
Ŕ periodica polytechnica

Electrical Engineering
51/3-4 (2007) 85–97

doi: 10.3311/pp.ee.2007-3-4.03
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Objects and polymorphism in system
programming languages: a new
approach
Ádám Balogh / Zoltán Csörnyei

Received 2007-10-03

Abstract
A low-level data structure always has a predefined represen-

tation which does not fit into an object of traditional object-
oriented languages, where explicit type tag denotes its dynamic
type. This is the main reason why the advanced features of
object-oriented programming cannot be fully used at the low-
est level. On the other hand, the hierarchy of low-level data
structures is very similar to class-trees, but instead of an explicit
tag-field the value of the object determines its dynamic type. An-
other peculiar requirement in system programming is that some
classes have to be polymorphic by-value with their ancestor:
objects must fit into the space of a superclass instance. In our
paper we show language constructs which enable the system
programmer to handle all data structures as objects, and exploit
the advantages of object-oriented programming even at the low-
est level. Our solution is based on Predicate Dispatching, but
adopted to the special needs of system programming. The tech-
niques we show also allow for some classes to be polymorphic
by-value with their super. We also describe how to implement
these features without losing modularity.

Keywords
System Programming · Low-level Programming · Object-

oriented Programmig · Inheritance · Polymorphism · Predicate
Classes · Predicate Dispatching.

Ádám Balogh

Department of Algorithms and their Applications, ELTE, Hungary
e-mail: bas@elte.hu,

Zoltán Csörnyei

Department of Programming Languages and Compilers, ELTE, Hungary
e-mail: csz@inf.elte.hu

1 Motivation
The object-oriented programming model has enjoyed

widespread use in application programming for many years. En-
capsulation, polymorphism and inheritance give the program-
mer more powerful and safe tools for program development
than the old imperative model. There are several program-
ming languages and developer tools supporting it. A mod-
ern program is expected to be written fully object-oriented.
More advanced paradigms such as aspect-oriented program-
ming, subject-oriented programming and adaptive programming
are also subject of research for more than a decade. There are
also experiments about object-oriented operating systems, sys-
tem software that allows every resource of the computer system
to be handled as objects.

Although being almost forty-year old, the object-oriented
programming paradigm could not conquer the lowest level of
software development: the core of system programs, which
work with externally defined data structures are still written in
imperative languages, such as C or sometimes even assembly.
The main reason for this is that classic object-oriented languages
use a special representation for objects, because they have to
store the dynamic type of every object to be able to dispatch
virtual methods. This is usually done by an extra field at the be-
ginning or the end of the object’s representation, which points
to the virtual method table of the class the object belongs to.
(For example, C++ stores this pointer at the end of the object if
the class has at least one virtual method.) Low-level data struc-
tures, which are often defined by the hardware manufacturer or
the programmer of a lower software layer (e.g. microkernel,
operating system, middleware etc.) do not allow such memory
overhead. On contrary, they determine the exact representation
of the data which must be followed. There is usually no space
left for extra information such as pointer to virtual method table.

However, the set of system data structures often compose a
hierarchy similarly to a class tree: there are generic structures,
and more specific ones. They have no explicit dynamic type, but
the values in the fields determine which specific structure type
the variable belongs to. There are often fields the whose type
depends on the values in other fields. Thus there is no need for

Polymorphism in System Programming Languages 852007 51 3-4

http://www.pp.bme.hu/ee


explicit fields denoting the dynamic type of the variable, because
values of fields inside the data structure determine it.

A typical example for this hierarchy of system data struc-
tures are the POSIX socket address descriptors (Fig. 2). The
bind() and connect() functions take the socket address as
struct sockaddr, which one is defined the following way:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

};

However, no existing socket types have this address struc-
ture, but a socket type specific one. For example, TCP/IP
sockets use struct sockaddr_in, while Unix sockets use
struct sockaddr_un:

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[
sizeof(struct sockaddr)-
sizeof(sa_family_t)-
sizeof(in_port_t)-
sizeof(struct in_addr)];

};

struct sockaddr_un {
sa_family_t sun_family;
char sun_path[108];

};

The fields sin_family in struct sockaddr_in and
sun_family in struct sockaddr_un must always have the
values AF_INET and AF_UNIX respectively. Functions such as
bind and connect getting socket addresses as arguments al-
ways expect struct sockaddr as formal argument:

int bind(int socket,
const struct sockaddr* address,
socklen_t address_len);

int connect(int socket,
const struct sockaddr* address,
socklen_t address_len);

If we call these functions for TCP/IP or Unix sockets, we have
to use struct sockaddr_in or struct sockaddr_un vari-
ables as actual parameters and cast them to struct sockaddr:

bind(sock, (struct sockaddr*) addr,
sizeof(addr));

Since POSIX is language-independent, arguments of the func-
tions do not have explicit type information. Thus the func-
tions decide on the sa_family field of their parameter which
data type to use for interpreting the remaining fields as an ad-
dress. In an object-oriented language the struct sockaddr
could be an abstract class, without any fields at all, and
struct sockaddr_in and struct sockaddr_un its concrete
descendants. There would be no need for the sa_family field,
explicit dynamic type tag could be used instead to recognize the

object. The above shown type casting would be unnecessary
as well, because a variable with static type struct sockaddr
could be used and instantiated with struct sockaddr_un or
struct sockaddr_in.

The generic and specific socket address descriptor types are
very similar to classes: the sa_family field is the tag that de-
termines dynamic type of the object, the remaining fields, which
are different for different socket families contain the data of the
address itself. The application programmer creates a specific
socket address, and handles it over to the bind or connect
function. The function then dispatches on the value in the
sa_family field to the appropriate code.

Although in POSIX socket descriptors the type tag field is
the first word of the structure, this is not always the case. Data
structures defined by the hardware’s manufacturer are usually
divided into bit-fields of various length. The fields which deter-
mine the name, type and length of others reside somewhere in
the middle of such structure. Furthermore, there are often more
of them: the value in one field determines the type of some oth-
ers, among which there are also fields determining the type of
the rest. So we have a class-tree, but instead of one single type-
tag field, we have more. Also another typical requirement in
case of these structures is that unlike POSIX socket descriptors,
which are referenced by pointer only, they usually have to fit
into a fixed slot. This is the reason why specific structure types
all have the same length as the generic one.

Fig. 3 shows the format of a generic descriptor of the i386 ar-
chitecture and its specializations. Since descriptors are stored
in a descriptor table, which is a vector, they all are equal in
size. The S field (44th bit) determines whether the structure
describes a memory segment or system object. If its value is
one, the value in the X field on the 43rd bit decides if it de-
scribes a data- or a code segment. Similarly, Type field on the
40th through 43rd bits determines if it is a descriptor of a sys-
tem segment or for a gate. We cannot use the simple concate-
nation of these two fields for type tag, because in the S = 1
case the X field is one bit long, while in the S = 0 case Type
occupies four bits. We have to use Boolean expressions such as
S = 1 ∧ X = 0, S = 1 ∧ X = 1, S = 0 ∧ T ype ∈ {0..3, 9, 11}

and S = 0 ∧ T ype ∈ {4..7, 12, 14, 15}. This leads to our
main idea: system data structures can be handled as Predicate
Classes, where instead of explicit tag fields, a predicate on the
data fields determines the dynamic type of an object. In this
paper we present language constructs which are based on this
idea, however they are developed especially for use in low-level
programming.

The language constructs presented here are language-
independent. However, this paper is a part of a research project
where the final goal is a programming language for developing
highly reliable system programs in an efficient way. We use the
syntax of our language under development also in the examples
of this paper. The main reason, beside consistency, is that it has
a Pascal or Ada-like syntax which is more structured than a C-

Per. Pol. Elec. Eng.86 Ádám Balogh / Zoltán Csörnyei



2 Objects and Polymorphism in System Programming Languages: A New Approach

Figure 1: Traditional object format and a segment descriptor in the i386 architecture

or the programmer of a lower software layer (e.g. microkernel, operating system, middleware etc.)
do not allow such memory overhead. On contrary, they determine the exact representation of the
data which must be followed. There is usually no space left for extra information such as pointer
to virtual method table.

However, the set of system data structures often compose a hierarchy similarly to a class tree:
there are generic structures, and more specific ones. They have no explicit dynamic type, but the
values in the fields determine which specific structure type the variable belongs to. There are often
fields the whose type depends on the values in other fields. Thus there is no need for explicit
fields denoting the dynamic type of the variable, because values of fields inside the data structure
determine it.

A typical example for this hierarchy of system data structures are the POSIX socket ad-
dress descriptors (Figure 2). The bind() and connect() functions take the socket address as
struct sockaddr, which one is defined the following way:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

};

However, no existing socket types have this address structure, but a socket type specific one. For
example, TCP/IP sockets use struct sockaddr_in, while Unix sockets use struct sockaddr_un:

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[sizeof(struct sockaddr)-sizeof(sa_family_t)-

sizeof(in_port_t)-sizeof(struct in_addr)];
};

struct sockaddr_un {
sa_family_t sun_family;
char sun_path[108];

};

Figure 2: POSIX socket address descriptors: generic, TCP/IP and Unix

Fig. 1. Traditional object format and a segment descriptor in the i386 architecture

Fig. 2. POSIX socket address descriptors: generic, TCP/IP and Unix

like one. In this paper we do not give an exact definition of the
language, but of course, we present basic syntax issues to make
our sample source codes understandable.

The remaining of this paper is organized as follows. In Sec-
tion 2 we review the basic types which will be used to build
classes. Since executable instructions are not shown in the
examples, we do not describe them in this paper. Section 3
presents System Predicate Classes as new language constructs,
and shows their definition, inheritance and use. In Section 4 we
discuss implementation issues. Section 5 describes problems
that must be solved and our plans about them in the near future.
In Section 6, we review past papers related to ours. Finally, Sec-
tion 7 concludes.

2 Basic types
System data structures consist of fields of various types and

sizes. These types are usually simple discrete types such as
signed or unsigned integers, enumerated types, characters and
Booleans. The size of these discrete types varies from a single
bit to more words. Structures are composed by these types in
such a way that the size of the whole structure occupies one or
more words. C introduces bit fields to enable the programmer to
define such structures. However, bit fields are no regular types,
they can only be define inside structures and can have only types
signed and unsigned int.

Our solution is more general: we allow declaration of stan-
dard variables having any discrete type with almost arbitrary
length. These variables always occupy a whole number of bytes,
when they stand alone, but in structures they are arranged sim-
ilarly to bit fields in C. The advantage of this is type safety:
assigning the value of a variable to a field of the same size will
always be successful without overflow.

2.1 Generic discrete types
An n bit long unsigned integer is declared as Unsigned(n),

where n is an arbitrary integer. (Of course, the variable has to fit
into the memory.) Signed integers are declared similarly, thus

with the syntax Signed(n), but here we do not allow the length
to be less than two. The main reason for this is that a field that
can have values −1 and 0 is very improbably, thus such a decla-
ration can be considered as programming error.

Enumerated types are defined as follows:
{i1, i2, . . . , im}(n), where ik(1 ≤ k ≤ m) are the values
of the type. For example a 2 bit long field holding the three
RGB colours is defined as {Red, Green, Blue}(2). All
the values have to fit into the space the variable occupies, thus
n ≥ log2 m must hold. Characters are a separate type with
declaration syntax Character(n), but they are considered as
an enumeration type holding all the ASCII characters. Thus
the length of a character field has to be at least 7 bits long.
Also Booleans are an own type of the language, however
Boolean(n) corresponds to {False, True}(n), where n can
be any positive number similarly to the case of integers.

2.2 Predefined discrete types
Every architecture has a built-in integer type which is called

machine word. The length of this word corresponds to the size
of the integer registers in the processor, which is nowadays 32
or 64. Working with this type (i.e. 32 bit or 64 bit long integers)
usually results in optimal performance, thus it is reasonable to
declare discrete variables with this word length every time when
it is possible. However, different architectures may have differ-
ent machine word length, thus porting programs from one ar-
chitecture to another one would mean that almost every discrete
variable declaration has to be rewritten.

To make development of efficient and portable software easy,
our language has predefined types with the length of a ma-
chine word. Word corresponds to Unsigned(m), Integer
to Signed(m) while Bool to Boolean(m), where m is the
length of the machine word in bits. Enumerated types of
machine word length are defined by Enum(i1, i2, . . . , in) as
{i1, i2, . . . , in}(m) with m the same as before.

Beside machine words, programmers often need to work with

Polymorphism in System Programming Languages 872007 51 3-4



Fig. 3. Generic and specific descriptor formats on the i386 architecture

bytes. Bytes are 8-bit long on every modern architecture, but we
introduced the type Byte as Unsigned(8) to make them easier
to recognize. Similarly, Bit is equivalent to Unsigned(1). For
the same reason we also introduced Char as Character(8).
For Unicode characters the appropriate types have to be defined
in external libraries.

Regarding the predefined types, one may ask the question we
have introduced new names for Integer, Word, Bool, Char
and Enum instead of allowing omission of length after Signed,
Unsigned, Boolean, Character and {. . .}? Our answer is
pretty simple: we would like to prevent programming errors re-
sulted from forgotten lengths. Furthermore, we think that the
code is more easy to read if separate names are used for generic
and specific types.

2.3 Floating point types
Floating point types correspond to the ANSI/IEEE 754 stan-

dard. Single is 32 bit long, and is implemented on every archi-
tecture. Double is 64 bit long, and it is usually available on ev-
ery modern architecture. The 80 bit long Extended and 128 bit
long Quadruple are optional, however one of them is defined
on almost every modern processors. All data types available
on the processor must also be available in the language imple-
mentation of the corresponding architecture. All these types are
represented and handled exactly as defined in the standard. We
also introduced the type Float, which is equal to the suggested
floating point type on the given architecture. Note that this may
differ from both the machine word length and the length of the
floating point registers. For example, on the 32 bit i386 archi-
tecture the registers are 80 bit long, but the suggested floating
point type is the 64 bit long Double. Floating point types must
always be byte aligned, even as fields in data structures. Since
floating point types are very rarely used in system programming,
we do not write more about them.

2.4 Type constructions
The syntax of array definitions is the following:

array[r1, r2, . . . , rn] of t , where ri (1 ≤ i ≤ n) are
ranges of format k..l, with k and l being values of the same
discrete type and the integer representation of k must be less
than or equal to l, and t an arbitrary type. Multidimensional
arrays are stored in the memory first grouped by the last range,
and then by every range to the first one.

Strings are arrays of characters, but to make their declara-
tion easier we introduced the String[r] syntactical sugar for
array[r] of Char. Note that both for general arrays and
strings ranges not beginning with zero may have a negative im-
pact on the performance of the program, because more compu-
tation is needed to determine the position of an element.

Object-oriented languages usually do not have record type,
because class means a good replacement of it. This is especially
true in our language: since we use no tag fields in our objects,
a class without methods is exactly the same as a record in an
imperative language. Furthermore, using predicate classes also
eliminates the need for unions and even for variant records.

In system programming pointers are used very often.
Pointer to t or simply ^t is a type which is able to store the
address of a variable of type t . On architectures having special
addresses the Near and Far keywords may precede the Pointer
keyword or the ^ symbol. Default is Near.

3 System Predicate Classes
System predicate classes resemble the well-known classes of

classic object-oriented languages in many issues: they have data
tags, methods, and new classes can be created from an exist-
ing one with the help of inheritance. However, objects of these
classes are represented in the memory exactly as C’s structures:
only the fields defined by the programmer are stored in the same
order as it appears in the source code. There is no pointer before
the beginning or after the end of the fields to a pointer to virtual
method table. This makes it possible to define system structures

Per. Pol. Elec. Eng.88 Ádám Balogh / Zoltán Csörnyei



as classes. Definition of a root class named C is the following:

a class C is
δ1;
δ2;
. . .
δn;

end C;

where a is the default access level of the class δi (1 ≤ i ≤ n)

are data field declarations of the form f : a t := d with f as
field name, a as access level.t as type and d as default value (op-
tional, if omitted then the := must also be omitted), or method
declarations of the form a procedure m(α) or a function mα):
t with a as access level, m as method name α as argument list
and t as return value type. (If α is the empty list, the parenthe-
ses are also omitted.) Two other special method formats are also
possible which are explained further below in this paper.

To implement encapsulation similarly to conventional OOP
languages, each data and method belongs to one of the three
access levels, exactly as in C++, with the same keywords:
public, private and protected. The access level is optional,
if it is omitted, then the field or method belongs to the default
access level of the class. If it is also omitted, then fields de-
fault to private, while methods to public. Fields in system predi-
cate classes may have a special access level, defined by the key-
word reserved. This access level is the lowest one, because
these fields are not even accessible inside the class. This fea-
ture has double purpose: first, hardware manufacturers and low-
level software designers often define fields as reserved. These
fields must never be accessed in the software. The second pur-
pose is more interesting, because it is connected to a unique fea-
ture of system predicate classes: fields defined as reserved can
be overlapped in the inherited classes by new fields of arbitrary
type. Even one long reserved field can be overlapped by more
smaller ones, with total size of the original one. More about
this feature see 3.1. Default access level of the class cannot be
reserved.

The following example defines a simple class for a generic
descriptor on the i386 architectures:

class Descriptor is
Undefined1: reserved Unsigned(16);
Present: Boolean(1);
DescPrivLevel: Unsigned(2);
DescType: {System, User}(1);
Undefined2: reserved Unsigned(44);
virtual procedure LoadDescriptor is empty;

end Descriptor;

Most of the fields are marked as reserved, because their
structures and types depend on the value in the DescType
field. The LoadDescriptor method has an empty body in this
generic class, since segments and gates are different to load.
The empty keyword is just a short form of empty begin end
block. The virtual keyword is explained in 3.1. In a high-
level OOP language this class would be defined as abstract to-
gether with the LoadDescriptor method, but in system pro-
gramming it has no use. First of all, system predicate classes are

predicate classes, thus denying instantiation does not save ob-
ject from being instance of an abstract superclass, because ob-
ject type changes during the execution by assigning new values
to its fields. Secondly, in system programming abstract methods
cannot be defined because of the lack of exception handling: ev-
ery method has to be callable and do something (at least return).
Thus there is no keyword for defining abstract classes in the lan-
guage. Instead, predicate classes have other tools for preventing
objects to belong to such a class as our generic descriptor. These
tools are shown in the next sections.

3.1 Inheritance
Inheritance in object oriented languages is a tool for defining

specialized versions of a class. In the conventional OOP lan-
guages subclasses inherit the fields and methods of their super-
class, they may have additional fields, additional methods and
also may override some of the inherited methods. Subclasses
are polymorphic with their super, thus a variable with type of
the superclass can also store an object of the subclass. Since
superclasses often contain additional fields, thus they are bigger
in size. This is only possible if this variable is a pointer to the
object. The static type of an object variable is the type of the
variable itself: the class that appears in its declaration. On the
other hand, the object the variable stores may have another type
which is a descendant of its static type: this is the dynamic type
of the object variable. The dynamic type can change during the
execution only whenever a new object is assigned to the vari-
able, since the type of the same object cannot be modified after
its creation. Methods can be divided into two groups: static or
nonvirtual methods belong to the variable that stores the object:
thus their call is already fixed during compile time, since the
type of the variable is defined in the source code. The other
group of methods is called dynamic or virtual methods because
they belong to the object itself: if a virtual method is overridden
in a descendant class, and a variable contains an object which
belongs to this class then the overridden method is called ir-
respectively of the static type of the variable. Since dynamic
type is only known in run-time these calls cannot be fixed in
compile-time. Instead, these methods are called through the vir-
tual method table. Virtual method table is a vector belonging to
the class and contains the addresses of its virtual methods. The
object has a pointer to this table at its beginning or end, and if
a virtual method is called, it jumps to the appropriate address in
its actual VMT, which always corresponds to the dynamic type
of the object.

Inheritance of predicate classes is similar to that of conven-
tional ones, but an object of a predicate class does not contain
explicit dynamic type tag such as VMT. Instead, every subclass
of the same superclass have a unique property which distin-
guishes object of that subclass from the others and also from its
parent. A property is described by a predicate, i.e. a Boolean ex-
pression on the data in the object’s fields. Predicate classes may
also have virtual and nonvirtual methods. Nonvirtual methods

Polymorphism in System Programming Languages 892007 51 3-4



are called in the same way as in case of normal classes, but the
calling of virtual methods is essentially different because of the
lack of VMT. Whenever a virtual method is called, a dispatcher
routine is invoked which evaluates the predicates of all the sub-
classes of the static type class of the variable. If a predicate of
a subclass is true, then the dynamic type of the object is that
subclass. Of course, if the subclass also has subclasses, more
predicates have to be evaluated until determining the dynamic
type of the class. Since dynamic type depends on the values in
the fields of the class, it can change more dynamically during
execution, not only by assigning new object to the variable.

Inheritance of system predicate classes is a little bit different.
As we already mentioned in the introduction, system program-
mers often need to store the object itself in a variable of a type
which is ancestor of the object’s type, and not only a reference
to it. This feature we call polymorphism by value and is a unique
feature of system predicate classes. These classes must have the
same size as their descendants, no new fields are added to the
end of such a class, but existing fields are overlapped by them.
Only fields defined as reserved can be overlapped.

3.1.1 Predicates
Our language constructions do not allow objects to belong

to more than one subclasses of the same class. To prevent
this, we have to ensure that predicates of the subclasses are dis-
joint. Checking this for arbitrary first-order Boolean expressions
would be too difficult, so we restrict the terms that can appear in
the predicate expressions. In system programming typical terms
are hardly ever more complex than checking values of discrete
fields being in a given constant set. For this reason we only allow
comparisons of fields and constant expressions of the following
formats: f = C , f , C , f < C , f > C , f ≤ C and f ≥ C ,
where f is a discrete field of the superclass and C is a constant
expression.

To check disjoincy of predicates, we first convert them
to clause sets containing expressions of the format f ∈

{C1, C2, . . . , Cn}. To achieve this, we collect constants for a
field in the same clause into sets, thus every expression in the
clauses checks whether the value of a given field is member of
a specific set. Every clause can contain at most one expression
for the same field.

A modified resolution algorithm can then be used to check
that every pair of predicates are disjoint. Having them con-
verted to the format described above, we take the union of the
two clause sets, and search for resolvent clauses. The only dif-
ference from the conventional resolution algorithm is that we
regard two clauses as resolvents, and only if they both contain
expressions for the same field with disjoint sets. At he end of
the algorithm, we either get the empty clause, what means the
two predicates are indeed disjoint, or we get stuck, that means
the opposite.

Although the problem is still N P-hard, in the practice we
only have very simple predicates: for a given level of the class-

tree the separation to disjoint subclasses is usually done based
on one or two fields, with almost only equalities. To further
improve performance of checking for disjoincy, we introduced
a special operator to be used only in predicates: the isnot c
expression is equivalent with the ¬P one, where P is the predi-
cate of class c. Of course, class c must be a subclass of the same
superclass as the subclass with this expression in its predicate.
This operator also helps the programmer to divide the possible
value-set of a superclass into disjoint subclasses, which together
cover the whole value-set. This way the superclass is abstract,
because every of its objects belongs to exactly one of its sub-
classes, the superclass itself cannot have any instances. Thus
calling methods considered to be abstract are also prevented.

Fig. 5 shows the class hierarchy of descriptors on the i386
architecture. Classes for Descriptor and Memory Segment De-
scriptor are abstract since the S bit cannot take other value than
zero or one, and so does the X bit. In these simple cases we not
even need the help of the isnot operator. However, class for
System Descriptor is not abstract, because values 8, 10 and 13
of the Type field do not satisfy the predicates of any of its de-
scendants. Since these values are invalid, the virtual methods of
System Descriptor must contain code that signals runtime error
rather than being empty.

3.1.2 Simple inheritance
Because of the special features of system predicate classes,

we have to distinguish four kinds of inheritance. The first one is
the simplest, so we call it simple inheritance. The field structure
of subclass and superclass are exactly the same, only behaviour
of the subclass is different. Since field structure is the same,
size is also the same, thus the two classes are polymorphic by
value. Different behaviour means that child class can have new
methods or override existing ones. There is no special syntax
for overriding: if the new method has the same name and sig-
nature as an existing one, it overrides that one. Virtual methods
can only override virtual ones, while nonvirtual methods only
nonvirtual ones. In other cases compilation error occurs.

Syntax of a class definition which simply inherits from an-
other one is the following:

a class C ′ inherits C when P is
µ1;
µ2;
. . .
µn;

end C ′;

where C ′ is the name of the subclass, C the name of the su-
perclass, P the predicate and µi (1 ≤ i ≤ n) the method
declarations or definitions. The default access level (a) of the
class must be the same as for the superclass, and so must
the access level of the methods. This requirement prevents
programming errors that are difficult to find. In the follow-
ing example we further divide the class of i386 data seg-
ments into two subclasses. The division is based on the Ex-

Per. Pol. Elec. Eng.90 Ádám Balogh / Zoltán Csörnyei



Fig. 4. Generic descriptor on the i386 architecture – more detailed format

pansion Direction bit. Let us suppose that this bit is de-
fined with the name Ex_Dir and type {Up, Down}(1) in the
Data_Segment_Descriptor class. The Expansion Direction
determines whether valid offsets are in the range 0 . . .Limit

(heap) or in the range Limit. . . F F F F F F F F H (stack). (For
the sake of simplicity we do not take the Granularity and Bit
bits into account in the example.) The Valid_Offset checks
if a given offset is valid for the segment, and is defined with
empty body in the (abstract) superclass. Definition of the two
subclasses is the following:

class Heap_Descriptor inherits
Data_Segment_Descripor when Ex_Dir=Up is
virtual function Valid_Offset

(Offset: Word): Boolean is
begin
return Offset<Limit;

end Valid_Offset;
end Heap_Descriptor;

class Stack_Descriptor inherits
Data_Segment_Descripor when Ex_Dir=Down is
virtual function Valid_Offset

(Offset: Word): Boolean is
begin
return Offset>Limit;

end Valid_Offset;
end Stack_Descriptor;

3.1.3 Overlapping
The second kind of inheritance, overlapping is also for classes

considered to be polymorphic by value with their parent. How-
ever, in this case not only the behaviour of the subclass may
differ from its parent, but also its fields. New and overriding
methods can be defined the same way as in case of simple inher-
itance. The main difference is that the whole field-structure has
to defined anew.

The field structure of the subclass cannot be arbitrary. Its to-
tal size must be the same as that of the superclass. Also fields
not defined as reserved in the superclass must have same po-
sition, type, length and access level in the subclass, only their
name can differ. (In the predicate of the class the field names of
the superclass must be used.) However, every reserved field
can be overlapped with arbitrary new fields with their total size
equal to the length of the reserved field. It is also allowed that
new fields overlap two or more neighbouring reserved fields

together, regarded as one long reserved field. The formal syn-
tax for overlapping is the following:

a class C ′ overlaps C when P is
δ1;
δ2;
. . .
δn;

end C ′;

where a, C ′, C and P are the same as in case of simple in-
heritance, while δi (1 ≤ i ≤ n) are data field declarations and
method declarations or definitions.

An example for overlapping is the definition of different de-
scriptors. We have already seen the definition of the generic
descriptor format earlier. Now we show how to define memory
segment descriptors. A descriptor describes a memory segment
in the case the bit S is set to 1. In the example we omit methods
that would be there in real software, such as segment loading,
unloading etc.

class Memory_Segment_Descriptor overlaps
Descriptor when Desc_Type=User is
Base1: private Unsigned(8);
Granularity: {Byte, Page}(1);
AddrSize: {S16, S32}(1);
Zero1: reserved Bit:=0;
Avail: Bit;
Limit1: private Unsigned(4);
Present: Boolean(1);
DescPrivLevel: Unsigned(2);
DescType: {System, User}(1);
SegType: {Data, Code}(1);
Undefined: reserved Unsigned(2);
Accessed: Boolean(1);
Base2: private Unsigned(24);
Limit2: private Unsigned(16);

procedure SetBase (Addr: in Unsigned(32)) is
begin
Base1:=Addr/1000000H;
Base2:=Addr and FFFFFFH;

end SetBase;

function Base: Unsigned(32) is
begin
return Base1*1000000H or Base2;

end GetBase;

procedure SetLimit (Lim: in Unsigned(20)) is
begin
Limit1:= Lim/10000H;
Limit2:= Lim and FFFFH;

end SetBase;

function Limit: Unsigned(20) is
begin
return Limit1*10000H or Limit2;

end GetBase;
end SegDesc;

As shown in the figure, the segment descriptor has a base ad-
dress and a limit broken into two parts. To make it comfortable
to the programmer, we applied a trick here: the two parts of

Polymorphism in System Programming Languages 912007 51 3-4



both are defined as private, and appropriate public methods are
defined for getting and setting the value of the Base and the
Limit virtual fields. A syntactic sugar of the language makes it
possible to use the := operator instead of calling the appropriate
Set method. With a pure record in an imperative language the
above trick could not be applied. There we would have to com-
pose and decompose the two parts of the fields manually always
when accessing them. Of course, we could use a function for
that, but it would be outside of the record.

Since the fields of a class can be overlapped exactly the same
field structure one may think that simple inheritance is super-
fluous. However using overlapping only if the field structure in
the root class has to be changed during the development, then
all of its descendants have to be changed to remain consistent.
One single forgotten class may cause compilation error, or even
worse – if the change is around the reserved fields – incorrect
behaviour of the program. Further difficulties could arise if the
program is developed by a team where different classes of the
same class-tree are maintained by different programmers. Using
simple inheritance eliminates these problems and also improves
the readability of the source code.

3.1.4 Extension
Extension is typical form of inheritance in the classic object-

oriented languages. The field structure of subclass begins with
the fields of the superclass and is extended by new fields at the
end. Because of the new fields objects of the subclass have big-
ger size than objects of the superclass, thus the two classes are
polymorphic only by reference. Definition of new and overrid-
ing methods is the same as before.

The syntax for an extended class definition is the following:

a class C ′ extends C when P is
δ1;
δ2;
. . .
δn;

end C ′;

where a, C ′, C and P are the same as in case of simple inheri-
tance, while δi (1 ≤ i ≤ n) are new data field declarations at the
end of the class and new or overridden method declarations or
definitions.

Appending of new fields to the end of the original ones is
not mandatory. However, even if no fields are appended, the
extended class is not the same as a simply inherited one. The
subclass and the superclass are polymorphic only by value in
this case as well.

Special care must be taken when working with extended ob-
jects. If a pointer defined to point to a type of the superclass
and currently points to an object of the subclass is dereferenced
and the value is assigned to a variable with static type of the su-
perclass, the extended fields are lost. The same happens when
using the dereferenced object as actual parameter to a method
where type of the formal is the superclass. In this case a method

call on the truncated object could lead to illegal memory ref-
erences, because the dispatcher function invokes the method of
the extended object which does not know that the object is trun-
cated. This kind of error is very difficult to find. To help the pro-
grammer to prevent them, a warning is given to the programmer
whenever he tries to store a dereferenced pointer to an object in
a variable or use it as actual parameter. For a well written pro-
gram no warnings are received, because dereferencing pointers
and using their values as actuals or storing them in variables is
usually a bad programming technique.

3.1.5 Redefinition
Redefinition is a mixture of overlapping and extension: New

class may overlap reserved fields with new fields and also new
fields can be appended to end of the class. Moreover, if the last
field of the superclass is reserved, this field may be overlapped
new fields of greater size. The only restriction is that the size
of the new class must be greater than or equal to the size of
the original one. Of course, the subclass is polymorphic with
the superclass only by value also if its size is not bigger. The
fields not defined as reserved can only be renamed, similarly
to the case of overlapping, and the rules for new and overlapping
methods are the same as before.

Although redefinition is also capable to substitute extension
it is not unnecessary for the same reason as simple inheritance.
The risk of object truncation is the same as in case of extension.

The syntax for a redefined class definition is the following:

a class C ′ redefines C when P is
δ1;
δ2;
. . .
δn;

end C ′;

where a, C ′, C , P and δi (1 ≤ i ≤ n) are the same as in case of
overlapping.

A good example for redefinition of classes are the POSIX
socket address descriptors, as shown earlier in Fig. 2. Although
the size of Sockadd_IN is the same as the size of Sockaddr,
we also use redefinition instead of overlapping because of con-
sistency with Sockaddr_UN which has greater size. We also do
not need Sockadd_IN to be polymorphic by value with its par-
ent.

class Sockaddr is
SA_Family: SA_Family_T;
SA_Data: reserved String[14];
virtual procedure Bind

(S: ^Socket) is empty;
virtual procedure Connect

(S: ^Socket) is empty;
end Sockaddr;

class Sockaddr_IN redefines Sockaddr
with SA_Family=AF_INET is
SIN_Family: SA_Family_T;
SIN_Port: IN_Port_T;
SIN_Addr: IN_Addr;

Per. Pol. Elec. Eng.92 Ádám Balogh / Zoltán Csörnyei



SIN_Zero: Invalid;
virtual procedure Bind (S: ^Socket);
virtual procedure Connect (S: ^Socket);

end Sockaddr_IN;

class Sockaddr_UN redefines Sockaddr
with SA_Family=AF_UNIX is
SUN_Family: SA_Family_T;
SUN_Path: String[108];
virtual procedure Bind (S: ^Socket);
virtual procedure Connect (S: ^Socket);

end Sockaddr_UN;

Fig. 6. Memory segment descriptor on the i386 architecture – more detailed
format

The Bind and Connect procedures are now methods of the
class Sockaddr. In practice, when implementing POSIX in our
language this is perhaps not the case, these methods may be-
long to the Socket class, but eventually at some points they
call a method of the class Sockaddr to bind or connect to the
address. However, to simplify things we considered that Bind
and Connect themselves are methods of Sockaddr. There is
no need for the parameter Size, because the dynamic type of
the object determines its size. Both methods are abstract in
the class Sockaddr, i.e. they have empty bodies. However
class Sockaddr_IN and Sockaddr_IN override the methods to
bind or connect themselves to the socket given in the argument.
Whenever the method is called on an object with static type
Sockaddr a dispatcher method is executed which examines its
SA_Family member and jumps to the appropriate routine. The
polymorphism by reference thus also eliminates the need for ex-
plicit type cast.

Although there are a few other socket address families, they
cannot cover the whole integer range the SA_Family field can
take as value. To prevent calling empty methods it is suggested
to create a failsafe subclass called for example Sockaddr_Err
whose methods display error in some form whenever they are
called. Another solution is to replace the empty bodies in the
class Sockaddr itself to display the run-time error message.
Fig. 7 shows the relation between super- and the subclass in the
four cases of inheritance regarding size and field structure. The
main reasons that system predicate classes have four kinds of
the inheritance instead of just one similarly to the conventional
classes lies in the special properties of system data structures

Fig. 7. Relation between the super- and subclass in cases of the four different
kinds of inheritance regarding size and field structure

as classes. The reason for distinguishing inheritances that pre-
serve original field structure or let it replace by new one is that
these classes are not always extended at the end, but often there
is space reserved for extension inside the structure. We also ex-
plained that always replacing them may cause several difficulties
during the development. The reason for distinguishing inheri-
tances that preserve original size or let it be greater is that some
structures have to be polymorphic by value while for the rest
it is sufficient if they are polymorphic by reference. Of course
the same keyword could be used for the two cases, but for easier
compiler implementation and better code readability we decided
to separate them. Programming errors are also easier to find: if
an overlapping class is accidentally defined to have greater size
than its parent, the compiler displays an error message immedi-
ately for the definition. If we would use redefinition, the error
would appear for the place where it is tried to be assigned by
value to its shorter parent, perhaps in another module, maybe
written by another programmer.

3.2 Objects
Objects are instances of classes, similarly to conventional

OOP languages. They can be defined as local variables or al-
located dynamically. Syntax of variable declaration is, similar
to the Pascal language, the following:

var v1,1, v1,2, ..., v1,n: T1;
v2,1, v2,2, ..., v2,n: T2;
...
vm,1, vm,2, ..., vm,n: Tm;

where vi, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) are the names of the vari-
ables and Ti (1 ≤ i ≤ m) are basic types, type constructions (ar-
rays, strings or pointers) and class names. Dynamic allocation
happens by declaring pointer to the class type and then allocat-
ing memory for the class with the following operator: new C ,
where C is the name of the class. The result of the allocation
is an object of type C , therefore it can be assigned to a variable
with type C or an ancestor class of C . Dynamically allocated
objects are freed by the dispose v instruction, where v is the
name of the variable to be deallocated.

Like in conventional object-oriented languages, classes
can contain two special kinds of methods, called con-

Polymorphism in System Programming Languages 932007 51 3-4



Fig. 5. Simple class hierarchy of the descriptors on the i386 architecture

Fig. 8. Phases of compilation (1) and linking (2)

structors and destructors. The syntax of a constructor
is constructor C(α), while destructors are defined by
destructor C , where C is identical with the name of the class,
and for the arguments list α the same rules apply as in case of
normal methods. The constructor of an object is called whenever
the object is created, but always after assigning default values
to the fields: immediately after variable declaration or dynamic
allocation. If the constructor has formal arguments, actual argu-
ments must be given at the place of the creation after the name
of the class. One single object may have more constructors with
different argument signatures. However, there can be only one
destructor for each class with no arguments at all. Destructors
are called at the end of the object’s lifetime: for local objects
at the end of the block, for dynamically allocated ones at their
deallocation.

4 Implementation issues
The implementation of a language based on the presented lan-

guage constructs is in progress. Several experiments have al-
ready been conducted to prove that our idea is working in the
practice. In this section we show how to implement our con-
struct in such a way that we obtain a modular language that is
also object-compatible with existing languages.

Complex software systems are usually developed by teams
rather than individual programmers. This is especially true for
system software which is too complex for a single programmer.
Therefore our language must support team work, i.e. it has to be
modular: programmers should be able to compile their code sep-
arately and then link the compiled objects together. In OOP lan-
guages this is usually solved in such a way that class interfaces
(field and method declarations without their definitions) are sep-
arated from their body (method definitions). If all programmers
have all the interfaces, each of them is able to compile the body
of the own classes. They also may create own classes inherited
from the classes of the commonly distributed interfaces or from

common libraries.
In our language the sources of the difficulties are the dis-

patcher routines. In conventional OOP languages if new class
is created, a new VMT is also created and the objects of the new
class point to this new VMT. However in our languages classes
have no VMTs but dispatching is done by dispatcher routines.
These routines evaluate the predicates of all the subclasses of
the class to find the correct method to be invoked. If a new
subclass is created, its predicate has also to be evaluated. This
means that dispatcher routines cannot be generated before link
time, when all the subclasses of any class are already known.

To overcome this problem, we not only need a proprietary
compiler for the implementation but also a proprietary linker.
However this linker has also to handle objects compiled from
other languages. This can be done easily if our linker calls the
general linker of the operating system (e.g. ln on Linux) after
generating dispatcher routines and compiling them into an ob-
ject file. The format of this object file corresponds to the stan-
dard object file format of the OS that can be handled by the
linker, and so the object files generated by our compiler. These
three phases of compilation and linking are shown on Fig. 8.

To implement dispatcher routines in an efficient way, a little
trick can be applied. Dispatcher routine is called as a subroutine,
saving the return address in the stack or link register, depend-
ing on the architecture it runs on. After evaluating the pred-
icates, the dispatcher routine invokes the appropriate method.
The most straightforward way to do this is another subroutine
call. However, this means that after returning from the method,
control is transferred back to the dispatcher which returns again
to the original caller. This double return can be eliminated, if the
dispatcher routine jumps to the method body instead of calling
it. In this case, the method returns directly to the caller. How-
ever implementing this is more difficult than the straightforward
method, especially when compiling through C, what does not
support jumping but calling only.

5 Open Problems and Future Plans
The final goal of our project is a language which can be used

in a safe and efficient way to develop operating systems. In-
troducing system predicate classes that enable to handle sys-
tem data structures is the first step to achieve this. Of course
we would like to show this language working in the practice

Per. Pol. Elec. Eng.94 Ádám Balogh / Zoltán Csörnyei



thus our most important plan is to develop the compiler and the
linker.

However, there are some open problems which are to be
solved in the near future. The first one is the already mentioned
object truncation problem. Our current suggestion in this paper
is that the compiler has to give warning if a reference to an object
is dereferenced and the value stored or used as actual parameter.
We want to further study this problem maybe find better solu-
tions as the result of our research work. Only solutions that omit
run-time checks are acceptable since our language is used at the
lowest level of software where no overhead is allowed.

Another possibility of programming error is that an object can
be modified in such a way that it does not fulfil the predicate of
the class which is the static type of its storing variable. In this
case dispatching algorithm may find incorrect implementations
of methods. A safe solution would be if dispatching routine of
the root class would be invoked even if the static type of the
variable is only an ancestor of it. However, this solution would
increase the overhead of the program – in most of the cases com-
pletely unnecessarily. Another solution should be found for this
problem that does not increase overhead.

We also think to further improve our constructs in the near
future and to develop new language constructs that help system
programmer to create safe programs in an efficient way. Our
plans include multiple inheritance and generic classes, similarly
to the generics of Ada or the templates of C++. Exception-
handling at the lowest level is also an interesting topic that we
would like to study. To show the features of the language in
the practice, we also want to develop an interface to the POSIX
library.

6 Related Work
One of the first constraint based object-oriented languages is

Cecil by Chambers [8], [9]. In Cecil constrained descendants
of a class are called predicate classes. This kind of inheritance
extends the normal one, thus the object structure in Cecil con-
sists of normal classes and predicate classes. Cecil also defines
implicit inheritance between predicate classes, thus a class can
be subclass of another one, if they are constraint-based (explicit)
descendants of the same superclass and the constraint of the one
is stronger than the constraint of the other one. Predicate-based
dispatching of methods works dynamically, in case of ambigu-
ities error messages are generated, thus Cecil includes a dy-
namic runtime environment. Furthermore, because of the nor-
mal inheritance, object representation is similar to other object-
oriented languages, thus it must include a dynamic type tag. On
the other hand, Cecil does not have encapsulation, thus methods
are normal procedures and functions with tagged parameters.

The e programming language by Hollander, Morley and Noy
[19] is used in the microchip industry for modelling and func-
tional verification. The e language also combines the normal
object-oriented mechanism with the constraint-based ones. In-
stead of creating new subclasses, e makes it possible to ex-

tend a class in-place. The paper describes the advantage of this
language construction in functional verification. However, for
general-purpose languages – including languages designed es-
pecially for low-level programming – subclass creation is more
preferable. Furthermore, e is not as low-level language as ours
since it does not allow the programmer the specification of the
object’s representation.

The CCC language by Harada, Yamazaki and Potter [18] en-
ables to create objects with user defined structure in C. It is a
small but highly efficient extension to C, its goal is to intro-
duce classes and objects into system-programming. CCC al-
lows defining polymorphic functions which are dispatched on
the value of the arguments. The paper also describes an effi-
cient dispatching algorithm. However, CCC does not define real
classes, the keyword class is only used to arrange the polymor-
phic functions into a constraint-based hierarchy. Furthermore,
CCC is just an extension to the C language, thus it has the most
disadvantages of C, as for example not being type-safe.

The SysObjC language by the authors of this paper [4] is
another C extension, which partially implements system pred-
icate classes by enhancing standard C structures with methods
and predicate based inheritance. It also allows all four kinds of
inheritance described in this paper and thus polymorphism by
value, but in a less safe manner. The language is intended to be
an intermediate language between C and our future safe system
programming language, and is hoped to ease migration for C
system programmers.

Primitive concepts and defined concepts in Yelland’s exper-
imental Smalltalk extension [29] correspond to normal classes
and predicate classes. Defined concepts are limited to Boolean
expressions examining whether an attribute is part of a fixed set.
Although we also restrict our terms similarly, we allow more
complex Boolean expressions to be built of them.

The SELF language by Ungar, Smith, Hölzle et al. [28], [27],
[2] uses dynamic inheritance to change behaviour of an object
during run-time. An object in SELF can dynamically replace
its parents, so change the set of inherited methods. The Garnet
system by Myers et al. [25] very similar, it also uses dynamic
inheritance to change behaviour of objects. Although dynamic
inheritance is more powerful than predicate dispatching, it is a
less structured language construct: while any object may be as-
signed as a parent of any other one during run-time in the above
languages, the DAG of predicate inheritance is always fixed dur-
ing link time in our language. Yet more powerful than dynamic
inheritance in changing the representation and implementation
of an object is the become: operation of Smalltalk-80, which
allows the identities of two objects to be swapped. However,
it is yet more unstructured than dynamic inheritance and also
difficult to implement efficiently.

7 Conclusions
We presented a new language construct, called system predi-

cate classes. The main novelty of this construct is that it enables

Polymorphism in System Programming Languages 952007 51 3-4



object-oriented programming even at the lowest level, where no
run-time environment exists, and different predefined data struc-
tures must be handled as objects. It applies encapsulation to ob-
jects as classic object-oriented languages, but with fixed. A very
useful feature of the construct is that subclasses of a class can
have different data structure, with renaming of fields and over-
lapping of fields which are undefined in the superclass. This
allows to build hierarchical class trees of system data structures,
where the value of some fields determine the type and name
of other ones, without change in the structure’s size. A well-
composed class tree eliminates the need for almost all type-casts
in the program. The only case where type cast is needed to cast a
variable to a descendant of its static type, which is very common
even in the high-level OOP languages. Also unions are obsolete
when using system predicate classes, since inheritance replaces
them in a more safe way.

We showed two small examples, where almost all features of
the language were used. These examples were POSIX socket
address descriptors and i386 segment and gate descriptors, very
typical ones in system programming. While the first one is an
example for handling data structures of the operating system as
objects, the second one shows that similar method can be ap-
plied to the hardware’s data structures as well.

Modularity of the language enables larger systems by teams.
Using standard object formats makes it possible to mix modules
with other modules written in different languages. Efficient dis-
patcher routines ensure best possible performance of programs
based on system predicate classes. Checking for disjoint predi-
cates increases program safety.

References
1 Advanced Micro Devices, Inc.: BIOS and Kernel Developer’s Guide

for AMD NPT Family 0Fh Processors, May 2006, available at
http://www.amd.com/us-en/assets/content_type/white_papers_

and_tech_docs/32559.pdf. Revision 3.00.
2 Agesen O, Bak L, Chambers C, Chang B W, Hölzle U, Maloney J,

Smith R B, Ungar D, Wolczko M, The SELF programmer’s reference man-

ual., 2000. Version 4.1.
3 Balogh Á, Csörnyei Z, Multiple inheritance of system predicate classes.

(2006).
4 , SysObjC: C extension for development of object-oriented operat-

ing systems, PLOS 2006: Linguistic Support for Modern Operating Systems
Workshop of the Twelfth International Conference on Architectural Support
for Programming Languages and Operating Systems (San Jose, California,
United States), October 2006. ACM Press.

5 Caseau Y, An object-oriented language for advanced applications., TOOLS
USA ’91: Proceedings of the 5th International Conference on Technology of
Object-Oriented Languages and Systems (Kaiserslautern, Germany), August
1991. Prentice-Hall.

6 Caseau Y, Perron L, Attaching second-order types to methods in an object-

oriented language, ECOOP ’93: Proceedings of the 7th European Confer-
ence on Object-Oriented Programming, Lecture Notes in Computer Science,
vol. 707, Kaiserslautern, Germany, July 1993. Springer-Verlag.

7 Caseau Y, Silverstein G, Some original features of the LAURE lan-

guage, OOPSLA ’92: Addendum to the Proceedings on Object-oriented Pro-

gramming Systems, Languages, and Applications (Addendum), Vancouver,
British Columbia, Canada, October 1992. ACM Press.

8 Chambers C, Object-oriented multi-methods in Cecil, ECOOP ’92: Pro-
ceedings of the 6th European Conference on Object-Oriented Programming
(O. Lehrmann Madsen, ed.), Lecture Notes in Computer Science, vol. 615,
Springer-Verlag, Utrecht, The Netherlands, 1992.

9 Chambers C, Predicate classes, ECOOP ’93: Proceedings of the 7th Euro-
pean Conference on Object-Oriented Programming (O.M. Nierstrasz, ed.),
Lecture Notes in Computer Science, vol. 707, Springer-Verlag, Kaiser-
slautern, Germany, 1993.

10 , The Diesel language specification and rationale. Version 0.2.,
January 2006, available at http://www.cs.washington.edu/research/
projects/cecil/www/Release/doc-diesel-lang/diesel-spec.

pdf.
11 Chambers C, Chen W, Efficient multiple and predicated dispatching, OOP-

SLA ’99: Proceedings of the 14th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, ACM
Press, Denver, Colorado, United States, November 1999.

12 Chambers C, The Cecil Group, The Cecil language specifi-

cation and rationale. Version 3.2., February 2004, available at
http://www.cs.washington.edu/research/projects/cecil/

www/Release/doc-cecil-lang/cecil-spec.pdf.
13 Intel Corporation, Intel R© CoreTM2 Extreme Processor X68001 and

Intel R© CoreTM2 Duo Desktop Processor E60001 Sequence. Revision 002.,
September 2006, available at http://download.intel.com/design/
processor/datashts/31327802.pdf.

14 Ernst M, Kaplan C, Chambers C, Predicate dispatching: A unified the-

ory of dispatch., ECOOP ’98: Proceedings of the 12th European Conference
on Object-Oriented Programming (Jul E, ed.), Lecture Notes in Computer
Science, vol. 1445, Springer-Verlag, Brussels, Belgium, 1998.

15 Goldberg A, Robson D, Smalltalk-80: The Language and Its Implementa-

tion, Addison-Wesley, Reading, Massachusetts, United States, 1983.
16 The Open Group., available at http://www.unix.org/single_unix_
specification/.. The single UNIX specification, verison 3 (IEEE Std
1003.1 and ISO/IEC 9945).

17 Hamer J, Un-mixing inheritance with classifiers., Multiple Inheritance and
Multiple Subtyping: Position Papers of the ECOOP ’92 Workshop W1,
Utrecht, the Netherlands, June/July 1992.

18 Yasunori Harada, Kenichi Yamazaki, Richard Potter, CCC:User-defined

object structure in C, ECOOP 2001: Proceedings of the 15th European Con-
ference on Object-Oriented Programming (J. Lindskov Knudsen, ed.), Lec-
ture Notes in Computer Science, vol. 2072, 2001, pp. 118–129.

19 Yoav Hollander, Matthew Morley, Amos Noy, The e language: A freh sep-

aration of concerns., TOOLS Europe 2001: Proceedings of the 38th Interna-
tional Conference on Technology of Object-Oriented Languages and Systems
(Wolfgang Pree, ed.), IEEE Computer Society, Zurich, Switzerland, March
2001.

20 Igarashi A, Nagira H, Union types for object-oriented programming, SAC
’06: Proceedings of the 2006 ACM Symposium on Applied Computing,
ACM Press, Dijon, France, April 2006.

21 Wilf R. LaLonde, Dave A. Thomas, John R. Pugh, An exemplar based

Smalltalk, OOPSLA ’86: Proceedings of the 1st Annual ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, SIGPLAN Notices, vol. 21, Portland, Oregon,
United States, September 1986.

22 McAllester D, Zabih R, Boolean classes, OOPSLA ’86: Proceedings of the
1st Annual ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, SIGPLAN Notices,
vol. 21, ACM Press, Portland, Oregon, United States, September 1986.

23 Millstein T, Practical predicate dispatch, OOPSLA ’04: Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-oriented Programming,

Per. Pol. Elec. Eng.96 Ádám Balogh / Zoltán Csörnyei

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-diesel-lang/diesel-spec.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-diesel-lang/diesel-spec.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-diesel-lang/diesel-spec.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-lang/cecil-spec.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-cecil-lang/cecil-spec.pdf
http://download.intel.com/design/processor/datashts/31327802.pdf
http://download.intel.com/design/processor/datashts/31327802.pdf
http://www.unix.org/single_unix_specification/.
http://www.unix.org/single_unix_specification/.


Systems, Languages, and Applications, ACM Press, Vancouver, British
Columbia, Canada, October 2004.

24 Mugridge W B, Hamer J, Hosking J G, Multi-methods in a statically-

typed programming language, ECOOP ’91: Proceedings of the 5th Euro-
pean Conference on Object-Oriented Programming (G. Goos, and J. Hart-
manis, eds.), Lecture Notes in Computer Science, vol. 512, Springer-Verlag,
Geneva, Switzerland, July 1991.

25 Drad A. Myers, Dario A. Giuse, Brad Vander Zanden, Declarative

programming in a prototype-insance system: Object-oriented programming

without writing methods, OOPSLA ’92: Proceedings of the 7th Annual ACM
SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SIGPLAN Notices, vol. 27, ACM Press,
Vancouver, British Columbia, Canada, October 1992.

26 Stein L A, A unified methodology of object-oriented programming, Inher-
itance Hierarchies in Knowledge Representation and Programming Lan-
guages, Wiley & Sons, 1991.

27 Ungar D, Chambers C, Chang B W, Hölzle U, Organizing programs with-

out classes, Lisp and Symbolic Computation, vol. 4, Kluwer Academic Pub-
lishers, June 1991.

28 Ungar D, Smith R B, SELF: The power of simplicity, OOPSLA ’87: Pro-
ceeding of the 2nd Annual ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, SIG-
PLAN Notices, vol. 22, ACM Press, Orlando, Florida, United States, October
1987.

29 Yelland P M, Expreimental classification facilities in Smalltalk, OOPSLA
’92: Proceedings of the 7th Annual ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions, SIGPLAN Notices, vol. 27, ACM Press, Vancouver, British Columbia,
Canada, October 1992.

Polymorphism in System Programming Languages 972007 51 3-4


	Motivation
	Basic types
	Generic discrete types
	Predefined discrete types
	Floating point types
	Type constructions

	System Predicate Classes
	Inheritance
	Predicates
	Simple inheritance
	Overlapping
	Extension
	Redefinition

	Objects

	Implementation issues
	Open Problems and Future Plans
	Related Work
	Conclusions

