical.

0

200

400

600

800

1000

1200

0 20 40 60 80 100
Simulation time [Sec]

W
 [
P
a
c
k
e
ts
]

Measured W of STCP (T=30ms)

Measured W of STCP (T=56ms)

Calculated W of STCP (q=1.5e-4)

Figure 5: W of two STCP flows under random loss (µ = 1Gbps, q = 1.5e − 4)
Fig. 5. W of two STCP flows under random loss (µ = 1Gbps, q = 1.5e−4)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100
Simulation time [Sec]

T
h
ro
u
g
h
p
u
t
[M
b
p
s
]

Measured STCP flow_0 (T=30ms)
Measured STCP flow_1 (T=56ms)
calculated STCP flow_0 (T=30ms)
Calculated STCP flow_1 (T=56ms)

Figure 6: Throughput of two STCP flow under random loss (µ = 1Gbps, q = 1.5e − 4)

4.3 Fairness

Fairness refers to the relative performance of several connections under the same TCP variant. To
provide a single numerical measure for the criterion, we useJain’s Fairness index [7]:

FairnessIndex =
(

n
∑

i=1

λi)
2

n
n
∑

i=1

λ2
i

, (25)

whereλi is the throughput of theith flow andn is the total number of flows.
We simulated the activity of multiple flows with varying RTT values on the network. The

RTTs were chosen according to the following formula1: for flow i, Ti = (i + 1)Tbase − 4i ms
(i = 0...n−1, wheren is the number of flows). Bothn andTbase were varied to provide 9 different
flow sets. Finally, we tested these scenarios under two typesof queue management: DropTail and
adaptive RED.

DropTail queue simply drops every packet that arrives at the buffer as long as the buffer is full.
Fig. 7 shows the congestion windows as a function of time for three competing Scalable
TCP flows. One can easily see that the connection with the highest round trip time gets
the smallest congestion window in this case. If one calculates the congestion window for
the DropTail case using the Eqs. (9) and (11) this coincides with numerical results and also
shown in Fig. 7. The window size and the round trip time together determine the achieved
throughput.

Fig. 8 reveals that in Scalable TCP when a bottleneck link is shared between different (RTT)
connections, the shortest RTT connection out-placed the others. It is important to notice that,
the figure nicely shows the numerical result coincides with Sec. 3.2.4’s analysis.

1without any specific reasons

Fig. 6. Throughput of two STCP flow under random loss (µ = 1Gbps, q =

1.5e − 4)

4.3 Fairness
Fairness refers to the relative performance of several connec-

tions under the same TCP variant. To provide a single numerical
measure for the criterion, we use Jain’s Fairness index [7]:

FairnessIndex =

(
n∑

i=1
λi)

2

n
n∑

i=1
λ2

i

, (25)

where λi is the throughput of the i th flow and n is the total num-
ber of flows.

We simulated the activity of multiple flows with varying RTT
values on the network. The RTTs were chosen according to the

following formula1: for flow i , Ti = (i + 1)Tbase − 4i ms (i =

0...n−1, where n is the number of flows). Both n and Tbase were
varied to provide 9 different flow sets. Finally, we tested these
scenarios under two types of queue management: DropTail and
adaptive RED.

DropTail queue simply drops every packet that arrives at the
buffer as long as the buffer is full. Fig. 7 shows the congestion
windows as a function of time for three competing Scalable
TCP flows. One can easily see that the connection with the
highest round trip time gets the smallest congestion window
in this case. If one calculates the congestion window for the
DropTail case using the Eqs. (9) and (11) this coincides with
numerical results also shown in Fig. 7. The window size and
the round trip time together determine the achieved through-
put.
Fig. 8 reveals that in Scalable TCP when a bottleneck link is
shared between different (RTT) connections, the shortest RTT
connection out-placed the others. It is important to notice that
the Fig. 7 nicely shows the numerical result coincides with
Sec. 3.2.4’s analysis.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50
Simulation time [Sec]

W
 [
P
a
c
k
e
ts

]

Measured W of STCP (T=30ms)

Measured W of STCP (T=56ms)

Measured W of STCP (T=82ms)

Calculated W of STCP (T=30ms)

Calculated W 0f STCP (T=56ms)

Calculated W of STCP (T=82ms)

Figure 7:W vs. t for three STCP flows under DropTail queuing (µ = 1Gbps, Tbase = 30msec)

0

200

400

600

800

1000

1200

0 10 20 30 40 50

Simulation time [Sec]

T
h
ro
u
g
h
p
u
t
[M

b
p
s
]

Analytical STCP flow (T=30ms)
Analytical STCP flow (T=56ms)
Analytical STCP flow (T=82ms)
Measured STCP flow (T=30ms)
Measured STCP flow (T=56ms)
Measured STCP flow (T=82ms)

Figure 8: Throughput of three STCP flows under DropTail queuing (µ = 1Gbps, Tbase = 30msec)

Fig. 7. W vs. t for three STCP flows under DropTail queuing (µ = 1Gbps,
Tbase = 30msec)

Table 1 shows the Jain’s Fairness Index for all the flow sets
and Tbase values simulated using DropTail queuing. It can
be seen that in any cases the Fairness Index in Scalable TCP
degrades when DropTail system is used whereas RED queue
system (see below) can acheive better share of bottleneck link
(see Table 2).

Tab. 1. Jain’s Fairness Index for STCP under DropTail queuing (µ =1Gbps)

RTT vs. Number of flows

Bandwidth 3 5 8

30ms 0.34 0.21 0.13

60ms 0.34 0.21 0.13

100ms 0.35 0.21 0.14

1without any specific reasons

Per. Pol. Elec. Eng.62 Mohamed Tekala / Róbert Szabó

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50
Simulation time [Sec]

W
 [
P
a
c
k
e
ts

]

Measured W of STCP (T=30ms)

Measured W of STCP (T=56ms)

Measured W of STCP (T=82ms)

Calculated W of STCP (T=30ms)

Calculated W 0f STCP (T=56ms)

Calculated W of STCP (T=82ms)

Figure 7:W vs. t for three STCP flows under DropTail queuing (µ = 1Gbps, Tbase = 30msec)

0

200

400

600

800

1000

1200

0 10 20 30 40 50

Simulation time [Sec]

T
h
ro
u
g
h
p
u
t
[M

b
p
s
]

Analytical STCP flow (T=30ms)
Analytical STCP flow (T=56ms)
Analytical STCP flow (T=82ms)
Measured STCP flow (T=30ms)
Measured STCP flow (T=56ms)
Measured STCP flow (T=82ms)

Figure 8: Throughput of three STCP flows under DropTail queuing (µ = 1Gbps, Tbase = 30msec)Fig. 8. Throughput of three STCP flows under DropTail queuing (µ =

1Gbps, Tbase = 30msec)

Adaptive RED queue is used to mitigate unfairness in high-
speed networks. This mechanism allows a router to control
congestion and keep network utilization high by dynamically
updating the random loss probability in the buffers. This
keeps the average queue size close to some target queue size.
In this scenario we use adaptive RED queue management on
the bottleneck link buffer. The scenarios simulated for this
method are identical to those described for DropTail queuing.
Fig. 9 shows typical behaviour of the congestion windows
for five competing flows. One can see that under adaptive
RED, connections with different RTTs achieve similar con-
gestion windows. Flows with identical congestion windows,
however, will have throughputs proportional to 1

RT T . Under
this scenario very different rates of throughput are achieved
(Fig.10).

RTT vs. Number of flows
Bandwidth 3 5 8

30ms 0.34 0.21 0.13
60ms 0.34 0.21 0.13
100ms 0.35 0.21 0.14

Table 1: Jain’s Fairness Index for STCP under DropTail queuing (µ = 1Gbps)

Table 1 shows the Jain’s Fairness Index for all the flow sets and Tbase values simulated using
DropTail queuing. It can be seen that in any cases the Fairness Index in Scalable TCP is
degrades when DropTail system is used whereas RED queue system (see below) can acheive
better share of bottleneck link (see table. 2).

Adaptive RED queue is used to mitigate unfairness in high-speed networks. Thismechanism
allows a router to control congestion and keep network utilization high by dynamically up-
dating the random loss probability in the buffers. This keeps the average queue size close to
some target queue size. In this scenario we use adaptive RED queue management on the bot-
tleneck link buffer. The scenarios simulated for this method are identical to those described
for DropTail queuing.

Fig. 9 shows typical behavior of the congestion windows for five competing flows. One can
see that under adaptive RED, connections with different RTTs achieve similar congestion
windows. Flows with identical congestion windows, however, will have throughputs propor-
tional to 1

RTT
. Under this scenario very different rates of throughput areachieved (Fig.10).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200
Simulation time [Sec]

W
 [
P
a
c
k
e
ts
]

W of STCP (T=30ms)
W of STCP (T=56ms)
W of STCP (T=82ms)
W of STCP (T=108ms)
W of STCP (T=134ms)

Figure 9:W vs. t for five STCP flows under adaptive RED queuing (µ = 1Gbps, Tbase = 30msec)

To further quantify the fairness of Scalable TCP flows. Table2 shows the Jain’s Fairness In-
dex for different number of flows andTbase values using adaptive RED queue. It can be seen
that in any cases the Fairness Index of different RTT connections is inversely proportional to
round trip time of the flows.

Fig. 9. W vs. t for five STCP flows under adaptive RED queuing (µ =

1Gbps, Tbase = 30msec)

To further quantify the fairness of Scalable TCP flows Table 2
shows the Jain’s Fairness Index for different number of flows
and Tbase values using adaptive RED queue. It can be seen
that in any cases the Fairness Index of different RTT connec-

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Simulation time [Sec]

T
h
ro
u
g
h
p
u
t
[M

b
p
s
]

STCP flow_0 (T=30ms)
STCP flow_1 (T=56ms)
STCP flow_2 (T=82ms)
STCP flow_3 (T=108ms)
STCP flow_4 (T=134ms)

Figure 10: Throughput of five STCP flows under adaptive RED queuing (µ = 1Gbps, Tbase =
30msec)

bandwidth vs. Number of flows
RTT 3 5 8
30ms 0.86 0.7 0.6
60ms 0.77 0.58 0.42
100ms 0.78 0.44 0.4

Table 2: Jain’s Fairness Index for STCP flows under adaptive RED (µ = 1Gbps)

5 Conclusion

In this work we have analyzed the behavior of the Scalable TCP(STCP) protocol, which is a
variant of the TCP standard, and is designed for high speed wide area networks. Our goal was to
understand and model the exact behavior of STCP in order for alater work to derive some adaptive
parameter setting mechanisms for the parametersα andβ. In order to accomplish this task, we have
analytically analyzed the STCP for slow start and congestion avoidance regimes and for DropTail
queues and random loss links. Our analysis verifies that STCPthroughput is inversely proportional
to the connection’s round trip time (RTT) and when multiple flows with different RTTs compete
for a single bottleneck link, the set up results in a highly unfair situation where basically the flow
with the shortest RTT suppresses all the others. This is alsotrue with random link losses. Our
analytical results are compared against some numerical results, where very exact matches between
the results can be found.

Besides, we have also shown that even thought different RTT based STCP flows can operate
with Random Early Drop (RED) buffer management regime, their overall fairness in throughput
remains poor. This encourages us to investigate the adaptive parameter settings for STCP, which
work is in progress now.

Fig. 10. Throughput of five STCP flows under adaptive RED queuing (µ =

1Gbps, Tbase = 30msec)

Tab. 2. Jain’s Fairness Index for STCP flows under adaptive RED (µ

=1Gbps)

bandwidth vs. Number of flows

RTT 3 5 8

30ms 0.86 0.7 0.6

60ms 0.77 0.58 0.42

100ms 0.78 0.44 0.4

tions is inversely proportional to round trip time of the flows.

5 Conclusion
In this work we have analysed the behaviour of the Scalable

TCP (STCP) protocol, which is a variant of the TCP standard,
and is designed for high speed wide area networks. Our goal
was to understand and model the exact behaviour of STCP in
order for a later work to derive some adaptive parameter setting
mechanisms for the parameters α and β. In order to accomplish
this task, we have analytically analysed the STCP for slow start
and congestion avoidance regimes and for DropTail queues and
random loss links. Our analysis verifies that STCP throughput is
inversely proportional to the connection’s round trip time (RTT)
and when multiple flows with different RTTs compete for a sin-
gle bottleneck link, the set up results in a highly unfair situation
where basically the flow with the shortest RTT suppresses all the
others. This is also true with random link losses. Our analytical
results are compared against some numerical results, where very
exact matches can be found between the results.

Besides, we have also shown that even thought different RTT
based STCP flows can operate with Random Early Drop (RED)
buffer management regime, their overall fairness in throughput
remains poor. This encourages us to investigate the adaptive
parameter settings for STCP, which work is in progress now.

Throughput analysis of Scalable TCP congestion control 632007 51 1-2

References
1 Altman E, Avrachenkov KE, Kherani AA, Prabhu BJ, Analysis of Scal-

able TCP in the presence of Markovian Losses, PFLDnet 2005 workshop,
2005 February.

2 , Fairness in MIMD Congestion Control Algorithms, IEEE Infocom
2005, Miami (2005 March).

3 Chiu D, Jain R, Analysis of the Increase/Decrease Algorithms for Conges-

tion Avoidance in Computer Networks, Computer Networks 17 (1989), no. 1,
1-14.

4 Firoiu V, Borden M, A study of active queue management for congestion

control, Proc. INFOCOM, 2000, pp. 1435-1444.
5 Floyd S, Limited slow-start for TCP with large congestion windows, Tech-

nical Report (Mar 2004). RFC 3742, IETF.
6 Jacobson V, Congestion Avoidance and Control, SIGCOMM 1988, confer-

ence (1988 aug).
7 Jain R, The art of computer systems performance analysis, New York,

QA76.9.E94J32 (1991).
8 Jin C, Wei DX, Steven H. Low, FAST TCP: motivation, architecture, algo-

rithms, performance, IEEE INFOCOM (2004).
9 Katabi D, Handley M, Rohrs C, Internet congestion control for high

bandwidth-delay product networks, ACM Sigcomm 2002 (August, 2002).
10 Kelly T, Scalable TCP: Improving Performance in Highspeed Wide Area

Networks, 2002, available at http://www-lce.eng.cam.ac.uk/~ctk21/
scalable/. submitted for publication.

11 Lakshman TV, Madhow, The performance of TCP/IP for networks with

high bandwidth-delay products and random loss, IEEE/ACM Transactions
on Networking 5 (July 1997), no. 3, 336-350.

12 Mathis M, Mahdavi J, Floyd S, Romanow A, TCP Selective Acknowledg-

ment Options, Technical Report (October 1996). IETF.
13 Ramakrishnan KG, Floyd S, A Proposal to add Explicit Congestion Noti-

fication (ECN) to IP (15 jan 1999), no. 2481, 25.
14 Tekala M, Szabó R, Evaluation of Scalable TCP, AICCSA-05, 3rd IEEE

conference in Egypt (2005 jan).

Per. Pol. Elec. Eng.64 Mohamed Tekala / Róbert Szabó

 http://www-lce.eng.cam.ac.uk/~ctk21/scalable/
 http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

	Introduction
	Related Works
	Scalable TCP

	Analytical Analysis
	System model
	STCP without random loss
	Slow-start phase
	Congestion avoidance phase
	Buffer overflow
	Multiple connections

	STCP with random loss
	Single flow

	Numerical Results
	Congestion window behaviour
	Lossy link condition
	Fairness

	Conclusion

