
Ŕ periodica polytechnica

Electrical Engineering
51/3-4 (2007) 111–118

doi: 10.3311/pp.ee.2007-3-4.05
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Models for predicting the performance
of ASP.NET Web applications
Ágnes Bogárdi-Mészöly / Tihamér Levendovszky / Hassan Charaf

Received 2007-10-03

Abstract
The most common consideration of web-based information

systems is performance. Performance metrics depend on many
factors. The first goal of our work is to analyse how some
of them affect the response time. Our results have shown that
the thread pool properties and the queue size limits are perfor-
mance factors. In addition, the distribution of the response time
has been determined. With the help of properly designed per-
formance models and evaluation algorithms, the performance
metrics of a system can be determined at the early stages of the
development process. The second goal of our work is to pre-
dict the response time, the throughput, and the tier utilization of
ASP.NET web applications, based on queueing models handling
one and multiple session classes. In addition, web applications
have been tested with concurrent user sessions to validate the
models in different versions of the ASP.NET environment.

Keywords
Performance factor · queueing model · performance predic-

tion

Acknowledgement
The authors would like to express their thanks to Prof. Takeshi

Hashimoto for his support (Shizuoka University, Department of
Electrical & Electronics Engineering, Hamamatsu, Japan).

Ágnes Bogárdi-Mészöly

Department of Automation and Applied Informatics, BME, 1111 Budapest,
Goldmann György tér 3., Hungary
e-mail: agi@aut.bme.hu

Tihamér Levendovszky

Department of Automation and Applied Informatics, BME, 1111 Budapest,
Goldmann György tér 3., Hungary
e-mail: tihamer@aut.bme.hu

Hassan Charaf

Department of Automation and Applied Informatics, BME, 1111 Budapest,
Goldmann György tér 3., Hungary
e-mail: hassan@aut.bme.hu

1 Introduction
Developing web-based information systems is not the only

issue anymore: operating, maintenance, and performance ques-
tions have become of key importance. One of the most im-
portant factors is performance, because network systems face
a large number of users, they must provide high-availability ser-
vices with low response time, while they guarantee a certain
level of throughput. These performance-related requirements of
a web application are often recorded in a Service Level Agree-
ment (SLA). These performance metrics depend on many fac-
tors. Several papers have investigated various configurable pa-
rameters, how they affect the performance of a web-based infor-
mation system. Statistical methods, hypothesis tests have been
used in order to retrieve factors influencing the performance. An
approach [1] applies analysis of variance.

The performance-related problems emerge very often only at
the end of a software project. With the help of properly de-
signed performance models, the performance metrics of a sys-
tem can be determined at the earlier stages of the development
process [2]. In the past few years several methods have been pro-
posed to address this goal. A group of them is based on queueing
networks or extended versions of queueing networks [3] [4] [5].
Another group uses Petri-nets or generalized stochastic Petri-
nets [6] [7]. The third proposed approach uses a stochastic ex-
tension of process algebras, like TIPP (Time Processes and Per-
formability Evaluation) [8], EMPA (Extended Markovian Pro-
cess Algebra) [9], and PEPA (Performance Evaluation Process
Algebra) [10].

Today one of the most prominent technologies of distributed
and web-based information systems is Microsoft .NET. Our first
goal was to investigate factors influencing the performance. A
web application has been tested with concurrent user sessions,
focusing on the effect of the different thread pool properties, the
global and the application queue size limits, and the measure-
ment results are analysed using statistical methods. Our second
goal was to predict the performance metrics based on queueing
models handling one and multiple session classes.

The paper is organized as follows. Section 2 covers back-
grounds and related work. Section 3 describes our performance

Models for predicting the performance of ASP.NET Web applications 1112007 51 3-4

http://www.pp.bme.hu/ee

measurements. Section 4 demonstrates the issue of the per-
formed independence tests and determines the distribution of the
response time. Section 5 presents the estimation of the model
parameters, the prediction of the performance metrics, and the
experimental validation of the models in different versions of the
ASP.NET environment. Finally, Section 6 presents our conclu-
sions and future work.

2 Backgrounds and Related Work
An application server has several settings which can affect

the performance [11]. As illustrated in Fig. 1, the request of the
client goes through several subsystems before it is served. From
the Internet Information Services (IIS), the accepted HTTP con-
nections are placed into a named pipe. This is a global queue
between IIS and ASP.NET, where requests are posted from na-
tive code to the managed thread pool. The global queue is man-
aged by the process that runs ASP.NET, and it is configured by
the processModel requestQueueLimit property. When the limit
is reached, the requests are rejected with a HTTP error 503.
From the named pipe, the requests are placed into an applica-
tion queue (also known as virtual directory queue). There is
one queue for each virtual directory. The number of requests in
these queues increases if the number of available workers and
I/O threads falls below the limit specified by httpRuntime min-
FreeThreads property. The application queue limit is configured
by the httpRuntime appRequestQueueLimit property. When this
limit is exceeded, the requests are rejected with a HTTP error
503.

Fig. 1. Architecture of ASP.NET

When an application pool receives requests faster, than it can
handle, the unprocessed requests might consume all of the mem-
ory, slowing the server and preventing other application pools
from processing requests. This can happen, when the queue size
limit is large and requests are coming in at a rapid rate or in case
of a denial of service (DoS) attack. The size of the global queue
and the size of the application queue must be limited to prevent
requests from consuming all the memory for the server and for
an application queue.

The maxWorkerThreads attribute means the maximum num-
ber of worker threads, the maxIOThreads parameter is the max-
imum number of I/O threads in the .NET thread pool (automat-
ically multiplied by the number of available CPUs). The min-
FreeThreads attribute limits the number of concurrent requests,

because all incoming requests will be queued if the number of
available threads in the thread pool falls below the value for this
setting. The minLocalRequestFreeThreads parameter is similar
to minFreeThreads, but it is related to requests from localhost
(for example a local web service call). These two attributes can
be used to prevent deadlocks by ensuring that a thread is avail-
able to handle callbacks from pending asynchronous requests.
According to the connections and limitations, the partition of
the .NET thread pool is shown in Fig. 2.

.NET Thread Pool

Free

Local Request
Free

Worker I/O

Fig. 2. Partitioning the threads in the .NET thread pool

Queueing theory [3] is one of the key analytical modelling
techniques used for computer system performance analysis.

Queueing networks and their extensions (such as queueing Petri
nets [12]) are proposed to model web applications [4] [5] [13].
In [5], a basic queueing model with some enhancements is pre-
sented for multi-tier web applications. An application is mod-
elled as a network of M queues: Q1, ..., QM (Fig. 3). Each
queue represents an application tier. A request can take multi-
ple visits to each queue during its overall execution, thus, there
are transitions from each queue to its successor and its predeces-
sor as well. Namely, a request from queue Qm either returns to
Qm−1 with a certain probability pm , or proceeds to Qm+1 with
the probability 1 − pm . There are only two exceptions: the last
queue QM , where all the requests return to the previous queue
(pM = 1) and the first queue Q1, where the transition to the pre-
ceding queue denotes the completion of a request. Sm denotes
the service time of a request at Qm (1 ≤ m ≤ M).

Fig. 3. Modelling a multi-tier web application using a queueing network

Internet workloads are usually session-based. The model can
handle session-based workloads as an infinite server queueing
system Q0 that feeds the network of queues and forms the closed

Per. Pol. Elec. Eng.112 Ágnes Bogárdi-Mészöly / Tihamér Levendovszky / Hassan Charaf

queueing network depicted in Fig. 3. Each active session is in
accordance with occupying one server in Q0. The time spent
at Q0 corresponds to the user think time Z . It is assumed that
sessions never terminate.

An enhancement of the baseline model [5] can handle multi-
ple session classes. Incoming sessions of a web application can
be classified into multiple (C) classes. N is the total number of
sessions as previously, and Nc denotes the number of sessions
of class c, thus, N =

∑C
c=1 Nc. A feasible population with n

sessions means that the number of sessions within each class c
is between 0 and Nc, and the sum of the number of sessions in
all classes is n. In order to evaluate the model, the service times,
the visit ratios, and the user think time must be measured on a
per-class basis.

The model can be evaluated for a given number of concurrent
sessions N . A session in the model corresponds to a customer in
the evaluation algorithm. The MVA algorithm for closed queue-
ing networks [3] [14] iteratively computes the average response
time of a request and the throughput. The algorithm introduces
the customers into the queueing network one by one, and the
cycle terminates when all the customers have been entered. In
addition, the utilization of the queues can be determined from
the model, using the utilization law [3]. The utilization of the
queue m is Um = X Vm Sm , where X is the throughput and Vm is
the visit number (the number of visits to Qm made by a request
during its processing).

MVA is a recursive algorithm. Handling one session class
for large values of customers, or if the performance for smaller
values is not required, MVA can be too expensive computation-
ally. If we handle multiple session classes, the time and space
complexities of MVA are proportional to the number of feasible
populations, and this number rapidly grows for relatively few
classes and jobs per class. Thus, it can be worth using an approx-
imate MVA algorithm [3] or a set of two-sided bounds [3] [15].
These bounds referred to as balanced job bounds are based on
the issue that a balanced system has a better performance than a
similar unbalanced system. A system without a bottleneck de-
vice is called a balanced system, in other words, the total service
time demands are equal in all queues. The balanced job bounds
are very tight, the upper and lower bounds are very close to each
other as well as to the real performance.

3 Performance Measurements
The web server of our test web application was IIS 6.0. The

server runs on a 2.8 GHz Intel Pentium 4 processor with Hyper-
Threading technology enabled. It had 1GB of system memory;
the operating system was Windows Server 2003 with Service
Pack 1. The clients ran on another PC on a Windows XP Profes-
sional computer with Service Pack 2. They run on a 3 GHz Intel
Pentium 4 processor with Hyper-Threading technology enabled,
and it also had 1GB system memory. The connection among the
computers was provided by a 100 Mb/s network. The emula-
tion of the browsing clients and measuring the response time

was performed by ACT (Application Center Test) and JMeter.
Virtual users send a list of HTTP requests to the web server con-
currently.

ACT is a stress testing tool included in Visual Studio .NET
Enterprise and Architect Editions. The test script can be
recorded or manually created. Each test run has warm-up time
for the load to reach a steady-state. In the user scenario, ran-
dom sleep times are included to simulate the realistic usage of
the application. JMeter is an open source load tester. The test
can be created on a graphical interface. Each virtual user inserts
an exponentially distributed think time between its requests with
mean 4 seconds. The threads started gradually, in a 50 seconds
interval. With the help of JMeter, the measurement process can
be automated easily.

There were two environments. In the first environment, the
application server was ASP.NET 1.1 runtime environment, the
database management system was Microsoft SQL Server 2000
with Service Pack 3. In the second environment, ASP.NET
2.0 and Microsoft SQL Server 2005 with Service Pack 1 were
used. Three-tier ASP.NET test web applications have been im-
plemented in different versions of the ASP.NET environments
(Fig. 4). Compared to a typical web application, they have been
slightly modified to suit the needs of the measurement process.

Presentation layer ASP.NET web forms

C# classes

ADO.NET

SQL rverse

Data access layer

Database layer

Business logic layer

Fig. 4. The test web application architecture

4 Methods for Retrieving and Investigating Perfor-
mance Factors
According to the connections and limitations, the settings of

our measurements are demonstrated in details in Table 1 and
Table 2. One line means one set of measurements. In each set,
one of the parameters is changed in the noted interval, the oth-
ers are held on default (d) or recommended (r) values. Hyper-
Threading technology is enabled on the processor of the server.
Thus, it seems to have two processors, although physically there
is only one processor. Therefore, the recommended values [11]
which are automatically multiplied by the number of processors,
are divided by two. With the values in Table 2, it is expected that
both the saturation of the global and the application queues can
be observed.

During the measurements, the number of simultaneous
browser connections was 50, while firstly the thread pool prop-
erties, secondly the global and the application queue limits are
varied. The response time, the throughput, and the rate of un-
successful requests were measured. Furthermore, the CPU uti-
lization and available memory are monitored with the help of

Models for predicting the performance of ASP.NET Web applications 1132007 51 3-4

Tab. 1. Settings of the thread pool properties (the global and the application queue limits are held on default values)

maxWorkerThreads maxIOThreads minFreeThreads minLocalRequestFreeThreads

5-104 20 (d) 8 (d) 4 (d)

20 (d) 5-104 8 (d) 4 (d)

50 (r) 50 (r) 4-92 4 (d)

50 (r) 50 (r) 88 (r) 2-88

the integrated counters. The results of the measurement process
are analysed using statistical methods [3] with the help of MAT-
LAB.

Tab. 2. Settings of the global and the application queue limits (the thread
pool properties are held on default values)

requestQueueLimit appRequestQueueLimit

30-69 100 (d)

5000 (d) 5-44

4.1 Searching Factors Influencing the Performance
The chi square test of independence must be performed

to investigate whether each input and output are independent
(whereas in case of other inputs the default or recommended
values are preserved). The inputs are maxWorkerThreads, max-
IOThreads, minFreeThreads, minLocalRequestFreeThreads, re-
questQueueLimit, and appRequestQueueLimit; the investigated
output is the response time.

The inputs (individual values) are classified into categories
according to the increasing order with the same number of val-
ues. Since the output follows a continuous distribution, it is
discretized. Practically intervals of equal lengths and intervals
with integer endpoints are used. The length of intervals is en-
larged, we would like to see as many values more than 5-6 as
possible, according to the recommendations. The null hypoth-
esis (H0) is: There is no relationship between each input and
output (variables are independent). Alternate hypothesis (H1) is
the following: There is a relationship between them (variables
are dependent). The chi square statistic is

χ2
=

∑
i, j

(Oi j − Ei j)
2

Ei j
, (1)

where Oi j is the observed frequency and Ei j is the expected
frequency under the assumption

Ei j =
ki. ∗ k. j

N
. (2)

The detailed results are depicted in Table 3. In cases
of the maxWorkerThreads, requestQueueLimit, and appRe-
questQueueLimit parameters, the null hypothesis is rejected at
every acceptable level of significance, because the chi square
statistic is larger than the critical values belonged to each ac-
ceptable level of significance. In case of the minLocalRequest-
FreeThreads the null hypothesis is rejected at 0.01 level of sig-
nificance. This means that in 1 % or 1/100 cases we will reject

the null hypothesis when in fact it is true. In case of maxIO-
Threads and minFreeThreads the null hypothesis is rejected at
0.05 level of significance. In other words, in 5 % or 1/20 cases
we will reject the null hypothesis when it should be accepted.
Therefore, these can be enough evidence to reject the H0 hy-
pothesis in case of every parameter.

Tab. 3. The detailed results of the executed chi square statistics

Input Chi square Degrees of Alpha Critical H0statistic freedom value

Worker 35.2273 12 0.0005 34.8213 False

0.05 21.0261 False
I/O 22.9695 12

0.025 23.3367 True

0.05 16.919 False
Free 17.9158 9

0.025 19.0228 True

0.01 21.666 False
Local Free 22.7033 9

0.005 23.5894 True

Global 39.4053 6 0.0005 24.1028 False

Application 46.1099 6 0.0005 24.1028 False

In IIS 5.0, ASP.NET makes use of the I/O threads first, only
then it will jump over to the working threads and start to make
use the working threads. In IIS 6.0, worker threads have taken
the role of I/O threads, and I/O threads are only related to I/O
calls. Thus, the response time depends on the number of I/O
threads ‘less’ than worker threads.

Theorem 1 The .NET thread pool limits (maxWorkerThreads,
maxIOThreads, minFreeThreads, and minLocalRequest-
FreeThreads), as well as the global and the application queue
size limits (requestQueueLimit and appRequestQueueLimit) are
performance factors, what is proven by a statistical method,
namely, the chi square test of independence.

4.2 Determining the Distribution of the Response Time
The simplest way of the determination is to plot a histogram

of the observed response times (Fig. 5). But there is a key prob-
lem with histogram: depending upon the used bin size, it is pos-
sible to draw very different conclusions.

A better technique is to plot the observed quantiles versus the
theoretical quantiles in a quantile-quantile plot. The applied the-
oretical distribution is normal distribution according to the con-
jecture from histograms. If the distribution of observed response
times is normal, the plot will be close to linear. The result plot
can be seen in Fig. 5. Based on the data, the response times do
appear to be normally distributed.

Per. Pol. Elec. Eng.114 Ágnes Bogárdi-Mészöly / Tihamér Levendovszky / Hassan Charaf

Fig. 5. Histogram (uses 20 bins), quantile-quantile plot and normal probability plot

The test of normality can be executed graphically using the
normal probability plot. If the data comes from a normal dis-
tribution, the plot will appear linear (other probability density
functions will introduce curvature in the plot). The normal prob-
ability plot of the response times is shown in Fig. 5. The data
follows a straight line but departs from it at ends. This means
that the data has longer tails than the normal distribution.

The test of normality can be performed numerically with the
help of certain hypothesis tests. The Bera-Jarque test [16] statis-
tic is based on estimates of the sample skewness and kurtosis.
The test evaluates the hypothesis that the response time is nor-
mal with unspecified mean and variance, against the alternative
that response time is not normally distributed. The detailed re-
sults are represented in Table 4. In most cases the null hypoth-
esis is true at every acceptable level of significance (in case of
minFreeThreads the null hypothesis is rejected only at 0.01 level
of significance). This would mean that the response time fol-
lows a normal distribution. But this test is an asymptotic test,
thus care should be taken with small sample sizes.

Tab. 4. The detailed results of the performed Bera-Jarque tests

Parameter Test statistic Alphas Critical value H0

Worker 1.0069 0.1 4.6052 True

I/O 1.4451 0.1 4.6052 True

0.025 7.3778 True
Free 7.1708

0.05 5.9915 False

Local Free 1.4786 0.1 4.6052 True

Tab. 5. The detailed outcomes of the executed Lilliefors tests

Parameter Test statistic Alphas Critical value H0

Worker 0.143 0.1 0.184 True

I/O 0.1507 0.1 0.201 True

Free 0.1554 0.1 0.184 True

Local Free 0.1644 0.1 0.184 True

The hypotheses of the Lilliefors test [17] are the same. The
test compares the empirical cumulative distribution function of
the response time (S(x)) with a normal cumulative distribution
function having the same mean and variance as response time
(C DF). The test statistic is

T = max |S(x) − C DF | . (3)

The detailed outcomes are described in Table 5. The null hy-
pothesis is true at every acceptable level of significance. This
test is not asymptotic, thus, the response time is unambiguously
normal.

Theorem 2 The response time tends to a normal distribution
in case of all four thread pool parameters (namely, maxWork-
erThreads, maxIOThreads, minFreeThreads and minLocalRe-
questFreeThreads), what is proven by a statistical method,
namely, the Lilliefors hypothesis test.

Models for predicting the performance of ASP.NET Web applications 1152007 51 3-4

5 Models for Predicting the Performance
The queueing models have been demonstrated and validated

in ASP.NET environments. Firstly, the input values of the
model parameters have been estimated from one measurement.
Secondly, the MVA and approximate MVA algorithms, along
with the calculation of the balanced job bounds have been im-
plemented with the help of MATLAB, and the models have
been evaluated to predict the response time, the throughput,
and the tier utilization. Finally, typical web applications have
been tested with concurrent user sessions, comparing the ob-
served and predicted values in order to validate the models in
the ASP.NET environments.

5.1 Estimating the Model Parameters
The web applications were designed in a way that the input

values of the model parameters can be determined from the re-
sults of one measurement. Each page and class belonging to
the presentation, business logic or database was measured sepa-
rately.

Handling one session class, the input parameters of the model
are the number of tiers, the maximum number of customers (si-
multaneous browser connections), the average user think time
Z̄ , the visit number Vm and the average service time S̄m for
Qm (1 ≤ m ≤ M). During the measurements, the number of
tiers was constant (three). The maximum number of customers
means that the load was characterized as follows: we started
form one simultaneous browser connection, then we continued
with two, until 52 had been reached. In order to determine the
average user think time, the sleep times in the user scenario were
averaged. To determine Vm , the number of requests of each page
and class belonging to the given tier in the user scenario was
summed. To estimate S̄m , the service times of each page and
class belonging to the given tier were averaged.

Handling multiple session classes, the input model parame-
ters are the number of tiers, the number and the maximum num-
ber of customers, respectively, on a per-class basis, the average
user think time Z̄c, the visit number Vm,c, and the average ser-
vice time S̄m,c for Qm (1 ≤ m ≤ M , 1 ≤ c ≤ C). There were
two classes. The number of sessions for one class was constant
10, while the number of simultaneous browser connections for
the other class varied up to a maximum number of customers.
The load was characterized as follows: we started from one si-
multaneous browser connection then we continued with 5, 10,
until 70 had been reached. To determine Z̄c, the sleep times in
the user scenario were averaged per class. In order to determine
Vm,c, the number of requests of each page and class belonging
to the given tier and class in the user scenario was summed. In
order to estimate S̄m,c, the service times of each page and class
belonging to the given tier and class were averaged.

5.2 Model Evaluation
The MVA and approximate MVA algorithm for closed queue-

ing networks, along with the calculation of the balanced job

bounds have been implemented with the help of MATLAB.
Handling one session class, the inputs of the script are the num-
ber of tiers, the maximum number of customers, the average ser-
vice times, the visit numbers, and the average user think time.
Handling multiple session classes, the inputs the number of tiers,
the number and the maximum number of customers, respec-
tively, on a per-class basis the average service times, the visit
numbers, and the average user think time. The scripts predict
the response times, the throughputs and the tier utilizations up
to a maximum number of customers. MVA provides a recursive
way, approximate MVA computes these in a few steps, while
balanced job bounds method completes in one step.

5.3 Model Validation
Finally, our experimental validation of the model in differ-

ent versions of the ASP.NET environment are demonstrated.
Handling one session class, while the number of simultane-
ous browser connections varied, the average response time and
throughput per class were measured (Fig. 6). Handling mul-
tiple session classes, there were two classes of sessions: a
database reader and a database writer. The number of simul-
taneous browser connections of one class was fixed at 10, while
the number of simultaneous browser connections of the other
class varied, and the average response time and throughput were
measured per class.

Fig. 6. The observed response time and throughput handling one session
class

Fig. 8. The tier utilization handling one session class with MVA

The results correspond to the common shape of response time
and throughput performance metrics. Increasing the number of
concurrent clients, the throughput grows linearly, while the av-
erage response time advances barely. After the saturation the
throughput remains approximately constant, and an increase in
the response time can be observed. In the overloaded phase, the
throughput falls, while the response time becomes unacceptably
high.

Per. Pol. Elec. Eng.116 Ágnes Bogárdi-Mészöly / Tihamér Levendovszky / Hassan Charaf

Fig. 7. The observed and predicted response times and throughputs handling one session class with MVA

Fig. 9. The observed and predicted response times and throughputs handling one session class with balanced job bounds

Handling one session class, we experimentally validated the
model to demonstrate its ability to predict the response time
and the throughput of ASP.NET web applications with MVA
(Fig. 7), and approximate MVA algorithm. We have found that
the model handling one session class predicts the response time
and throughput acceptably. Moreover, from the model, the uti-
lization of the tiers can be predicted. The results are depicted in
Fig. 8. The presentation tier is the first that becomes congested.
The utilization of the database queue is the second (29%), and
the utilization of the business logic queue is the last one (17%).

Thereafter, we demonstrate that the response time, the
throughput and the tier utilization of ASP.NET web applications
move within tight upper and lower bounds (Fig. 9). We have
found that the response time, the throughput, and the queue
utilization from the observations fell into the upper and lower
bounds. Thus, the balanced job bounds handling one session
class predict the response time, the throughput, and the utiliza-
tion of the tiers acceptably.

Finally, the model handling multiple session classes was ex-
perimentally validated. We have found that the model predicts
the response time and throughput with approximate MVA ac-
ceptably (Fig. 10). While the presentation tier is congested, the
utilization of the database queue is about 84%, and the utiliza-
tion of the business logic queue is about 16% (Fig. 11). We
have found that the response time, the throughput, and the uti-
lization from the observations as well as from the approximate
MVA fell into the upper and lower bounds. Hence, the balanced
job bounds predict the response time, the throughput, and the
utilization acceptably.

Theorem 3 The models predict the response time, the through-
put, and the tier utilization within an error rate. The validity of
the queueing models handling one and multiple session classes
has been proven by measurements in ASP.NET environment.

6 Conclusions and Future Work
A web application has been tested with concurrent user ses-

sions in order to statistically analyse the effect of the thread pool
properties, the global and the application queue size limits. Our
results have shown that the maxWorkerThreads, maxIOThreads,
minFreeThreads, minLocalRequestFreeThreads, requestQueue-
Limit, and appRequestQueueLimit parameters have a consider-
able effect on the performance, in other words, they are perfor-
mance factors. The distribution of the response time has been
determinded as a function of each thread pool property. The
normality has been intuitively founded by graphical methods,
and has been proven with hypothesis tests. The normality of the
response time facilitates to construct model.

Queueing models handling one and multiple session classes
have been demonstrated and validated in different versions of
the ASP.NET environment, namely, the input model parameters
have been estimated from one measurement, the MVA and ap-
proximate MVA evaluation algorithms, and the calculation of
the balanced job bounds have been implemented with the help
of MATLAB, the models have been evaluated to predict perfor-
mance metrics, and a measurement process has been executed
in order to experimentally validate the models. Our results have
shown that the models handling one and multiple session classes
predict the response time and the throughput acceptably with the
MVA and approximate MVA evaluation algorithms, along with
the calculation of balanced job bounds.

In order to improve the model, the performance factors re-
trieved above must be handled along with other features. The
extension of the model and the validation of the enhanced mod-
els are subjects of future work.

Models for predicting the performance of ASP.NET Web applications 1172007 51 3-4

Fig. 10. The observed and predicted response times and throughputs handling multiple session classes with approximate MVA

Fig. 11. The tier utilization handling multiple session classes with approximate MVA

References
1 Sopitkamol M, Menascé DA, A Method for Evaluating the Impact of Soft-

ware Configuration Parameters on E-commerce Sites, ACM 5th International
Workshop on Software and Performance, 2005, pp. 53–64.

2 Smith CU, Performance Engineering of Software Systems, Addison-Wesley,
1990.

3 Jain R, The Art of Computer Systems Performance Analysis, John Wiley and
Sons, 1991.

4 Menascé DA, Almeida V, Capacity Planning for Web Services: Metrics,

Models, and Methods, Prentice Hall PTR., 2001.
5 Urgaonkar U, Dynamic Resource Management in Internet Hosting Plat-

forms, Massachusetts, 2005. Dissertation.
6 Bernardi S, Donatelli S, Merseguer J, From UML Sequence Diagrams

and Statecharts to Analysable Petri Net Models, ACM International Work-
shop Software and Performance, 2002, pp. 35–45.

7 King P, Pooley R, Derivation of Petri Net Performance Models from

UML Specifications of Communication Software, 25th UK Performance Eng.
Workshop., 1999.

8 Herzog U, Klehmet U, Mertsiotakis V, Siegle M, Compositional Perfor-

mance Modelling with the TIPPtool, Performance Evaluation 39 (2000), 5–
35.

9 Bernardo M, Gorrieri R, A Tutorial on EMPA: A Theory of Concurrent Pro-

cesses with Nondeterminism, Priorities, Probabilities and Time, Theoretical
Computer Science 202 (1998), 11–54.

10 Gilmore S, Hillston J, The PEPA Workbench: A Tool to Support a Process

Algebra-Based Approach to Performance Modelling, 7th International Con-
ference Modelling Techniques and Tools for Performance Evaluation, 1994,
pp. 353–368.

11 Meier JD, Vasireddy S, Babbar A, Mackman A, Improving .NET Appli-

cation Performance and Scalability (Patters & Practices), Microsoft Corpo-
ration, 2004.

12 Kounev S, Buchmann A, Performance Modelling of Distributed E-

Business Applications using Queuing Petri Nets, IEEE International Sym-
posium on Performance Analysis of Systems and Software, Austin, Texas,
USA, March, 2003, 2003.

13 Smith CU, Williams LG, Building responsive and scalable web applica-

tions, Computer Measurement Group Conference, 2000, pp. 127–138.

14 Reiser M, Lavenberg SS, Mean-Value Analysis of Closed Multichain

Queuing Networks, Association for Computing Machinery 27 (1980), 313–
322.

15 Zahorjan J, Sevcik KC, Eager DL, Galler B, Balanced Job Bound Anal-

ysis of Queueing Networks, Communications of the ACM 25 (1982), no. 2,
134–141.

16 Bera AK, Jarque CM, Efficient test for normalitiy, homoscedasticity and

serial independence of regression residuals, Economics Letters 6 (1980),
no. 3, 255–259.

17 Lilliefors H, On the Kolmogorov-Smirnov test for normality with mean

and variance unknown, Journal of the American Statistical Association 62
(1967), 399–402.

Per. Pol. Elec. Eng.118 Ágnes Bogárdi-Mészöly / Tihamér Levendovszky / Hassan Charaf

	Introduction
	Backgrounds and Related Work
	Performance Measurements
	Methods for Retrieving and Investigating Performance Factors
	Searching Factors Influencing the Performance
	Determining the Distribution of the Response Time

	Models for Predicting the Performance
	Estimating the Model Parameters
	Model Evaluation
	Model Validation

	Conclusions and Future Work

