periodica polytechnica

Electrical Engineering

51/3-4 (2007)[99HII0

doi: 10.3311/pp.ee.2007-3-4.04
web: hitp:/www.pp.bme.hu/ee
© Periodica Polytechnica 2007

RESEARCH ARTICLE

Abstract

The growing importance of modeling and model transforma-
tion has attracted attention to create precise models and trans-
formations. Visual model definitions have a tendency to be in-
complete, or imprecise, thus, the definitions are often extended
by textual constraints attached to the model items. Textual con-
straints can eliminate the incompleteness stemming from the
limitations of the visual definitions. Object Constraint Language
(OCL) is one of the most popular constraint languages in the
field of UML, Domain Specific Modeling Languages, and model
transformations. Efficient constraint handling needs the opti-
mization of the constraints. Our research focuses on creating
optimization algorithms for OCL constraint handling. This pa-
per presents three algorithms that can accelerate the validation
process, and thus, make the modeling more efficient. Proofs are
also provided to show that the optimized and the unoptimized
code are functionally equivalent, and the paper contains a sim-
ple case study to show the practical relevance of the algorithms.

Keywords
Modeling - OCL - Formalism

Acknowledgement
The found of Mobile Innovation Centre supported, in part, the
activities described in this paper.

Gergely Mezei
Department of Automation and Applied Informatics, BME, H-1111 Budapest,
Goldmann Gyorgy tér 3., Hungary
e-mail: gmezei @aut.bme.hu

Tihamér Levendovszky
Department of Automation and Applied Informatics, BME, H-1111 Budapest,
Goldmann Gyorgy tér 3., Hungary
e-mail: tihamer @aut.bme.hu

Hassan Charaf
Department of Automation and Applied Informatics, BME, H-1111 Budapest,
Goldmann Gyorgy tér 3., Hungary
e-mail: hassan @aut.bme.hu

Optimization algorithms for OCL
constraint evaluation in visual models

Gergely Mezei | Tihamér Levendovszky / Hassan Charaf

Received 2007-10-03

1 Introduction

Language engineering is the basis of several well-known
techniques, such as Domain Specific Modeling Languages
(DSMLs). On the one hand visual language definitions have
many advantages, since they allow creating models using a high
level of abstraction, the customization of model rules and nota-
tion. On the other hand these definitions have the tendency to
be imprecise, incomplete, and sometimes even inconsistent. For
example, assume a domain describing computer networks. A
computer can have input and output connections, but these con-
nections use the same cable with maximum 7 channels. Thus,
the number of the maximum available output connections equals
the total number of channels minus the current number of input
channels. It is hard, or even impossible to express this relation
in a visual way in a UML class diagram, for instance. Another
example is a resource editor domain for mobile phones, where
it is useful to define the valid range for slider controls.

The lack of completeness applies to model transformations as
well. Beyond the topology of the visual models in the trans-
formation, additional constraints must be specified ensuring, for
example, the validation of attribute values. Assume a transfor-
mation defining a breadth-first searching algorithm. Here, it is
useful to distinguish the visited and not visited nodes. It is often
tedious to describe this information using topological transfor-
mation rules only.

The solution of both problems is to extend the visual defi-
nitions by textual constraints. There exist several textual con-
straint languages, the Object Constraint Language (OCL) is pos-
sibly the most popular among them. OCL was originally devel-
oped to create precise UML diagrams [1] only, but the flexibility
of the language made possible to reuse OCL in language engi-
neering, such as in metamodeling [2]. Nowadays, OCL is one
of the most wide-spread approaches in metamodeling and model
transformations. The textual constraint definitions of OCL are
unambiguous and still easy to use.

Using OCL, precise models and transformations can be cre-
ated, but the efficiency, the performance of the validation is es-
sential, especially when the size of the models (the number of
the model items) is large. There are several academic and indus-

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 99

http://www.pp.bme.hu/ee

trial tools and environments that use OCL to extend incomplete
model definitions in visual languages, or in model transforma-
tions, but none of these tools supports constraint optimization.

Our tool, named Visual Modeling and Transformation Sys-
tems (VMTS) [3] is an n-layer metamodeling and model trans-
formation tool. VMTS uses OCL constraints in model valida-
tion and also in graph rewriting-based model transformation [4].
VMTS contains an OCL 2.0 compliant constraint compiler that
generates a binary executable for constraint validation [J5].

Our work focuses on creating a complete optimized constraint
handling solution based on the experiences gained from the im-
plementation of an OCL compiler in VMTS. The primary aim of
this paper is to give an overview on this method. The presented
solution consists of three algorithms, which have been imple-
mented in VMTS to increase the efficiency of the constraint val-
idation. The algorithms do not rely on system-specific features,
thus, they can be easily implemented in any other modeling or
model transformation framework. The first two algorithms re-
duce the number of navigation steps by relocating and decom-
posing the constraints. The first version of these algorithms was
presented in [6]. Since then, the algorithms have been improved
and more appropriate usability conditions have been created.
The paper presents these conditions and the improved version
of the algorithms as well. The third algorithm is used to reduce
the number of model queries by caching the referenced values.
The paper also gives a concise description about placing the al-
gorithms in the compiler control flow, and it describes how the
three algorithms can cooperate. Proofs of correctness for the
algorithms and a short case study are also provided.

The paper is organized as follows: Section elaborates on
some of the most popular tools that support constraint checking
based on OCL. Section [2.2]shows a basic OCL compiler imple-
mented in VMTS. The introduction of the non-optimizing com-
piler is useful to place the optimizing algorithms in the compiler
control flow, and make the analysis of the mechanism of the
algorithms easier. Section [3.1]and [3.2] present the constraint re-
location algorithm, Section @] describes the constraint decom-
position, and Section[3.4]elaborates on a caching algorithm. The
details of the optimizing OCL compiler are presented in Section
B.3] Section 3.6 contains a case study, where the algorithms are
shown in practice. Finally, Section [4] summarizes the presented
work.

2 Background

2.1 Related work

There are several tools supporting OCL constraint handling.
This section deals with the most typical validation tools and
compilers only.

Object Constraint Language Environment (OCLE) [7] is a
UML CASE Tool.
checking at the user model level. The tool has a user-friendly

OCLE supports both static and dynamic

graphical interface. Although the tool supports model checking,
it does not use compiling techniques.

The Dresden OCL Toolkit (DOT) [8[I[9] generates Java code
from OCL expressions, and then instruments the system in five
steps: (i) OCL expressions are parsed using a LALR(1) parser
generated with SableCC [10]. The result of the step is an Ab-
stract Syntax Tree (AST). (ii) A limited semantic analysis is per-
formed on the AST to find errors. (iii) The AST is simplified in
order to make the further processing simpler. (iv) The code gen-
erator traverses the simplified AST and builds Java expressions.
(v) The generated code is inserted into the system that contains
the constraint source code, thus, the contracts can be tested at
runtime. DOT does not support metamodeling, or constraint op-
timizing techniques.

Kent Modeling Framework [[11]] is a set of projects that sup-
ports model driven software development. One of these projects
is KMFStudio that can generate modeling tools from metamod-
els. KMFStudio supports the dynamic evaluation of OCL con-
straints. The tool has been integrated into Eclipse. It enables the
language to be bridged to other Eclipse-based modeling frame-
works. The Kent Modeling Framework does not use optimizing
algorithms to improve the efficiency of the constraint validation.

Open Source Library for OCL (OSLO) [12] is a further de-
velopment of Kent OCL Library. OSLO is based on the Eclipse
framework. OSLO supports OCL 2.0 functions for arbitrary
metamodels based on EMF, and constraint checking for UML2
models (Eclipse UML2). OSLO supports constraint checking in
metamodeling, but not in model transformations. Since it is a
recent project, not all of the supported features are introduced in
depth.

2.2 VMTS OCL 2.0 Compiler

VMTS OCL Compiler consists of several parts (Fig. [T). This
section gives a short description of the architecture of the com-
piler.

The user defines the constraints in OCL, then the textual con-
straint definitions are tokenized and syntactically analysed. The
lexical analysis creates a sequence of token from the constraints.
Tokenization is accomplished by Flex [[13]]. Syntactic analysis
uses Bison [[14]] to build a syntax tree from the tokens according
to the grammar rules of OCL specified in EBNF format [[1]]. To
accommodate the ambiguities in the specification, the grammar
rules are simplified. The syntax tree does not contain all the nec-
essary information, thus, it is extended e.g. with type informa-
tion, and implicit self references. This amendment is performed
in the semantic analysis phase, and it produces a semantically
analysed syntax tree. Using the semantic information, the sim-
plifications made during the tree building can be corrected. In
the next step, the constructed and semantically analysed tree is
transformed to a CodeDOM tree. CodeDOM [135]] is a .NET-
based technology that describes programs using abstract trees.
Using the abstract trees, it can generate code to any languages
that is supported by the NET CLR (like C#, or Visual Basic).
The compiler transforms the CodeDOM tree to C# source code.
To support the base types available in OCL, a class library has

100 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

Lexical and

tactic Analysi
Constraint in oCL | SYntactic Analysis

(OCL)

Syntax tree

Build

Binary validation
checker
(executable)

Source Code
(C#)

Semantic
Analysis Semantic Analysed
Syntax tree
ﬂTree Construction
Code Dom

CodeDom Tree

=

Fig. 1. VMTS OCL Compiler 2.0 Architecture

been developed. The constraint classes inherit from the base
classes implemented in this class library. The output of the OCL
compiler is a binary assembly (a .dll file) that implements the
validation methods.

Since the constraints are compiled only once, not each time
when the constraints are evaluated, the validation process is
fast and efficient. The compiled OCL validation assembly can
be used either in model validation, or in graph transformation.
There are no differences between the two cases in handling the
constraints: the editing framework (VMTS Presentation Frame-
work, [3]]) collects the appropriate model items and invokes the
validation method for them.

3 Optimizing Algorithms

In general, the evaluation of OCL constraints consists of two
steps: (i) selecting the model items and their attributes that are
used in the constraint, and (ii) executing the validation method.
Our optimization algorithms focus on the first step, because of
two reasons: (i) The efficiency of the validation is heavily af-
fected by the implementation of the OCL library (types and
expressions), thus, the optimization is usually implementation-
specific. (ii) In general, the first step has more serious compu-
tational complexity, since each navigation step means a query
in the underlying model. The original version of the first two
algorithms were published in [6].

It is essential not to change the result of the constraint evalu-
ation by the optimization algorithms. A constraint modification
is correct if, and only if the output of the optimized and origi-
nal constraint is the same for every possible input. In general,
correctness is even more important, than efficiency. Thus, it is
rigidly checked whether the presented algorithms are correct.

3.1 Constraint Relocation

One of the most efficient way to accelerate the constraint eval-
uation is to reduce the navigation steps in a constraint without
changing the result of it. This is the aim of the first algorithm,
called RelocateConstraint (Alg. [I). The algorithm processes
the propagated OCL constraints, and tries to find the optimal
context for the constraint. Therefore, the algorithm consists of
two major parts: (i) searching for the optimal node (and Reloca-
tionPath) (Alg.) and (ii) relocating the constraint if necessary
(Algorithm [3).

The first part of the RelocateConstraint algorithm is based on

Algorithm 1 The new RELOcATECONSTRAINT algorithm
1: ReLocaTECONSTRAINT(Constraint, OriginalContext)
2: Optimal Path = SEARCHOPTIMALNODE(OriginalContext, NULL)
3: if Optimal Path.Last Element # OriginalContext then

4: UppaTEANDRELOCATE(Constraint,Optimal Path)

the SearchOptimalNode function (Alg. [2). Since the original
and the optimal node are not always neighbours, the optimiza-
tion stores a path between the original and the new context. This
path is called RelocationPath. Storing this additional informa-
tion is necessary, because there can exist more than one paths
between the two nodes in the host graph. The differences be-
tween the paths can mean that one path is acceptable, while the
other is not. Where an acceptable RelocationPath means a path
that results a correct relocation of the constraint. The result of
the SearchOptimalNode function is the RelocationPath.

Since the relocation is not always possible, the function
checks the relocation requirements during the search (Stepls-
Valid). Thus, invalid RelocationPath candidates are dropped as
soon as possible. SearchOptimalNode uses a recursive breadth-
first-search strategy to find all possible candidates. Relocation-
Path is handled by the external funcion Append. CalculateSteps
is another external function that calculates the number of model
queries in the case when the new context is located in N using
the current RelocationPath.

CalculateSteps examines the OCL expressions in the con-
straints one by one and counts the number of navigations and
attribute references, used during evaluation of the constraint.
CalculateSteps simulates executing the constraint in order to be
able to apply this computation. Since only the metamodel, not
the model is available at the moment of optimization, the func-
tion uses worst case approximation, where the multiplicity of
model items is a range, not a number. Therefore, the complex-
ity of CalculateSteps can be expressed as O (n¥), where n is the
number of model references in the constraint expression, while k
is the size of the largest interval of possible multiplicities. Note
that the optimization is applied offline, thus, the execution of
CalculateSteps does not increase the time of evaluation

If the new and the old context found by the SearchOptimalN-
ode function are not the same, then the constraint is relocated
and updated by the function UppaTEANDRELOCATE (Alg. [3).

The updating mechanism is based on path steps of the Relo-

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 101

Algorithm 2 The SEarcHOPTIMALNODE algorithm
. SEarRcHOPTIMALNODE(Node N, Path P)

: minSteps = CALCULATESTEPS(N)

: optimumCandidate = ApPEND(P, N)

: for all CN in ConnecTEDNODES(N) do

if STePIsVALID(C N) then
Local Optimum = SEARCHOPTIMALNODE(C N, ApPEND(P, N))
LocalSteps = CALcULATESTEPS(Local Optimum.Last Element)

if LocalSteps < minSteps then

R A A ol S

minSteps = LocalSteps

_.
=4

optimumCandidate = Local Optimum

—
—_

: return optimumCandidate

Algorithm 3 The UppaTEANDRELOCATE algorithm
1: UppareANpRELocATE(Constraint C, Node O, Path P)
2: for all Step in P do
3: if SourceMurripLICITY(Step)= Exactly One and

DestMutripLiciTY(Step)= Exactly One then
ExacTLYONEREWRITE(C)

if SourceMurtipLicITY(Step) # MoreT hanZero then
ApbForeacH (C)

if DestMutripLicITY(Step) # MoreT hanZero then

® >Nk

RemoveForeEAcH(C)

9: return optimumCandidate

cationPath: the algorithm updates the context declaration step-
by-step. Multiplicities on the source and destination side of the
path step under execution can affect, thus, the function handles
the different subcases distinctly. The multiplicity checking and
the constraint updating mechanisms are implemented in external
functions to improve the readability of the algorithm.

3.2 Restrictions to Constraint Relocation

The aim of the limitations is to eliminate the cases where the
result of the original and the optimized algorithms would differ.
To achieve this, it is necessary to examine when and how correct
relocations can be applied. In the following propositions, we say
— for the sake of simplicity — that a RelocationPath is correct,
although we mean that the relocation using the RelocationPath
is correct.

Proposition 1 [fthe steps of RelocationPath are separately cor-
rect, then their composition, the RelocationPath is also correct.

Example 1 The original constraint is located in node A, the op-
timal node is D (Fig. [2). Thus, the RelocationPath is drawn
from A to D (dashed line). If neither the relocation from node
A to C (solid line), nor the relocation from node C to D (dotted
line) change the result of the constraint, namely they are correct,
then the proposition states that the relocation from A to D is also
correct.

Proof 1 Let C be the original constraint and P a complex Relo-
cationPath found by the search steps. P contains finite number
of steps, since the host model contains finite number of model
items and no circular navigation operations are allowed in the

Fig. 2. The steps and the whole RelocationPath

path. When creating the RelocationPath we store visited model
items of the metamodel, if a certain step would like to add a
model item, which is already in the path, then we remove the
loop from the path. For example there is a metamodel with there
model items: A, B, C, D. Furthermore, there is a navigation from
A to B, a navigation from B to C, a navigation to C to B and a
navigation from C to D as well. When we try to create Relo-
catePath from A to D we do not add the loop between B and C
infinite times, but only once to the path.

Furthermore, let O be the original context; S the first step of P
and O’ the destination node of S in P. According to the premise
of the proposition the correctness of S is proven, thus, relocating
the constraint from O to O’ can be accomplished. After applying
this relocation, a new constraint, C’ can be constructed. Apply-
ing the relocation algorithm on C’ results a new RelocationPath,
P’ containing one less step, than the original one. Since P has a
finite number of steps, the algorithm always terminates.

Corollary 1 The steps in a path can be examined separately. If
in a certain case the correctness of the algorithm is proven to
be correct for each single navigation step in the RelocationPath,
then it is also proven for the whole RelocationPath. Thus, in
general, if the correctness of each possible single navigation
step is proven, then the correctness of the whole relocation is
proven. Therefore, it is enough to examine the correctness of

single relocation steps.

In the next propositions, the following abbreviations are used:
C denotes the original constraint, C’ the new constraint, My is
metamodel, M is model, O is the original context, N is the new
context. O and N are metamodel elements, and their instantia-
tions are Oy, O3...0,, and Ni, Nj...N,.

Example 2 Fig. [3] shows an example metamodel, its instanti-
ation, and the constraint relocation. The metamodel represents
a domain that can model computers, and display devices (here
monitors only). A single computer can use multiple monitors.
The model defines a simple constraint attached to the node Com-
puter, this constraint is relocated by the optimization to the node
Monitor. Using the abbreviations, we can say the following: My
is the metamodel shown in Fig. 3a, M is its instantiation (Fig.
E}’b). O is Computer, N is Monitor in My. O has two instantia-
tions, Computerl (O1) and Computer2 (O>). Similarly, Prima-
ryMonitor is N1, SecondaryMonitor is N7, and finally, Monitor
is Ns3.

Proposition 2 Navigation edges that allow zero multiplicity (on
either or both sides) cannot be used in RelocationPath.

102 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

Constraint

Computer N Prirang
Monitor
11 Computer1
computer Secnn_dary
Pelocation Monitor
1.7
dizplay Computer2 Monitor
Monitor

Constraint
a., b,

Fig. 3. Example metamodel and model

Proof 2 Let M be a model with Oy, N and N, defined (Fig.
M). Let N; be isolated (or at least not connected with Oy).

Constraint

Computer .
Monitor1

1.0 (N1)
computer 4@|
. Relocation Computer1 (01) Monitor?

. (H2)
display {atis]

Monitor

Constraint
a., b,

Fig. 4. Null multiplicity - metamodel and model

Let C and thus C’ contain an expression that is not valid in Ny,
but valid in N;. The evaluation of C results true, since N; is not
checked, because it is not connected with O1. However C’ fails,
thus, the relocation is not correct.

The multiplicity of relations in metamodels is defined by a
lower, and an upper limit. The limits can contain an integer rep-
resenting the number of participants exactly, or * allowing any
number of objects. In the following propositions, we categorize
the multiplicities:

e ZeroOrMore - the lower limit of the multiplicity is O (the up-
per limit is not important)

e ExactlyOne - the lower and the upper limit is also 1

e MoreThanOne - the lower limit is not 0, while the upper limit
is more, than 1

Proposition 3 A relation with multiplicity ExactlyOne on both
sides can be used for relocation. In this case the relocated ex-
pression differs from the original version in the navigation steps
(or navigation step sequences). The new constraint expression
is transformed from the original definition using the following
rules:

Rule 1. If the expression is a navigation to the new context
(N), then the expression is transformed into self.

Rule 2. If the expression is an attribute query in the old con-
text (O), then the new expression is a navigation from N to O
and an attribute query applied there (e.g. self.Manufacturer
is transformed to self.computer.Manufacturer).

Rule 3. If the expression is a navigation from the old context
(O), then the new expression is a navigation from N to O.

Rule 4. Other expressions in the constraint are not altered.

Example 3 Let the example metamodel cited above define that
computers are able to handle exactly one monitor, and monitors
are always connected to exactly one computer (Fig. [5). Fur-
thermore, let the constraint C state that the monitor is an LCD
monitor (display.Type = 'LCD’). In this case relocating the
constraint will result C’: Type = 'LCD’.

Constraint
Computer (01) Monitor1
Computer n (1)
1.1
Monitor2
computer Computer2 (02) 1::2] T
Relocation
1.1
display
Computer3 (03) Monitor3
Monitor (H3)

Constraint
a., b,

Fig. 5. ExactlyOne multiplicity on both sides - metamodel and model

Proof 3 An ExactlyOne multiplicity on both sides means that
O and N objects can refer to each other the same way (using
the role name of the destination node). The result of the naviga-
tion reference is always a single model item, not a set of model
items and not an undefined value. This means that changing the
navigation steps can be accomplished.

The transformation rules are also correct if the rules above are
satisfied:

Rule 1. The relocation has changed the context, thus, the
navigation step in the original context is not necessary any more.

Rule 2. and Rule 3. Since the original attribute reference,
or the destination node of the navigation is invalid in the new
context, thus, the constraint has to navigate back to the original
context first, and applying the expression there.

Rule 4. Rule 1-3 cover all possible valid attribute and navi-
gation expressions, thus, no additional rules are required.

Proposition 4 [f the multiplicity is ExactlyOne on the destina-
tion side, but MoreThanOne on the source side (not allowing
zero multiplicity), then the constraint expression can be always
relocated. In this case the constraint is encapsulated by a new
constructed forall expression. If the relocated constraint does
not contain any attribute reference to the original context node,
or navigation through it, then the forall expression can be
avoided.

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 103

The original expression cannot be used after relocation, be-
cause of the multiplicity MoreThanOne, which retrieves a set of
model items. The basic idea is to create an iteration on the el-
ements of the set; the iteration is not contained in the original
constraint.

Example 4 Let O contain a simple constraint referring to one
of its attributes, named IsAbstract. After the relocation, the
constraint is located in N and the reference self.IsAbstract
is transformed to self.O0->forall(0 | O.IsAbstract).
This forall expression is true only if the condition holds for
every elements in the set.

Example 5 The example model has been changed to meet the
requirements of the proposition (Fig. [6).

Constraint

Computer n Computer1 (01)
1.*
computer Computer? (02) Monitor2

Relocation (H2)
1.1
dizplay
Computer3 (03)
Monitor

Constraint
a., b,

Fig. 6. MoreThanOne — ExactlyOne multiplicity - metamodel and model

Let C be defined as self.Price <display.Price. If this
constraint is relocated, then it is transformed to

self.computer->forall (computer| computer.Price > self.Price)

expressing that each computer attached to the monitor has to
accomplish the condition. Note that the navigation from O to
N in display.Price was reduced to a single self reference
similarly to the ExactlyOne-ExactlyOne case.

Proof 4 The presented method ensures that each model item
on the original source side is processed, and the constraint is
checked for each model item. Since the ZeroOrMore multiplic-
ity is not allowed, the navigation is always possible. Inside the
forall loop, the name of the destination node is the iterator
value. Thus, this solution simulates ExactlyOne multiplicity on
both sides. The relocated and the original version are equivalent.

Proposition 5 If the multiplicity is ExactlyOne on the source
side, but MoreThanOne on the destination side (not allowing
optional multiplicity), then the constraint expression can be re-
located if and only if the original expression uses forall, or
not exists expression to obtain the referenced model items
of the new context. This means that only those relations can be
used where the original navigation selects all of the model items,
or none of them (no partial selection, or another operation is al-
lowed).

Example 6 The constraint self.N->count() or
self.N->select(N.IsUnique) cannot be relocated, but

the constraint self.N->forall (N.IsUnique) can.

Example 7 The example model shows the requirements of the
proposition (Fig. [7). Note that due to the preconditions of
the proposition, the references to Monitor are always set opera-
tions in Computer. This means that, for example, the expression
self.display.Price>300 cannot be used, because display
is a set, not a single value.

Constraint

Computer I Monitor 1
(NT)
1.1
computer - Computerd (01 Monitor2
Relocation K L (H2)
1.*
display
Monitor3
Monitor (N3)

Constraint
a., b,

Fig. 7. ExactlyOne — MoreThanOne multiplicity - metamodel and model

Let My contain three constraints: C1, C, and Cs using the
following definitions:

self.Price > 650

inv c2: self.display->count() > 5

inv cl:

inv c3: self.display->forall(m:Monitor| m.Price<300)

The proposition requires constraints to use forall expres-
sions to query the attributes of the new context, or the naviga-
tion paths through the new context. But this also means that any
other expression can be applied (for example a local attribute
query, such as in c/). In this case the method of ExactlyOne-
ExactlyOne multiplication can be used, thus, Ci becomes the
following:

inv cl: self.computer.Price > 650.

Complex set operations cannot be relocated according to the
proposition, thus, C» cannot be relocated either. This limitation
does not apply to Cs:

inv c3: self.Price<300.

Although the original and the relocated version of the constraint
seems to differ, they have the same meaning: all monitors must
be cheaper than 300 USD.

Proof 5 Firstly, the limitation to set operations is proven. In
case of the general selection operations, such as exists, the se-
lection criterion is true for some of the items and false for the
others. This can lead to two problems with the constraint rewrit-
ing: (i) the constraint validation can generate false results where
the selection criteria in the original expression is true/false, and
(ii) the partial results arising in N cannot be processed (for ex-
ample summarized) in O. Neither of these problems can be
solved, thus, a universal relocation in this case is not possible.

104 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

Secondly, it needs to be proven that relocation is possi-
Note that
not exists can be expressed using forall by negating the

ble along forall, or not exists expressions.
condition. The main difference between the previous (erro-
neous) subcase and this one is that here — if the model is valid
— the condition in the select operation is true (or false) for each
model item. Thus, the relocated constraint fails only, when the
original constraint also fails. The relocation algorithm trans-
forms forall expressions to single references. The relocated
constraint is checked for each node of the new context, thus, the
constraints are functionally equivalent.

Proposition 6 [f the multiplicity is MoreThanOne on both sides
(not allowing zero multiplicity) (Fig. [8), then the constraint ex-
pression can be relocated if and only if the original expression
uses forall, or not exists expressions to query the refer-
enced model items of the new context node.

Constraint
Computer1 (01)
Computer "
y Monitor1
F HA

Computer2 (02) L

computer

Relocation

1 !

display Monitor? Computer3 (03)

. (H2)

Monitor

Constraint
a., b,

Fig. 8. MoreThanOne multiplicities - metamodel and model

Proof 6 This case is a combination of the previous cases. A
new forall expression is constructed such that it contains the
whole relocated constraint, then, inside this newly constructed
forall, the original forall and not exists expressions are
transformed to single navigation steps. The outer forall en-
sures that each O object is checked for each N, while the inner
expression holds the transformed original constraint.

Proposition 7 [fthe constraint contains more than one attribute
reference expressions and these expressions do not depend on
each other, then partial relocation is feasible. Partial relocation
means that some of the expressions are executed in the new con-
text, while others are executed in the original context. The orig-
inal context is reached using navigation. Partial relocation does
not apply to edges with zero multiplicity.

Proof 7 Since the proposition is true only for relations not al-
lowing zero multiplicity, the navigation between the original
and the new context is always possible. Both ExactlyOne and
MoreThanOne relations can be traversed according to the con-
structs presented earlier (either by single navigation steps, or
forall expressions). Thus, when the constraint is evaluated,

navigating back to the original context is always possible. In
this way, the relocated and the original functionality is the same.

Corollary 2 The task of finding possible destinations of reloca-
tion can be reduced to a simple path-finding problem from the
original context to the new one, where relations allowing zero
multiplicity cannot be the part of the path. Note that this path, if
exists, is the RelocationPath mentioned earlier.

Proposition 8 The RelocateConstraint algorithm is correct.

Proof 8 The steps of the SearchOptimalNode function do not
modify the constraint expression, they are used for informa-
tion gathering only. Thus, only the UpdateAndRelocate function
needs to be examined. This function applies the relocation ac-
cording to the presented restrictions. The relocation path is de-
composable according to Prop. [I] and all possible multiplicity
variations are covered for a single path step. This means that the
function UpdateAndRelocate does not modify the result of the
evaluation, thus, the RelocateConstraint algorithm is correct.

3.3 Decomposing Constraints

Constraints are often built from sub-terms and linked with
operators (self.age=18 and self.name="Jay’), or require prop-
erty values from different nodes (self.age=self.teacher.age). In
these cases, using the RelocateConstraint algorithm, it is not
possible to eliminate all navigation steps from the query. Al-
though the subterms are not decomposable in general, they can
be partitioned to clauses if they are linked with Boolean oper-
ators. A clause can contain two expressions (OCL expression,
or other clauses) and one operation (AND/XOR/ IMPLIES) be-
tween them. The basic idea behind is that the result of the
Boolean operations sometimes requires the evaluation of one
of the operands only. For example in an AND expression,
such as self.Price>500 and self.display.Price>150 it
is enough to check the value of the first operand if it evaluates
to false.

Proposition 9 The operands of a Boolean operations cannot af-
fect each other, if the Boolean operation is the outermost expres-

sion in the constraint.

Proof 9 The only case, in which the independency is not true
between the operands is when the first subexpression has an ef-
fect on the second subexpression, thus, the first operand modi-
fies one or more values used in the second operand. These mod-
ified values can be either model attributes, or variables defined
in the current scope. The constraints used in validation can-
not modify the model according to the specification of OCL [1].
Local variables can be defined for example in Iterate, and Let
expressions, but using any variable definition would mean that
the outermost expression cannot be an expression linked with
Boolean operators. This means that the subexpressions of the
clauses are independent.

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 105

The independence of the operands is important, because this
means that their order of execution is not important. In case of
AND, OR and IMPLIES operations the value of one operand
can affect the results of the whole operation. In case of XOR
operations no such simplification is possible, thus, the optimiza-
tion does not use XOR in decomposing the constraint.

e If either operand is false, then the AND operation is always
false.

e If either operand is true, then the OR operation is always frue.

e If the first operand is false, then the IMPLIES operation is
always true.

o If the presented condition for the given operand is not satis-
fied, then both operands are evaluated.

The constraint decomposition is made by AnalyzeClauses al-
gorithm (Alg. @) works on the syntax tree of the constraint. The
algorithm is invoked for the outermost OCL expression of each
invariant, and recursively searches the constraint for possible
clause expressions and creates the clauses.

Algorithm 4 AnaLyzeCLAusEs algorithm
1: AnaryzeCrauses(Model Exp)

2: if (Exp is ANDEXPRESSION) or (Exp is OREXPRESSION) or
(Exp is ImpLIESExPRESsION) then
Clause = CReaTECLAUSE(Exp.RelationType)
Clause.ApDDEXPRESSION(ANALYZECLAUSES(Exp.Operandl))
Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand?))

: else

3

4

5

6: return Clause
7

8 if Exp is EXPRESSIONINPARENTHESES then
9

return ANALYZECLAUSES(Exp.Inner Expression)

10: else

11: if Exp is ONLYEXPRESSIONINCONSTRAINT then

12: Clause = CREATECLAUSE(SpecialClause)

13: Clause.ADDEXPRESSION(RELOCATECONSTRAINT(E X p))
14: return Clause

15: else

16: return RELOCATECONSTRAINT(EXp)

The steps of the algorithms are as follows: (i) If the current ex-
pression is a logical expression, then a new clause is created
with the appropriate relation type (AND/OR/IMPLIES), and the
two sides of the expressions are added to the clause as children.
The children are recursively checked, because they can also be
OCL expressions connected with logical operators (clauses can
contain other clauses as children). The result clause is retrieved
to handle the recursive calls. (ii) If the expression is between
parentheses, then the function returns the inner expression. This
substep is necessary, because the parentheses can modify the or-
der of the constraint processing. (iii) In other cases the OCL
expression cannot be decomposed. If it is the only expression in
the constraint then a special clause is created, the RelocateCon-
straint algorithm is processed on the expression, and the clause
is retrieved. If the expression is not the only expression in the

constraint, then the expression itself is atomic. In this case the
expression is relocated and then retrieved.

Example 8 There is a model for computers and monitors,
where the metamodel contains ExactlyOne multiplicities only
(Fig. 3). Furthermore, there is a constraint defined in Com-
puter, which ensures that the system can display images with
1024*768 pixels:

inv ComputerMonitorCompatibility:
self.Videocard.MaxResolution> 1024%768 and
self.Monitor.MaxWidth> 1024 and
self.Monitor.MaxHeight> 768

Note that Videocard is an attribute of Computer and MaxRes-
olution is the maximum resolution supported by the videocard of
the computer. Monitors manage this data by storing maximum
width and height (they are attributes of the Monitor item).

When wusing the AnalyzeClauses algorithm the fol-
lowing steps are applied: (i) the original constraint
C is divided into the clauses C; and C;, where Cj

is self.Videocard.MaxResolution>1024%768,
while Cy is self.Monitor.MaxWidth> 1024 and
self.Monitor.MaxHeight>768 The clauses are AND
clauses, what means that the model is valid only if both of the
clauses result in true. (ii) C; and C, are analysed again, C;
contains an outermost Boolean expression, it is divided into C3
and Cy. C1 and Cy; are AND clauses, they are parts of C,.
(iii) No further decomposition is possible, thus, the compiler
tries to find the optimal context for the clauses. As result, Cy
and Cy) is relocated into Monitor.
The final, hierarchical clause structure is as follows:

- AND Clause
|- C1
|- AND Clause (C2)
[- C21
|- C22

The overall navigation cost of the constraint (9) is reduced by
2, because MaxWidth and Max Height attributes can now be
accessed directly.

Proposition 10 The algorithm AnalyzeClauses is correct.

Proof 10 The algorithm AnalyzeClauses can be divided into
three main cases according to the type of the examined expres-
sion: (i) the expression is a complex (non-atomic) expression
with Boolean operators; (ii) the expression is an expression be-
tween parentheses; (iii) or the expression is an atomic expres-
sion.

In case (i) the result of the validation is modified only if the
subexpressions cannot be processed independently. That contra-
dicts Prop. 9]

In case (ii), where the inner expression (the expression be-
tween the parentheses) is recursively processed. The evaluation

106 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

order of the subexpressions is the same as that of the original
expression, and since no further modification is made, therefore
case (ii) does not affect the result of the constraints.

Case (iii) has two subcases. If the examined expression is the
only expression in the constraint, then a special clause is cre-
ated, and the relocated constraint is placed into it. The special
clause type is required only because of the uniformity. The in-
ner expression (the normalized constraint) is processed when it
is validated as if it were not contained in any clauses. The sec-
ond subcase applies when the examined expression is a part of
the constraint. In this case the relocated expression is returned.
In both subcases the result of the constraint is not modified. Case
(i) is used only if the constraint consists of two subparts linked
with Boolean operators. A clause is created that preserves the
Boolean operator, and the subexpressions are recursively pro-
cessed. The subexpressions are processed individually when
validating the constraint, and their results are connected using
the operator (the order of the subexpressions are the same as in
the original constraint).

Therefore the AnalyzeClauses algorithm is always correct.

3.4 Caching

Relocation and constraint decomposition algorithms can re-
duce the number of navigation steps, but cannot eliminate all of
them. Therefore, the validation still requires queries to obtain
the model elements, and their attributes. Thus, the number of
model queries is not optimal.

In compiler optimization, an occurrence of the expression E is
called a common subexpression if the value of E has previously
been computed, and it has not changed since then [16]]. In these
cases recomputing the expression can be avoided, because the
value of the expression is already known.

Proposition 11 In OCL constraints navigation steps and at-
tribute references are always common subexpressions, if they
are used more than once.

Proof 11 OCL specification defines the constraints as restric-
tions on one or more values, but these restrictions cannot have
any side-effects. This means that the constraint cannot change
the model, thus, the computed values can always be reused.

The presented idea is the basis of the third optimization algo-
rithm. On the one hand, caching the model items can eliminate
the redundant model queries in the constraint expressions. On
the other hand, the more attribute or navigation is cached, the
more memory the cache requires. Thus, only those expressions
are cached that are referenced more than once. The optimiza-
tion algorithm (the ReferenceCaching algorithm) has two main
steps: (i) obtaining statistical information about the model ref-
erences (GetCommonReferences algorithm), and (ii) caching the
evaluation expressions (CachingManagement algorithm).

Collecting the statistical information set from the whole con-
straint expression is not straightforward, because sometimes

only partial validation is required on a model. Thus, the caching
algorithms are used at the context level, the statistical informa-
tion of the different contexts are separated. Since the constraint
decomposition can change the contexts, for example it can di-
vide them into several clauses, the GetCommonReferences algo-
rithm is used after the decomposition.

The GetCommonReferences algorithm is shown in Alg. [3]
The algorithm uses a breadth-first search to traverse the syntax
tree recursively. It processes the attributes, the navigations and
the control flow expressions.

Algorithm 5 GETCoMMONREFERENCES algorithm

1: GETCoMMONREFERENCES(Current Expression)

2: if ExpresSIONTYPE(Current Expression) is ATTRIBUTEDEFINITION then
3: INCREASEREFERENCEPATH(Current Expression)
return

. if ExPresSIONTYPE(Current Expression) is NaVIGATIONSTEP then

4
5
6: INCREASEREFERENCEPATH(Current Expression)
7 for all Current Expression.Children as navStep do
8 GETCOMMONREFERENCES(nav Step)

9 return

10: if ExpressioNTYPE(Current Expression) 1is CONTROLFLOWEXPRESSION

then
11: minReferences = GETMINIMUMREFERENCESFOREXECUTIONPATH()
12: for all minReferences as modelltem do
13: INCREASEREFERENCEPATH(mod el [tem)
14: return
15: for all Current Expression.Children as child do
16: GeTCOoMMONREFERENCES(child)

The attribute calls and navigation expressions increment the
statistic of their path reference (using the IncreaseReferen-
cePath function). To minimize the number of queries, the al-
gorithm increments not only the reference of the full path, but
also the references of the path steps. For example, the ex-
pression self.employee.wi fe.Name will increase the statistics
with four entries: self, self.employee, self.employee.wife
and self.employee.wife.Name. The statistics contain even
the self element, because it is not cached if it is referred to
only once. In the algorithm this is why the child expressions,
namely, the steps of the path are recursively checked in the
case of NavigationSteps. Increasing the reference counter of
the path steps is useful if two expressions have a common
subset in the navigation steps, for example, in the expression
self.employee.wife.Name ='Mrs.'+self.employee.Name,
the path self.employee is used twice.

The control flow expressions are complex expressions that
have several execution paths, for example conditional expres-
sion, or loops. These expressions can affect the number of the
references according to their execution parameters. The prob-
lem is that these execution parameters are usually obtained at
run-time only. Therefore, the algorithm obtains the minimum
number of the references for each referenced objects for each
execution paths. For example in case of the conditional expres-
sions this means that both branches are processed, statistical in-

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 107

formation is collected for both branches, and then the results are
compared. For each model reference path (attribute, or naviga-
tion reference), the minimum number of references is obtained
and placed into the global statistical information set.

As the result of GetCommonReferences algorithm, the com-
piler has reliable statistical information. CachingManagement
algorithm uses this information to handle caching. Caching-
Management algorithm differs from the previously presented al-
gorithms, because it affects the generated source code directly
instead of affecting the syntax tree. Each time the compiler gen-
erates a navigation step or an attribute query, the statistics are
checked, and a cache (a local variable) is created if required.
This variable obtains the appropriate value from the database if
it has not been read before, or returns the value from the cache
if it is not the first query. If the model reference is not cached,
the code generator will create a conventional source code for it.

Proposition 12 The ReferenceCaching algorithm is correct.

Proof 12 The first step of ReferenceCaching algorithm (Get-
CommonReferences) obtains statistical information only, it does
not modify the evaluation. Therefore the only way Reference-
Caching algorithm can conflict with the original constraint defi-
nition is, if the cached references are not up-to-date. That would
contradict Prop. [T} thus the ReferenceCaching algorithm is al-
ways correct.

Proposition 13 Using the ReferenceCaching algorithm the
number of the applied queries is less than or equal to that
without optimization. Additionally, each attribute or naviga-
tion cached by the algorithm reduce the number of the database
queries, thus no unnecessary caching is applied.

Proof 13 The GetCommonReferences algorithm is applied at
design-time, it does not raise the number of the queries during
the evaluation. The CachingManagement algorithm handles two
types of model references: the cached, and the uncached refer-
ences. The source code and thus, the number of database queries
of uncached model references is the same as in the unoptimized
code. The cached references execute the appropriate database
query only if the required value is not in the cache, i.e. it has
not been read before. Therefore, neither the uncached nor the
cached references increase the number of the database queries.
The GetCommonReferences algorithm is executed for each
referenced context. If the context contains an expression that has
several possible execution paths, then every path is examined,
and for each model attribute and navigation the smallest number
of references is stored. The sequential execution paths are ex-
amined step-by step, and the statistics are increased if required.
As result the statistics contain the minimum number of the ref-
erences in the context for every model item (attribute, or naviga-
tion). The CachingManagement algorithm creates caching code
only for the model references that have greater statistical index,
than one. Since the statistics contain the minimum number of

the references of the current item, thus, no unnecessary caching
is performed.

3.5 An Optimizing Compiler

When constructing the optimizing compiler it is important to
place the algorithms in the compiler control flow. The opti-
mization algorithms require a semantically analysed syntax tree,
since, for example, the caching algorithms would not work with-
out proper type-information. Thus, the optimization algorithms
are used after the semantic analysis. The constraint decompo-
sition, relocation, and the statistical information retrieval algo-
rithms are executed before the code generation phase, because
they affect the syntax tree from which the code is generated.
The CachingManagement algorithm affects the code generation
directly, it is used during the code generation phase.

Proposition 14 The optimizing compiler consisting of the pre-
sented algorithms is correct.

Proof 14 Let H be an optional input model, and let H’ be the re-
sult model of the optimization executed by the AnalyzeClauses,
RelocateConstraint and ReferenceCaching (GetCommonRefer-
ences and CachingManagement) algorithms. We prove that
evaluating the constraints contained by H’ produces always the
evaluation in H.

The correctness of each algorithm has been proven in Props|§]
[[0]and[12] thus, only the composition of the algorithms, namely
the optimizing compiler is to be examined. The only way in
which H’ and H can have different results is that the algorithms
affect each other, and thus their composition changes the result
of the constraint. The algorithm ReferenceCaching is executed
independently from the other algorithms, and the proven correct
output of the AnalyzeClauses is the input of the RelocateCon-
straint algorithm. Thus, the result created by the composition of
the algorithms is always correct.

3.6 Case study

To show the applicability and the practical relevance of the re-
sults, a case study is provided. The case study contains a meta-
model (Fig. [Ofa) defining a DSL about processors. There are
three main types defined besides processors: data buses, copro-
cessors and computing units. Each helper unit can be connected
with the processor, additionally, the processor can communicate
with optional number of computing units. Fig. Qb shows an
example instantiation of the metamodel.

In the metamodel, there is a constraint defined in DataBus
model item:

context DataBus::CheckCacheSize() : Boolean

self.processor.coprocessor.Cache>1024 or

(self.processor.compunit->forall(CU | CU.PrimaryCache

CU.SecondaryCache > 512)
and self.processor.compunit->count()>2)

108 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

Computing
Unit1

Processor

W 5
1.4 DataBus Main C i
A Processor Unit 2
1.4
CompUnit

a. b.,

CoProcessor

Cum;_m‘l.ing
CoProcessor Cords

Fig. 9. Case study Metamodel and Model

The constraint evaluates to true, if there is at least 1024 byte
cache available. The constraint is useful to check for example
before memory operations. The original version of the con-
straint uses 22 model queries: (i) four queries to obtain the
Cache attribute of the CoProcessor, (ii) two queries to navi-
gate to Processor and another four queries for every Computin-
gUnit attached to the Processor, (iii) four queries to get the
number of ComputingUnits. If the RelocateConstraint algo-
rithm is used as optimization, then the constraint is relocated
to context Processor, thus, the number of queries is reduced
to 3+1+3*4+3 = 19. If both the AnalyzeConstraint and the
RelocateConstraint algorithms are used, then two clauses are
created from the constraint along the two boolean operands.
The first part of the first clause coprocessor.Cache>1024
is then relocated to CoProcessor, the first part of the sec-
ond clause CU.PrimaryCache+ CU.SecondaryCache > 512
to ComputingUnit items, but the second part of the second
clause (compunit->count ()>2) cannot be relocated from Pro-
cessor, because of the count function. This optimized ver-
sion requires 2+3*4+3= 17 queries. The optimizing compiler,
including all the three algorithms does not only modify the
clauses, but adds the ability to cache the queries. In this case
it is efficient in the second clause only, where each Computin-
gUnit is retrieved twice. Another clauses do not reuse the values
retrieved from the model. The number of queries in this case is
243*%243=11. This means that the number of model queries is
reduced by 50%. This ratio is rather high, because the primary
aim of the case study was to show how the optimization works.
We have found that in general, real life examples the optimiza-
tion can accelerate the validation process by approximately 10-
15%.

4 Conclusions

Constraint specification and validation lie at the heart of mod-
eling and model transformation. The Object Constraint Lan-
guage (OCL) is a wide-spread formalism to express constraints
in modeling and transformation environments. There are sev-
eral interpreters and compilers that handle OCL constraints, but
OCL constraint optimization is a rather new idea; none of the ex-
isting tools supports it. This paper has presented three efficient
and platform-independent optimization algorithms. The Relo-
cateConstraint algorithm tries to find the optimal context for the

constraint, and relocates it, if it is necessary. The relocation is
applied along a path between the original and the optimal con-
text, this path is called RelocationPath. Several limitations exist
to the algorithm based on the multiplicity between the nodes of
the path steps. The second algorithm, AnalyzeClauses can de-
compose the constraints to clauses if the outermost expression
is a boolean operation (AND/OR/IMPLIES, but not XOR). This
decomposition is useful, because the result of the operation of-
ten depends only on one of the clauses. The third algorithm,
ReferenceCaching is slightly different, instead of modifying the
constraints, it accelerates the validation by caching the model
queries. The presented algorithms together can form the base
of an optimizing OCL compiler. The correctness and the effi-
ciency of the algorithms have been proven. The paper has also
discussed a simple case study to show the optimization in prac-
tice.

The optimization used by the presented algorithms is based
on the characteristics of OCL, thus it produces a better result
than general optimization strategies. The weaknesses of the
general optimization strategies are that they (i) usually require
system-specific (tool-specific) solutions and (ii) cannot use par-
ticular OCL-specific algorithms. For example, the executing en-
vironment that executes the validation code cannot recognize au-
tomatically that attributes are always common subexpressions.
The different optimization algorithms, such as the algorithms
presented in the paper, and the query optimization of the under-
lying databases can be combined, to provide the optimal solu-
tion.

We have accomplished several simplified performance tests,
and we have found that the optimization presented in the pa-
per can accelerate the validation by 10-15% according to the
circumstances. Since only basic tests were applied, further test-
ing is required to give a detailed overview about the efficiency
of the algorithms against the optimization supported by the ex-
ternal tools. Also, further research is required in extending the
scope of the optimization algorithms and to accelerate the vali-
dation process by focusing the execution of the OCL statements
avoiding time consuming expressions, such as Alllnstances.

References

1 Warmer J, Kleppe A, The Object Constraint Language: Getting Your Mod-
els Ready for MDA, Addison Wesley, 2003. Second Edition.

2 Mezei G, Lengyel L, Levendovszky T, Charaf H, Extending an OCL
Compiler for Metamodeling and Model Transformation Systems: Unifying
the Twofold Functionality, INES (2006).

3 available at http://avalon.aut.bme.hu/tihamer/research/vmts,
VMTS Web Site.

4 Lengyel L, Levendovszky T, Charaf H, Compiling and Validating OCL
Constraints in Metamodeling Environments and Visual Model Compilers,
IASTED (2004).

5 Mezei G, Lengyel L, Levendovszky T, Implementing an OCL 2.0 Com-
piler for Metamodeling Environments, 4th Slovakian-Hungarian Joint Sym-
posium on Applied Machine Intelligence, SAM, 2006.

6 Mezei G, Lengyel L, Levendovszky T, Charaf H, Minimizing the Travers-
ing Steps in the Code Generated by OCL 2.0 Compilers, WSEAS Transac-

Optimization algorithms for OCL constraint evaluation in visual models

2007 51 3-4 109

http://avalon.aut.bme.hu/tihamer/research/vmts

tions on Information Science and Applications, Vol. 3, February 2006. Issue
4, pp. 818-824.

7 Object Constraint Language Environment, available at http://lci.cs.
ubbcluj.ro/ocle/.

8 Hamie A, Howse J, Kent S, Interpreting the Object Constraint Language,
Proceedings S5th Asia Pacific Software Engineering Conference (APSEC
’98), Taipei, Taiwan, 1998.

9 Dresden OCL Toolkit, available at http://dresden-ocl.sourceforge.
net/index.html|

10 SableCC, available at http://sablecc.org/.

11 Akehurst D, Linington P, Patrascoiu O, OCL 2.0: Implementing the Stan-
dard, Technical report, Computer Laboratory (November 2003). University
of Kent.

12 Open Source Library for OCL, available at http://oslo-project.
berlios.de/.

13 Flex, Official Homepage, available at http://www.gnu.org/software/
flex/.

14 Bison, Official Homepage, available at http://www.gnu.org/software/
bison/bison.html,

15 Thuan T, Hoang L, "NET Framework Essential”, O’Reilly, 2003.

16 Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers Principles, Tech-
niques, and Tools, Addison — Wesley, 1988.

110 Per. Pol. Elec. Eng.

Gergely Mezei / Tihamér Levendovszky / Hassan Charaf

http://lci.cs.ubbcluj.ro/ocle/
http://lci.cs.ubbcluj.ro/ocle/
http://dresden-ocl.sourceforge.net/index.html
http://dresden-ocl.sourceforge.net/index.html
http://sablecc.org/
http://oslo-project.berlios.de/
http://oslo-project.berlios.de/
http://www.gnu.org/software/flex/
http://www.gnu.org/software/flex/
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html

	Introduction
	Background
	Related work
	VMTS OCL 2.0 Compiler

	Optimizing Algorithms
	Constraint Relocation
	Restrictions to Constraint Relocation
	Decomposing Constraints
	Caching
	An Optimizing Compiler
	Case study

	Conclusions

