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Abstract
This paper presents the model, the design principles and

the prototype of a refactoring toolset for Erlang programs.
With this toolset one can incrementally carry out programmer-
guided meaning-preserving program transformations. Erlang is
a mostly dynamically typed language, and many of its seman-
tical rules are also dynamic. Therefore the main challenge in
this research is to ensure the safety of (the statically performed)
refactoring steps. The paper analyses the language constructs
of Erlang with respect to refactoring.

A novelty of the presented approach is that programs are rep-
resented, stored and manipulated in a relational database. This
feature makes it possible to express refactoring steps in a fairly
compact and comprehensible way.

The proposed software development environment with the in-
tegrated refactoring tool provides multiple editing modes. These
editing modes support changes ranging from fully controlled
(allowing only meaning-preserving transformations) to uncon-
trolled (editing program text freely). Transformations are per-
formed more safely and efficiently in an editing mode with
higher control.
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1 Introduction
The phrase “refactoring” stands for program transformations

that preserve the meaning of programs [11]. Such transforma-
tions are often applied in order to improve the quality of program
code: make it more readable, satisfy coding conventions, pre-
pare it for further development etc. Simple refactorings are used
by developers almost every day; they rename variables, intro-
duce new arguments to functions, or create new functions from
duplicated code. The object-oriented paradigm is especially
well suited for refactoring-supported programming. In this area
refactoring has already appeared in programming methodolo-
gies [4] and it is used heavily in the industry.

In old-fashioned programming environments, refactoring
steps have been applied manually by the programmer. This re-
quires the application of systematic changes on the program text,
which is hard to accomplish. It is also very error-prone, even
for simple transformations like renaming a variable. If we use
the standard search&replace function found in every text editor,
false replacements are likely to occur. Semantical analysis is re-
quired to correctly identify the occurrences of a variable, which
is not provided by a simple editor. Furthermore, the renaming
of a variable should be avoided if its new name conflicts with
another variable.

However, it is possible to perform most refactoring steps in an
automated way with an appropriate software tool—a tool that
is aware of the syntactic and semantical rules of the program-
ming language in use. Such tools exist for many programming
languages [10], and modern programming environments often
incorporate such capabilities [5, 8]. Refactoring in functional
languages is not really wide-spread yet, but there are many on-
going researches on the topic. For the functional programmer,
the only full-featured refactoring tool is HaRe [14], which pro-
vides refactoring capabilities for Haskell programs within the
editors Emacs and VIM. A prototype of a refactoring tool for
Clean is also available [17]. The work presented in this paper
has an approach similar to that of that prototype tool.

The goal of this paper is to describe the design highlights of
a refactoring tool for the functional programming language Er-
lang (and for the Erlang/OTP environment). The focus is on
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the method of extracting static semantical information from pro-
grams written in a rather dynamic language. This information is
the key for ensuring the safety of refactoring steps. A transfor-
mation is considered safe if it does not change the meaning of
the program. The refactoring tool should help the programmer
prevent unsafe transformations. The hardest part in designing
refactorings is to formulate the condition when a certain trans-
formation on a certain program is safe. When the programmer
requests a refactoring step to be performed on a program, the
refactoring tool has to check this condition. If the transformation
proves to be unsafe, the tool must refuse it, or offer “compensa-
tion” steps to make it safe. If the check succeeds, refactoring
can take place, but even in that case the tool might issue a warn-
ing message (or an interactive tool might ask for confirmation)
if the transformation were likely to reduce the quality (e.g. the
readability) of the code.

A novelty of the presented approach is that the strong dy-
namic nature of Erlang programs is handled by static analy-
sis, and that programs are represented, stored and manipulated
in a relational database. This feature makes it possible to ex-
press refactoring steps in a fairly compact and comprehensible
way. This paper describes a prototype of the designed refac-
toring tool. During the development of this prototype some
well-known refactoring steps were analysed and implemented,
namely renaming variables, renaming functions and reordering
function arguments. In the future a broad selection of refactor-
ing steps will be added into the refactoring tool.

2 Refactoring in Erlang
Erlang/OTP [2] is a functional programming language and

environment developed by Ericsson, designed for building con-
current and distributed fault-tolerant systems with soft real-time
characteristics (like telecommunication systems). The core Er-
lang language consists of simple functional constructs extended
with message passing to handle concurrency, and OTP is a set
of design principles and libraries that support building fault-
tolerant systems [1]. The language has a very strong dynamic
nature that partly comes from concurrency and partly from dy-
namic language features.

From the refactoring point of view, the most important char-
acteristic of a programming language is the extent of semantical
information available by static analysis. As Erlang is a func-
tional language, most language constructs can be analysed eas-
ily. Side effects are restricted to message passing and built-in
functions1, variables are assigned a value only once in their lifes,
and the code is organized into modules with explicit interface
definitions and static export and import lists. An unusual feature
(at least in a functional language) is that variables are not typed
statically, they can have a value of any data type, but even that
does not make the life of a refactor tool much harder.

1Built-in functions, or BIFs, are functions that are implemented in the run-
time system.

On the other hand, the remaining few constructs offer a real
challenge to static analysis. An example of this is matching cor-
responding message send and receive instructions. A destination
of a message can be a process ID or a registered name, which
is bound to function code at runtime. Data flow analysis might
help in discovering these relations, but it is a hard research topic
in itself.

Another kind of problem is the possibility of running dynam-
ically created code. The most prominent example of this is the
erl_eval standard module, which contains functions that eval-
uate Erlang code constructed at runtime. This functionality is
clearly out of the scope of a static refactoring tool, but there are
other constructs similar to this that are widely used and should
be covered, like the spawn function that starts the evaluation of
a function in a new process (and the function name and argu-
ments might be constructed at runtime), or the apply function
that calls a function (with the same runtime-related problems).
The normal function call syntax has some runtime features too:
variables are allowed instead of static module or function names.

It is very important to exactly define what part of the language
is covered by our refactoring tool. Due to the simple syntax and
the relatively small number of constructs of Erlang, full syntac-
tical coverage of the language is feasible, which is a key point
in real life usability. However, semantical coverage seems to be
achievable only to a lesser extent. A third aspect besides the
syntax and semantics of the core language is library coverage:
spawn and apply could be handled just like any other function
call, but special support for them seems useful. OTP libraries
fall in the same category.

In the following, we try to outline the extent of the language
features that we plan to support with the tool. As we have inves-
tigated three different refactorings in detail so far, various lan-
guage features are described through examples originating from
them.

2.1 Transformations on variables
One of the most simple refactorings is the rename variable

transformation. Its goal is obvious from the name, and it is one
of the refactorings that can be supported by a tool without re-
strictions. The only semantical information that is necessary for
it is the scope and visibility of the variables. The exact rules
for them are given in the form of input and output contexts for
every language construct [3], which is hard to follow and not
really helpful in defining the conditions of a refactoring, so we
have created a more suitable definition which is given below.

2.1.1 Rules for variable scoping
In Erlang, variables have a name (always beginning with a

capital letter or an underscore) and a value bound to them (which
never changes during the life of the variable). For our purposes,
we define the scope of a variable as a region of the program text
where the variable is bound to its name, and a variable is visible
in a region where its name can be used to refer to the variable.
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The scope of a variable is always limited to a function clause,
there are no global variables. Variables are created by the pattern
matching mechanism; the scope of a variable begins at the corre-
sponding pattern match, and extends to the end of the innermost
enclosing function clause or list comprehension expression. Pat-
tern matches are used in heads of function clauses (every for-
mal argument is a pattern match), heads of clauses in function
expressions, pattern matching expressions, case and receive
constructs and list comprehension expressions.

A variable is visible within its scope where none of the fol-
lowing limitations apply:

• A function expression creates a new scope for its variables.
When an existing variable name is used in one of the formal
arguments, it creates a new variable that shadows the existing
one.

• Variables created in a catch expression are unsafe to be used
outside that expression, so they are visible only inside the in-
nermost enclosing catch expression.

• Variables that are created inside a branch of a branching ex-
pression (those are: if, case and receive), but are not
bound to a value in every branch, are unsafe to be used outside
that expression, so they are not visible outside the expression.

• Variables created in the timeout expression of a receive con-
struct’s after branch, but are not bound in the body of that
branch, are not considered to be bound in that branch at all.

• Inside list comprehensions, every generator introduces a new
scope, so existing variable names bound in them refer to new
variables that shadow the existing ones.

2.1.2 Renaming a variable
The following are expected from a tool that changes the name

of a variable:

• modify every occurrence of the variable,

• do not modify anything else in the source (other variables
with the same name and other occurrences of the name are
left intact) and

• do not allow to use a new name that changes the way the pro-
gram works (especially, do not allow introduction of compi-
lation errors).

The scoping rules above exactly define which are the occur-
rences of a variable: every occurrence of the variable’s name
where the variable is visible. The definition ensures that no two
variables with the same name are visible at the same place, so
the first two requirements are fulfilled by this approach.

The third requirement can be violated by breaking the rule of
disjoint visibilities, that is, re-using an existing variable name
inside its scope. This situation can be detected easily, and the
tool can either deny to perform the transformation, or offer a

compensation step (viz. rename the existing variable with the
problematic name first) as illustrated in Fig. 1.

There are situations when renaming a variable does not
change the way the program works, but it does influence the
readability of the code—possibly in a negative way. Renaming
a variable can introduce shadowing, as illustrated in the exam-
ple in Fig. 2. The example makes use of the built-in function
length and the higher-order function filter from the standard
library module lists.

If L, the second argument of function multiplicity, is re-
named to X, or X, the argument of the local function expression
is renamed to L, then the argument of the local function shadows
the second argument of the enclosing function within the body
of the local function. Such renamings can derogate the readabil-
ity of the resulting code. Therefore a refactoring tool might want
to issue a warning to the programmer.

2.2 Refactoring functions
The next simple transformation is rename function, which

seems similar to rename variable, but different problems arise
when dealing with it. Function visibility is much simpler than
variable visibility: a named function is either exported, in this
case it is visible from every module, or not exported, and then
it is visible only in the defining module. There are no function
name hiding, embedded functions or any other kinds of compli-
cation. Here the real problem comes from the already mentioned
dynamic language constructs. While a variable can only be used
statically, a function name can be constructed dynamically, and
functions can be called using built-in functions.

2.2.1 Functions in Erlang
Functions are always defined in modules, and they are identi-

fied by three components: the module name, the function name
and the arity of the function. The module and function names are
so-called atoms, which are string-like data terms usually used as
labels throughout the code. Two functions with the same name
but different arities are permitted.

Static function calls use the name of the function and supply
the list of arguments to be passed. It is important to note that
the function name can be any expression that results in an atom;
usually the name is given explicitly, but it is possible to use vari-
ables or even other function calls to compute the name of the
function. When there is no function with the resulting name and
arity (the latter is computed from the length of the parameter
list), a runtime error is signalled. A compile time check is only
performed when the function call uses an explicit name; in this
case a call to a non-existing function results in a compilation
error.

Functions are exported using the export module attribute.
An export list contains function names together with arities (the
syntax is function/arity), and defines the interface of the
module. Outside the defining module an exported function can
be accessed by supplying the module name with the function
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Rename X to Y?

max(X,Y) ->

if

X<=Y -> Y;

X>=Y -> X

end.

→

Compensation

max(X,Z) ->

if

X<=Z -> Z;

X>=Z -> X

end.

→

X renamed to Y

max(Y,Z) ->

if

Y<=Z -> Z;

Y>=Z -> Y

end.

Fig. 1. The use of a compensation step when renaming variable X to Y

Count the occurrences of value V in list L

multiplicity(V,L) ->

length(lists:filter( fun (X) -> X==V end, L )).

Fig. 2. Example of variable shadowing: X can be renamed to L without semantical change, but it is misleading.

name (the syntax is module:function(args)). The module
name is an expression again, that must result in an atom. Mod-
ule names passed as parameters are used throughout the OTP to
access callback modules. Although OTP code contains a lot of
module names supplied as variables, this is not usual in normal
application code.

Another language feature is the import list, which makes it
possible to omit the module name from an external function call.
The importmodule attribute is interpreted at compile time (just
like export). It contains a module name and a list of function
names with arities.

There is one more possibility to call a function, using one of
the built-in functions that results in a function call. These BIFs
usually take three parameters: the module name, the function
name and the arguments as a list. The same problem arises with
the function and module names as with the function call expres-
sion, and there is a new one with the argument list: even when
the module and function names are explicitly given, the argu-
ment list can be created dynamically, and the length of the list
determines the arity of the function to be called. Built-in func-
tions like that are apply, spawn (and its many variants), and
erlang:hibernate.

Finally, there is one more construct that refers to a function: it
is called an implicit function expression. It requires an explicit
function name (or module and function name) and an arity, so
there is no problem with its static analysis.

2.2.2 Scope of function-related refactorings
Many of the function-related refactorings rely on finding ev-

ery place of call for a given function. Obviously, it is impossi-
ble to statically determine the place of every dynamic call, but
there are semi-dynamically constructed calls that are possible to
find. To establish the exact scope of the refactoring tool, here
we categorize the function-related constructs based on the level
of support for them.

Fully supported constructs. Static function calls with ex-
plicitly given function (or module and function) names and ar-
guments, implicit function expressions and members of import
and export lists are fully supported. Considering only these con-

structs, it is possible to determine the exact list of references to
any given function.

Constructs with limited support. Function calls using the
built-in functions mentioned above, when used with explicit
module and function names, can be found by static analysis,
and the only missing information is the function arity. In the
case of function renaming this can be handled depending on the
situation:

• When the function to be renamed has no variants with the
same name but different arities, the transformation can be car-
ried out without problem.

• When there are functions with the same name but different ar-
ities, renaming one of these functions will inevitably change
the semantics: calls to functions with different names can-
not be handled by one apply call. Our proposed solution is
to deny this kind of renaming, and provide a variation of the
refactoring that renames all of the functions with the same
name. This often meets a good programming style where
functions with the same name do the same thing, so they
should be renamed together.

• There is one special case, when the argument list is given as
a static list skeleton. This case is essentially the same as a
normal function call, it just needs a bit more work to be rec-
ognized.

For the second case, there is no generic solution that works
with every kind of refactoring. Usually this construct can be
recognized and an error message or a warning can be reported.

Unsupported cases with a possible solution. There may be
occurrences of function names in the program code that can
not be classified as a reference to the function (remember that
a function name is an atom which can be used in any role in
the code). A type checker may help to get more information
on which occurrence of an atom is used as a function name and
which is not; this should be the subject of further studies. Right
now we can only give a warning message on a possible occur-
rence of a function name in this case, because transformations
in this case possibly alter the semantics of the program.
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Inherently dynamic constructs. When a module or function
name is created at runtime, a static analyser cannot get useful in-
formation on which function will be called at that point. Exam-
ples for this are module and function names read from the user,
a file, or a database, and names that are passed as parameters or
messages (or constructed from such data). These constructs are
so hopeless to analyse that even a warning message is imprac-
tical for them (if the code contains one such construct, every
function-related transformation would give a warning that has
no usable information).

2.2.3 Transformations on function arguments
The last refactoring that we have investigated so far is called

reorder function arguments. It represents a class of transforma-
tions where we change the way a function is called. It is easy
to update a static function call according to this refactoring, but
what is the case with the more dynamic constructs? When a
built-in function is used for the function call and parameters are
passed in a dynamically created list, it seems hard to change the
order of the list members. The same applies to other refactorings
where the number, the structure or the order of the arguments are
modified.

Fortunately, we can solve this problem using functional fea-
tures of Erlang. These transformations can be described by func-
tions which operate on lists: in the case of reordering, for exam-
ple, the function should change the order of the list elements ac-
cording to the refactoring. Such a function can be constructed by
a so-called “explicit function expression”, which can be inserted
into the place of the function call, and can be applied to the list
that contains the arguments of the refactored function (see Fig.
3). The problem of different functions with different arities is
easily solved with this approach: the generated function expres-
sion uses pattern matching to decompose the argument list, and
this is done only on lists with appropriate length.

Reverse argument order

sum(A,B) -> A+B.

sum(A,B,C) -> A+B+C.

caller(Args) ->

apply(mod, sum, Args).

→

Result after compensation

sum(A,B) -> A+B.

sum(C,B,A) -> A+B+C.

caller(Args) -> apply(mod, sum,

(fun ([A,B,C])->[C,B,A];

(L)->L end) (Args) ).

Fig. 3. Reorder arguments of a function that is called semi-dynamically.

2.3 Properties of subexpressions
The next set of transformations that we investigate concerns

subexpressions. Such refactorings are generalization when a
subexpression of a function is replaced with an argument, merge
duplicated subexpressions when two or more instances of a
subexpression are replaced with a variable that stores the value
of the subexpression, and extract function when a subexpression
is substituted with a call to a new function that uses the subex-
pression as body.

This kind of refactoring, when subexpressions are moved
around in the code, has two main sources of problems. The first
is the possibility of having a side effect in a subexpression, and
the other is that variable visibilities usually change during such
a transformation. Fortunately, these problems can be detected
statically and can be compensated in many cases.

Side effects. Most of the language constructs do not have
any side effects, only message passing expressions and built-in
functions. BIFs that can be used in guard conditions are guaran-
teed to be side effect free. Functions that use only side effect free
constructs and calls to side effect free functions can be marked
as side effect free too. Using this technique, every expression
with a possible side effect can be tracked down.

When a subexpression has a possible side effect, it usually
cannot be moved without problems. It cannot be pre-calculated
and merged with other instances. Generally speaking, a vari-
able cannot replace an expression with side effects. However, in
some cases, it is feasible to incorporate the side effect in a func-
tion expression, and replace the original subexpression with the
invocation of this new function expression – this technique can
be used in generalization, like in Fig. 4.

Generalize function

store(D) ->

Id = last_id()+1,

put(Id, D).

use() ->

store(data).

→

Resulting code

store(D,F) ->

Id = F(),

put(Id, D).

use() -> store(data,

fun ()->last_id()+1 end).

Fig. 4. Generalization on a subexpression that has a side effect.

Variable bindings. There are two possible problems with
variables when we try to move a subexpression: variables bound
outside and used inside the expression, and variables bound in-
side and used outside the expression change their semantics
when the subexpression is placed in another context. These situ-
ations can be detected using the definition of scope and visibility
given in 2.1.1.

A subexpression depends on a variable used inside it when the
scope of the variable begins outside the subexpression. To pre-
serve the semantics of such a subexpression while moving it to
another context, the bindings must be maintained for every vari-
able the subexpression depends on. The natural way to do this
is to create a function using the variables as parameters and the
subexpression as body, as shown in Fig. 5. This approach works
with generalization too, but a function expression is generated
instead of a named function.

A much more problematic situation is when the subexpres-
sion to be moved contains a binding for a variable that is used
outside the subexpression. Such variable bindings are hard to
reconstruct; it seems natural to include the intended value of the

Refactoring Erlang programs 792007 51 3-4



Extract function

send(To,Msg) ->

To ! {tag, Msg}.
→

Resulting code

msg(Msg) -> {tag, Msg}.

send(To,Msg) -> To ! msg(Msg).

Fig. 5. Extract a subexpression that depends on a variable.

variable in the result of the subexpression, and use the return
value to maintain the binding, but this approach does not work
when the subexpression is used in a function composition. Fur-
thermore, to export a variable binding in such a way is quite
obscure; it seems more practical to deny the refactoring in this
case.

3 The refactoring tool
Traditionally programs are stored and maintained in textual

format—but even in this case they have got a certain structure
behind the scene. During project development programmers
work with a set of files stored in different directories of a filesys-
tem (or a network of filesystems) maintaining them via different
services of some “file manager programs”. Program transforma-
tions could be expressed and refactoring could be performed on
programs in a more straightforward way if one gave programs a
more sophisticated structure and provide a more sophisticated
“manager program”, which is able to handle the elements of
programs in a more disciplined way. An adequate tool for stor-
ing and maintaining information is a database manager. The
approach presented here—similarly to [7]—is to represent pro-
grams in relational databases in order to facilitate refactoring.

3.1 Refactoring using a database
The syntactic rules of a programming language describe how

to represent programs written in that language as (abstract syn-
tax) trees. An abstract syntax tree (AST) contains information
about the syntactical structure of the analysed program code.
The semantical rules of the programming language can be sup-
ported by the extension of ASTs with additional information.
For example, to rename a variable, one needs to find every oc-
currence of it. An approach that is based merely on ASTs might
be inefficient and hard to implement, because finding the occur-
rences of a variable requires the traversal of the AST. A more
helpful approach would be to store direct information about vari-
able occurrences. A possible way of accessing every occurrence
of a variable easily is to link these occurrences to a central point,
e.g. to the first occurrence in the AST. Our approach is to rep-
resent the resulting structure as a set of relations in a relational
database, and use SQL to manipulate it.

In the relational database representation, there are two kinds
of tables: tables that store the AST, and tables that store seman-
tical information. The syntax-related tables correspond to the
“node types” of the abstract syntax of Erlang as introduced in
the Erlang parser. Semantical information, such as scope and
visibility of functions and variables, is separated in an extensi-
ble group of tables. Adding a new feature to the refactoring tool
requires the implementation of an additional semantical analysis

and the construction of some tables storing the collected seman-
tical information. It is possible to store semantical information
of different levels of abstraction in the same database and to sup-
port both low-level and high-level transformations.

As an example consider the code in Fig 6. This is one clause
of a function that computes the greatest common divisor of two
numbers, the whole module and it’s AST is presented in Ap-
pendix A. Each non-leaf (non-terminal) node of the abstract syn-
tax tree is given a unique identifier. These identifiers are written
as subscripts in the code and in the figures (the AST of the code
in Fig. 6 is given in Figs. 10 and 11 in the Appendix).

The database representation of the AST is illustrated in
Fig. 6. The table names clause, name, infix_expr and
application refer to the corresponding syntactic categories.
Without addressing any further technical details, one can ob-
serve that each table relates parent nodes of the corresponding
type with their child nodes.2 In order to make information re-
trieval faster, an auxiliary table, node_type was introduced.
This table binds the identifier of each parent node to the table
corresponding to its type.

Semantical information about Erlang programs are stored
in tables such as var_visib and fun_visib. The table
var_visib stores visibility information on variables, namely
which occurrences of a variable name identify the same vari-
able. This table has columns that contain the identifier of a vari-
able occurrence and the identifier of that variable’s first occur-
rence. The var_visib table contains the following pairs re-
garding the code in Fig. 6: (15,15), (17,15), (24,15), (16,16),
(19,16), (26,16), and (28,16). The table fun_visib stores sim-
ilar information for function calls, and fun_def maintains the
arity and the defining clauses of functions.

The rename variable transformation is supported with a fur-
ther table, called forbidden_names, which describes names
that are not allowed to use for variables (and for functions). This
table contains the reserved words in Erlang, names of the built-
in functions, and also user-specified forbidden names.

Renaming a variable is performed in the following way. The
programmer selects the rename variable transformation and
specifies that the variable it line 4 at column 16 (which hap-
pens to be an occurrence of the first formal argument, N, of the
second alternative of function gcd) should be renamed to K. The
refactoring tool, using a table containing position information
of every node in the AST, makes sure that a variable occurs at
the given position: a variable occurrence identified with 17. The
var_visib table tells the tool that the first occurrence of the
concerned variable is identified with 15. Now assume that table
forbidden_names does not prohibit the use of K as a variable
name. Another table, containing information on the scope of
variables, helps the tool verify that the requested transforma-

2The price for the separation of tables containing syntactic information from
tables containing semantical information is an increased redundancy in the
database. For example, the names table stores the variable name for each oc-
currence of the same variable.
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information in the AST
database equivalent

table name record in that table

1st parameter of clause 30 is node 15 clause 30, 0, 1, 15

the name of variable 15 is N name 15, “N”

2nd parameter of clause 30 is node 16 clause 30, 0, 2, 16

clause 30 has a guard, node 22 clause 30, 1, 1, 22

the left and right operands and the operator of the

infix expression 20 are nodes 17, 19 and 18, re-

spectively

infix_expr 20, 17, 18, 19

the body of clause 30 is node 29 clause 30, 2, 1, 29

application 29 applies node 23 application 29, 0, 23

the content of atom 23 is gcd name 23, “gcd”

1st param. of application 29 is node 27 application 29, 1, 27

gcd30(N15, M16) when N17 >=18 M19 → gcd23(N24 −15 M26, M28);

Fig. 6. The source code and database representation of the example function clause.

Rename variable N to K

UPDATE names SET name=’K’ WHERE id IN

(SELECT occurrence FROM var_visib WHERE first_occurrence=15)

gcd30(K15, M16) when K17 >=18 M19 → gcd23(K24 −15 M26, M28);

Fig. 7. An SQL statement for renaming a variable and the resulting code

tion is indeed safe: there is no variable named K in the scope
(identified with 30) of variable 15 yet. Furthermore, there is no
nested scope within clause 30 that introduces a variable K, hence
no warning about shadowing variables should be issued by the
refactoring tool. The final step, namely the realization of the
transformation, and its result is illustrated in Fig. 7.

3.2 Design principles for the user interface
In order to provide a convenient environment to programmers,

a refactoring tool should be integrated with other software devel-
opment tools (editor, compiler, debugger, project manager etc.).
This section highlights an interesting aspect of how the integra-
tion of the Erlang refactoring tool with a programmers’ editor
will be achieved.

The refactoring tool will be interactive. It will be started
within the programmers’ editor. At startup it will analyse the
program code being edited, and will create a database from it—
or update an existing database with the modules that will have
been modified since the previous refactoring session.

When being active, the refactoring tool will support two dif-
ferent “editing modes”. In the first mode, the programmer can
choose from a set of predefined transformations. The parame-
ters to an initiated transformation will be provided interactively,
as well as further responses required by the tool (confirmation
to safe, but unfortunate transformations, selection of compen-
sation steps etc.). Editing the source code will be prohibited in

this mode: this eliminates the need for frequent re-parsing of
the code and rebuilding of the database. Hence a sequence of
refactoring steps can be performed efficiently in this mode.

In the second mode, editing the program code will be allowed,
but only in a restricted way. The goal of this editing mode is to
enable the incremental maintenance of the database describing
the program code. A set of activities (such as “insert a func-
tion”) will be available for the programmer, but all these editing
activities result in local changes of the AST, hence only a small
fraction of the program code need to be re-parsed.

3.3 The prototype tool
We have implemented a prototype of the Erlang refactoring

tool, supporting a limited set of transformations. The refactor-
ing tool is written in Erlang and SQL. The Erlang ODBC in-
terface is used to access a MySQL database server, which con-
tains the databases describing the refactored Erlang sources. The
front-end of the refactoring tool is built into Emacs [9], while the
back-end of the tool is connected to Emacs through Distel [6].

Distel extends Emacs Lisp with Erlang-style processes and
message passing, and the Erlang distribution protocol. It sup-
ports writing Emacs Lisp processes that communicate with Er-
lang processes in Erlang nodes, therefore it facilitates the devel-
opment of Emacs user-interfaces to Erlang programs.

For parsing Erlang source code “epp_dodger”, a modified ver-
sion of the standard Erlang parser (“epp”) is used, which skips
pre-processing of Erlang source files. Another necessary mod-
ification was to extend the scanner, “erl_scan”, to keep track
of precise column information. Processing of comments had to
be adjusted similarly by enhancing “erl_recomment”. Finally,
a technical problem related to the placement of pre- and post-
comments (an Erlang feature) into the AST had to be solved.
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4 Related work
Refactoring was first recognized as a distinct programming

technique of its own in Fowler’s refactoring bible [11] which
addressed a wide range of refactorings for object-oriented soft-
ware providing examples in Java. Most research activites in this
field focus on object-oriented environments, an exhaustive sur-
vey on the existing techniques and formalisms is [15].

Tool support for refactoring was first provided by the refac-
toring browser for Smalltalk [16]. Many tools are available
for Java, sometimes embedded into a development environment
(e.g. Eclipse [8], JFactor, IntelliJ Idea, Together-J etc.), and
some for C# (ReSharper, C# Refactory) and C++ (SlickEdit,
Ref++). These tools support various kinds of renamings, ex-
tracting or inlining code, and manipulating the class hierarchy.
There is a good summary of the available tools and a catalogue
of well-known refactorings in [10].

Refactoring in functional languages has received much less
attention. Haskell was the first functional language to gain tool
support for refactoring, and so far the Haskell Refactorer proto-
type [14] is the only functional refactorer software that is actu-
ally usable in practice. Refactoring functional programs using
database representation first appeared in [7] for the Clean lan-
guage, and a standalone prototype is available [17] from this
research.

Refactoring Erlang programs is a joint research with the Uni-
versity of Kent, building on experiences with Haskell and Clean.
While we are sharing ideas and experiences, they are inves-
tigating a completely different implementation approach using
traversals on annotated abstract syntax trees [13].

5 Conclusion
This paper analyses the Erlang programming language with

respect to refactoring. The investigation is based on the “re-
name variable”, the “rename function” and the “reorder func-
tion arguments” transformations. The main problem is to ex-
press static program transformations and statically computable
conditions for such transformations in a dynamic environment
like Erlang/OTP. The article introduces concepts like scoping
and visibility with static semantical rules instead of the dynamic
semantical rules found in the Erlang Reference Manual. It is
shown that there are many situations when static analysis is not
applicable, therefore a refactoring tool for Erlang must explic-
itly document which are the fully supported, partially supported,
and unsupported language constructs, and which constructs are
inherently hopeless to support.

The paper describes an approach to build a refactoring tool
based on a relational database. The abstract syntax tree of an Er-
lang program and all the semantical information extracted from
the program are represented as relations (tables) in the database.
This representation makes it possible to formulate refactorings
(both conditions and transformations) easily, at a high abstrac-
tion level, and implement them in SQL. Extending such a tool

with further semantical analysis and further refactorings is also
straightforward.

The design principles of the user interface of our refactoring
tool are explained. This user interface provides different edit-
ing modes with different levels of control on the program text.
An editing mode with higher level of control enables a more ef-
ficient execution of refactorings, because it ensures that after a
modification only a smaller fraction of the code has to be re-
parsed and re-analysed.

5.1 Future work
The three refactorings presented in detail here are simple, but

the concepts introduced by them provide deep analysis of Erlang
source code. We believe that more complex transformations like
“generalization” and “extract function” require the same analy-
sis, and although their implementation needs much more work,
the concepts introduced in the paper are sufficient for them. In
Fowler’s opinion a refactoring tool is “over the Rubicon” [10]
when it has complete support for “extract function”. Our short-
term goal is to reach this stage. On the longer term, we plan to
investigate transformations that require data flow analysis, like
“convert tuple to record” or transforming message passing into
standard library-based program design [12].

References
1 Armstrong J, Making reliable distributed systems in the presence of soft-

ware errors, The Royal Institute of Technology, Stockholm, Sweden, 2003.
2 Armstrong J., Virding R, Williams M, Wikstrom C, Concurrent Program-

ming in Erlang, Prentice Hall, 1996.
3 Barklund J, Virding R, Erlang Reference Manual, 1999. Available from

http://www.erlang.org/download/erl_spec47.ps.gz.
4 Beck K, Extreme Programming Explained, Addison-Wesley, 1999.
5 C# Refactory homepage, available at www.xtreme-simplicity.net/.
6 Distel: Distributed Emacs Lisp, available at http://fresh.homeunix.
net/~luke/distel/.

7 Diviánszky P, Szabó-Nacsa R, Horváth Z, Refactoring via Database

Representation, The Sixth International Conference on Applied Informatics
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A Abstract syntax trees
In the following, the source code and the ASTs of the module

used as an example in 3.1 is presented. The tree is split into
multiple parts for easier reading. The figures show the result of
the Erlang parser, extended with the database identifiers for the
non-leaf nodes written as subscripts.

Greatest Common Divisor

-module(gcd).

-export([gcd/2]).

gcd(N, N) ->

N;

gcd(N, M) when N >= M ->

gcd(N - M, M);

gcd(N, M) ->

gcd(N, M - N).

form_list42

attribute3

atom1

module

atom2

gcd

attribute9

atom4

export

list8

arity_qualifier7

atom5

gcd

integer6

2

function41

. . .

Fig. 8. The AST of gcd (Part 1)

function41

atom10

gcd

clause14

variable11

N

variable12

N

var13

N

clause30

. . .

clause40

. . .

Fig. 9. The AST of gcd (Part 2)
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clause30

variable15

N

variable16

M

disjunction22

conjunction21

infix_expr20

variable17

N

operator18

>=

variable19

M

application29

. . .

Fig. 10. The AST of gcd (Part 3)

application29

atom23

gcd

infix_expr27

variable24

N

operator25

-

variable26

M

variable28

M

Fig. 11. The AST of gcd (Part 4)

clause40

variable31

N

variable32

M

application39

atom33

gcd

variable34

N

infix_expr38

variable35

M

operator36

-

variable37

N

Fig. 12. The AST of gcd (Part 5)
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