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Abstract
One utilisation of multidimensional databases is the field of

On-line Analytical Processing (OLAP). The applications in this
area are designed to make the analysis of shared multidimen-
sional information fast [9].

On one hand, speed can be achieved by specially devised data
structures and algorithms. On the other hand, the analytical
process is cyclic. In other words, the user of the OLAP applica-
tion runs his or her queries one after the other. The output of the
last query may be there (at least partly) in one of the previous
results. Therefore caching also plays an important role in the
operation of these systems.

However, caching itself may not be enough to ensure accept-
able performance. Size does matter: The more memory is avail-
able, the more we gain by loading and keeping information in
there.

Oftentimes, the cache size is fixed. This limits the perfor-
mance of the multidimensional database, as well, unless we
compress the data in order to move a greater proportion of them
into the memory. Caching combined with proper compression
methods promise further performance improvements.

In this paper, we investigate how caching influences the speed
of OLAP systems. Different physical representations (multidi-
mensional and table) are evaluated. For the thorough compari-
son, models are proposed. We draw conclusions based on these
models, and the conclusions are verified with empirical data.
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1 Introduction
1.1 Motivation
Why is it important to investigate the caching effects in mul-

tidimensional databases?
A number of papers compare the different physical represen-

tations of databases in order to find the one resulting in higher
performance than others. For examples, see [4, 11–14, 21].
However, many of these papers either ignore the influence of
caching or discuss this issue very briefly.

As it will be shown later, the size of the buffer cache af-
fects the results significantly. Hence the thorough analysis of
the buffering is necessary in order to better understand what is
the real reason of the performance improvements.

1.2 Results
The results of this paper can be summarized as follows:

• Two models are proposed to analyse the caching effects of the
alternative physical representations of relations.

• With the help of the models, it is shown that the performance
difference between the two representations can be several or-
ders of magnitude depending on the size of the buffer cache.

• It is also demonstrated that the generally better multidi-
mensional physical representation may become worse, if the
memory available for caching is large enough.

• The models are verified by a number of experiments.

1.3 Related Work
In the literature, several papers deal with compressed

databases: For further details the reader may wish to consult
[2, 6, 7, 18, 19].

The paper of Westmann et al. [18] lists several related works
in this field. It also discusses how compression can be integrated
into a relational database system. It does not concern itself with
the multidimensional physical representation, which is the main
focus of our paper. They demonstrate that compression indeed
offers high performance gains. It can, however, also increase the
running time of certain update operations. In this paper we will
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analyse the retrieval (or point query) operation only, as a lot of
On-line Analytical Processing (OLAP) applications handle the
data in a read only or read mostly way. The database is updated
outside working hours in batch. Despite this difference, we also
encountered performance degradation due to compression when
the entire physical representation was cached into the memory.
In this case, at one of the benchmark databases (TPC-D), the
multidimensional representation became slower than the table
representation because of the CPU-intensive Huffman decoding.

In this paper, we use difference – Huffman coding to com-
press the multidimensional physical representation of the rela-
tions. This method is based on difference sequence compres-
sion, which was published in [13].

Chen et al. [2] propose a Hierarchical Dictionary Encoding
and discusses query optimization issues. Both of these topics
are beyond the scope of our paper.

In the article of O’Connell et al. [7], compressing of the data
itself is analysed in a database built on a triple store. We re-
move the empty cells from the multidimensional array, but do
not compress the data themselves.

When we analyse algorithms that operate on data on the
secondary storage, we usually investigate how many disk in-
put/output (I/O) operations are performed. This is because we
follow the dominance of the I/O cost rule [3]. We followed a
similar approach in Section 3 below.

The main focus of [1] is the CPU cache. In our paper, we deal
with the buffer cache as opposed to the CPU cache.

Vitter et al. [17] describe an algorithm for prefetching based
on compression techniques. Our paper supposes that the system
does not read ahead.

Poess et al. [10] show how compression works in Oracle.
They do not test the performance for different buffer cache sizes,
which is an important issue in this paper.

In [20], Xi et al. predict the buffer hit rate using a Markov
chain model for a given buffer pool size. In our article, instead
of the buffer hit rate, we estimate the expected number of pages
brought into the memory from the disk, because it is propor-
tional to the retrieval time. Another difference is that we usually
start with a cold (that is empty) cache and investigate its increase
together with the decrease in retrieval time. In [20], the authors
fix the size of the buffer pool and then predict the buffer hit rate
with the Markov chain model.

1.4 Organization
The rest of the paper is organized as follows. Section 2 de-

scribes the different physical representations of relations includ-
ing two compression techniques used for the multidimensional
representation. Section 3 introduces a model based on the dom-
inance of the I/O cost rule for the analysis of the caching effects.
An alternative model is presented in Section 4. The theoreti-
cal results are then tested in experiments outlined in Section 5.
Section 6 rounds off the discussion with some conclusions and

suggestions for future study. Lastly, for the sake of complete-
ness, a list of references ends the paper.

2 Physical Representations of Relations
Throughout this paper we use the expressions ‘multidimen-

sional representation’ and ‘table representation,’ which are de-
fined as follows.

Definition 1. Suppose we wish to represent relation R physi-
cally. The multidimensional (physical) representation of R is as
follows:

• A compressed array, which only stores the nonempty cells,
one nonempty cell corresponding to one element of R;

• The header, which is needed for the logical-to-physical posi-
tion transformation;

• One array per dimension in order to store the dimension val-
ues.

The table (physical) representation consists of the following:

• A table, which stores every element of relation R;

• A B-tree index to speed up the access to given rows of the
table when the entire primary key is given. �

In the experiments, to compress the multidimensional repre-
sentation, difference – Huffman coding (DHC) was used, which
is closely related to difference sequence compression (DSC).
These two methods are explained in the remainder of this sec-
tion.

Difference sequence compression. By transforming the mul-
tidimensional array into a one-dimensional array, we obtain a
sequence of empty and nonempty cells:

(E∗F∗)∗

In the above regular expression, E is an empty cell and F is
a nonempty one. The difference sequence compression stores
only the nonempty cells and their logical positions. (The logical
position is the position of the cell in the multidimensional array
before compression. The physical position is the position of the
cell in the compressed array.) We denote the sequence of logical
positions by L j . This sequence is strictly increasing:

L0 < L1 < · · · < L N−1.

In addition, the difference sequence 1L j contains smaller val-
ues than the original L j sequence. (See also Definition 2 below.)

The search algorithm describes how we can find an element
(cell) in the compressed array. During the design of the data
structures of DSC and the search algorithm, the following prin-
ciples were used:

• We compress the header in such a way that enables quick de-
compression.

• It is not necessary to decompress the entire header.
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• Searching can be done during decompression, and the decom-
pression stops immediately when the header element is found
or when it is demonstrated that the header element cannot be
found (that is, when the corresponding cell is empty).

Definition 2. Let us introduce the following notations. N is the
number of elements in the sequence of logical positions (N >

0); L j is the sequence of logical positions (0 5 j 5 N − 1);
1L0 = L0; 1L j = L j − L j−1 ( j = 1, 2, . . . , N − 1); The Di

sequence (Di ∈ {0, 1, . . . , D}, i = 0, 1, . . . , N − 1) is defined
as follows:

Di =

{
1L i , if 1L i 5 D and i > 0;

0, otherwise;

where D = 2s
− 1, and s is the size of a Di sequence element

in bits.
The Jk sequence will be defined recursively in the following

way:

Jk =


L0, if k = 0;

L j , otherwise where j =

min
{

i | 1L i > D and L i > Jk−1
}
.

Here the Di sequence is called the overflow difference se-
quence. There is an obvious distinction between 1L i and Di ,
but the latter will also be called the difference sequence, if it is
not too disturbing. Jk it is called the jump sequence. The com-
pression method which makes use of the Di and Jk sequences
will be called difference sequence compression (DSC). The Di

and Jk sequences together will be called the DSC header. �

Notice here that 1L i and Di are basically the same sequence.
The only difference is that some elements of the original differ-
ence sequence 1L i are replaced with zeros, if and only if they
cannot be stored in s bits. (The symbol s denotes a natural num-
ber. The theoretically optimal value of s can be determined, if
the distribution of 1L i is known. In practice, for performance
reasons, s is either 8 or 16 or 32.)

The difference sequence will also be called the relative logi-
cal position sequence, and we shall call the jump sequence the
absolute logical position sequence.

From the definitions of Di and Jk , one can see clearly that, for
every zero element of the Di sequence, there is exactly one cor-
responding element in the Jk sequence. For example, let us as-
sume that D0 = D3 = D5 = 0, and D1, D2, D4, D6, D7, D8 >

0. Then the above mentioned correspondence is shown in the
following table:

D0 D1 D2 D3 D4 D5 D6 D7 D8 . . .

J0 J1 J2 . . .

From the above definition, the recursive formula below fol-
lows for L j .

L j =

{
L j−1 + D j , if D j > 0;

Jk, otherwise where k = min{i | Ji > L j−1}.

In other words, every element of the L j sequence can be cal-
culated by adding zero or more consecutive elements of the Di

sequence to the proper jump sequence element. For instance, in
the above example

L0 = J0;

L1 = J0 + D1;

L2 = J0 + D1 + D2;

L3 = J1;

L4 = J1 + D4;

and so on.
A detailed analysis of DSC and the search algorithm can be

found in [13].
Difference – Huffman coding. The key idea in difference –

Huffman coding is that we can compress the difference sequence
further if we replace it with its corresponding Huffman code.

Definition 3. The compression method, which uses the jump
sequence (Jk) and the Huffman code of the difference sequence
(Di ), will be labelled difference – Huffman coding (DHC). The
Jk sequence and the Huffman code of the Di sequence together
will be called the DHC header. �

The difference sequence usually contains a lot of zeros. More-
over, it contains many ones too if there are numerous consecu-
tive elements in the L j sequence of logical positions. By defi-
nition, the elements of the difference sequence are smaller than
those of the logical position sequence. The elements of D j will
recur with greater or less frequency. Hence it seems reasonable
to code the frequent elements with fewer bits, and the less fre-
quent ones with more. To do this, the optimal prefix code can be
determined by the well-known Huffman algorithm [5].

3 A Model Based on the Dominance of the I/O Cost
Rule
During our analysis of caching effects, we followed two dif-

ferent approaches:

• For the first model, we applied the dominance of the I/O cost
rule to calculate the expected number of I/O operations.

• In the second one, instead of counting the number of disk in-
puts/outputs, we introduced two different constants: Dm and
Dt . The constant Dm denotes the time needed to retrieve one
cell from the disk, if the multidimensional representation is
used. The constant Dt shows the time required to read one
row from the disk, if the table representation is used. The
constants were determined experimentally. The tests showed
that Dm � Dt , that is more disk I/O operations are needed
to retrieve one row from the table representation than one cell
from the multidimensional representation which is obvious
when there is no caching. However, for the second model, it
was not necessary to compute the exact number of I/O oper-
ations for the alternative physical representations due to the
experimental approach.
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The first model is described in this section, whereas the sec-
ond model in the next one.

Throughout the paper, we suppose that the different database
pages are accessed with the same probability. In other words,
uniform distribution will be assumed.

It is not hard to see that this assumption corresponds to the
worst case. If the distribution is not uniform, then certain par-
titions of the pages will be read/written with higher probabil-
ity than the average. Therefore it is more likely to find pages
from these partitions in the buffer cache than from other parts of
the database. Hence the non-uniform distribution increases the
buffer hit rate and thus the performance.

We are going to estimate the number of database pages
(blocks) in the buffer cache. First it will be done for the mul-
tidimensional representation, then for the table representation.

Multidimensional physical representation. In this paper, we
shall assume that prefetching is not performed by the system.
Hence, for the multidimensional representation, one or zero
database page has to be copied from the disk into the memory,
when a cell is accessed. This value is one if the needed page is
not in the buffer cache, zero otherwise.

The multidimensional representation requires that the header
and the dimension values are preloaded into the memory. The
total size of these will be denoted by H . The compressed multi-
dimensional array can be found on the disk. The pages of the lat-
ter are gradually copied into the memory as a result of caching.
Thus the total memory occupancy of this representation can be
computed by adding H to the size of the buffer cache.

Definition 4. In this section, for the multidimensional represen-
tation, we shall use the following notation.
N is the number of pages required to store the compressed array
(N = 1);
Bi is the expected value of the number of pages in the buffer
cache after the i th database access (i = 0). �

Theorem 1. Suppose that Bk is less than the size of the mem-
ory1 available for caching for every k ∈ {0, 1, . . . , i} index. In
addition, let us assume that the buffer cache is ‘cold’ initially,
i.e. B0 = 0. Then, for the multidimensional representation,

Bi = N

(
1 −

(
1 −

1
N

)i
)

.

Proof. The theorem will be proven by induction. For conve-
nience, let us define d as follows:

d = 1 −
1
N

.

For i = 0, the theorem holds:2

B0 = N

(
1 −

(
1 −

1
N

)0
)

= N
(

1 − d0
)

= N (1 − 1) = 0.

1Please note that the memory size is also measured in pages in this section.
2We define 00 as 1. In this way, the theorem remains true for the special case

of N = 1.

Now assume that the theorem has already been proven for i − 1:

Bi−1 = N
(

1 − d i−1
)

.

Then for i we obtain that

Bi = Bi−1 + 0 ×
Bi−1

N
+ 1 ×

N − Bi−1

N
.

Because of the uniform distribution, Bi−1
N is the probability that

the required database block can be found in the memory. Zero
new page will be copied from the disk into the buffer cache in
this situation. However, in the opposite case, one new page will
be brought into the memory. This will occur with probability
N−Bi−1

N . In other words, the expected value of the increase is

0 ×
Bi−1

N
+ 1 ×

N − Bi−1

N
=

N − Bi−1

N
= 1 −

Bi−1

N
. (1)

Hence

Bi = Bi−1 + 1 −
Bi−1

N
= Bi−1

(
1 −

1
N

)
+ 1 = Bi−1d + 1.

From the induction hypothesis follows that

Bi = N
(

1 − d i−1
)

d + 1.

It is easy to see that

Bi = 1 + d + d2
+ d3

+ · · · + d i−1
=

1 − d i

1 − d
= N

(
1 − d i

)
.

The last formula can be written as

Bi = N

(
1 −

(
1 −

1
N

)i
)

,

which proves the theorem. �

The time to retrieve one cell from the multidimensional repre-
sentation is proportional to the number of pages brought into the
memory. The latter is a linear function of the size of the buffer
cache. This is rephrased in the following theorem.

Theorem 2. Assume that the number of database pages in the
buffer cache is B. The memory available for caching is greater
than B. Let us suppose that a cell is accessed in the multidi-
mensional representation. Then the expected number of pages
copied from the disk into the memory is

1 −
B
N

.

Proof. Similarly to Eq. (1), the expected number of pages nec-
essary for this operation is

0 ×
B
N

+ 1 ×
N − B

N
=

N − B
N

= 1 −
B
N

.

�
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Fig. 1. The expected number of pages copied
from the disk into the memory, if the multidimen-
sional representation is used
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if the multidimensional representation is used
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one demonstrates the expected number of pages retrieved from the disk. The
f(B) function is defined as follows:

f(B) = 1− B

N
.

Table physical representation. Now, let us turn to the other storage method,
the table representation. Both the table and B-tree index are kept on the disk.
The table itself could be handled similarly to the compressed array, but the B-
tree index is structured differently. It consists of several levels. In our model, we
are going to consider these levels separately. To simplify the notation, the table
will also be considered as a separate level. The following definition introduces
the necessary notations.

Definition 5. L = 2 is the number of levels in the table representation. On
level 1, the root page of the B-tree can be found. Level L− 1 is the last level of
the B-tree, which contains the leaf nodes. Level L corresponds to the table.
N` = 1 is the number of pages on level ` (1 5 ` 5 L). Specifically, N1 = 1, as
there is only one root page.

The total number of pages is

N =
L∑

`=1

N`. (2)

B
(`)
i = 0 is the number of pages in the buffer cache from level ` after the ith

database access (1 5 ` 5 L and i = 0).
The total number of pages in the buffer cache is

Bi =
L∑

`=1

B
(`)
i . (3)

Remark 1. The above theorem holds even if B is equal to the
number of pages available for caching. However, in this case,
the database management system (or the operating system) has
to remove a page from the buffer cache, if a page fault happens.
If the removed page is ‘dirty,’ then it has to be written back to the
disk in order not to lose the modifications. That is why another
disk I/O operation is needed. In this paper, we are going to
ignore these situations, because most OLAP applications handle
the data in a read only or read mostly way.

Fig. 1 illustrates the behaviour of the multidimensional rep-
resentation. The horizontal axis shows the number of pages in
the buffer cache. The vertical one demonstrates the expected
number of pages retrieved from the disk. The f (B) function is
defined as follows:

f (B) = 1 −
B
N

.

Table physical representation. Now, let us turn to the other
storage method, the table representation. Both the table and B-
tree index are kept on the disk. The table itself could be handled
similarly to the compressed array, but the B-tree index is struc-
tured differently. It consists of several levels. In our model, we
are going to consider these levels separately. To simplify the no-
tation, the table will also be considered as a separate level. The
following definition introduces the necessary notations.

Definition 5. L = 2 is the number of levels in the table repre-
sentation. On level 1, the root page of the B-tree can be found.
Level L − 1 is the last level of the B-tree, which contains the
leaf nodes. Level L corresponds to the table.
N` = 1 is the number of pages on level ` (1 5 ` 5 L). Specifi-
cally, N1 = 1, as there is only one root page.

The total number of pages is

N =

L∑
`=1

N`. (2)

B(`)
i = 0 is the number of pages in the buffer cache from level `

after the i th database access (1 5 ` 5 L and i = 0).

The total number of pages in the buffer cache is

Bi =

L∑
`=1

B(`)
i . (3)

�

Theorem 3. Suppose that Bk is less than the size of the memory
available for caching for every k ∈ {0, 1, . . . , i} index. In addi-
tion, let us assume that the buffer cache is cold initially: B0 = 0.
Then, for the table representation,

Bi = N −

L∑
`=1

N`

(
1 −

1
N`

)i

.

Proof. Observe that we can apply the result of Theorem 1 at
each level:

B(`)
i = N`

(
1 −

(
1 −

1
N`

)i
)

= N` − N`

(
1 −

1
N`

)i

. (4)

The assertion of the theorem follows from the definitions of N
and Bi shown in Equations (2) and (3):

Bi =

L∑
`=1

B(`)
i =

L∑
`=1

(
N` − N`

(
1 −

1
N`

)i
)

,

Bi =

L∑
`=1

N` −

L∑
`=1

N`

(
1 −

1
N`

)i

,

Bi = N −

L∑
`=1

N`

(
1 −

1
N`

)i

. �

Similarly to the other representation, the necessary time to
retrieve one row from the table representation is proportional to
the number of pages brought into the memory. The next theorem
investigates how the number of pages brought into the memory
depends on the size of the buffer cache.
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Theorem 4. Assume that the number of database pages in the
buffer cache is Bi =

∑L
`=1 B(`)

i . The memory available for
caching is greater than Bi . Let us suppose that a row is accessed
in the table representation. Then the expected number of pages
read from the disk into the memory is

L −

L∑
`=1

B(`)
i

N`
. (5)

Proof. This will be shown by applying the result of Theorem
2 per level. For level `, the number of pages copied into the
memory is:

1 −
B(`)

i
N`

.

Hence, for all levels in total, it is:

L∑
`=1

(
1 −

B(`)
i

N`

)
=

L∑
`=1

1 −

L∑
`=1

B(`)
i

N`
= L −

L∑
`=1

B(`)
i

N`
. �

L , N1, N2, . . . , NL are constants. Therefore Equation (5) is
a linear function of B(1)

i , B(2)
i , . . . , B(L)

i . The same expression
can be looked at as a function of Bi , as well:

Definition 6.

f (Bi ) = L −

L∑
`=1

B(`)
i

N`
.

�

Just like before, we are going to assume that the buffer cache
is cold initially: B0 = 0. If this is the case, then B(`)

0 = 0 for
every ` ∈ {1, 2, . . . , L}, because of Definition 5. Therefore,

f (B0) = L −

L∑
`=1

0
N`

= L .

In other words, one page per level has to be read into the memory
at the first database access. If the memory available for caching
is not smaller than L , then B(`)

1 = 1 for every ` and

B1 =

L∑
`=1

B(`)
1 =

L∑
`=1

1 = L .

Obviously, we obtain the same, if we use the alternative (recur-
sive) formula:

B1 = B0 + f (B0) = 0 + L = L .

Now, let us investigate the special case, when Nm =

max{N1, N2, . . . , NL} = 1. Because of the latter, there is only
one page per level (N1 = N2 = · · · = N` = 1), which means
that N also equals L . To put it into another way, the entire
database is cached into the memory after the first database ac-
cess, given that the available memory is greater than or equal to
the size of the database. After this, there is no need to copy more
pages into the memory:

f (B1) = L −

L∑
`=1

B(`)
1

N`
= L −

L∑
`=1

1
1

= L − L = 0.

To summarize this paragraph, below we show the values of Bi

and f (Bi ) for every i :

B0 = 0,

B1 = B2 = · · · = Bi = · · · = L ,

f (B0) = L ,

f (B1) = f (B2) = · · · = f (Bi ) = · · · = 0.

In the remainder of this section, we shall assume that Nm > 1.
For sufficiently large i values, f (Bi ) can be considered a lin-

ear function of Bi . This is the main idea behind the theorem
below.

Theorem 5. Suppose that Bk is less than the size of the memory
available for caching for every k ∈ {0, 1, . . . , i} index. In addi-
tion, let us assume that B0 = 0, Bi < N and f (Bi ) , 0. Then,
for the table representation,

f (Bi ) →
N − Bi

Nm
, if i → ∞,

where Nm = max{N1, N2, . . . , NL}.

Proof. First, we show that

f (Bi ) =
N − Bi

Wi
,

where Wi is a weighted average of constants N1, N2, . . . , NL .
Then we demonstrate that Wi tends to Nm , if i tends to infinity.
From Eq. (4), we know that

B(`)
i

N`
=

N` − N`

(
1 −

1
N`

)i

N`
= 1 −

(
1 −

1
N`

)i

.

Using Definition 6, we obtain that

f (Bi ) = L −

L∑
`=1

B(`)
i

N`

= L −

L∑
`=1

(
1 −

(
1 −

1
N`

)i
)

=

L∑
`=1

(
1 −

1
N`

)i

.

Theorem 3 implies the following equation:

N − Bi =

L∑
`=1

N`

(
1 −

1
N`

)i

.

Let us define Wi as follows:

Wi =

∑L
`=1 N`

(
1 −

1
N`

)i

∑L
`=1

(
1 −

1
N`

)i ,

given that the denominator is not zero ( f (Bi ) , 0). Observe
that Wi is a weighted average of constants N1, N2, . . . , NL . The
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weight of N` is
(

1 −
1

N`

)i
for every ` ∈ {1, 2, . . . , L}. With the

previous definition, we get that

Wi =
N − Bi

f (Bi )
.

If Wi does not vanish (Bi < N ), then

f (Bi ) =
N − Bi

Wi
.

Finally, we have to prove that Wi → Nm , if i → ∞. For every
` ∈ {1, 2, . . . L}, the inequality 1 5 N` 5 Nm holds. It is not
difficult to see that(

1 −
1

N`

)i

(
1 −

1
Nm

)i → 0, if N` < Nm and i → ∞. (6)

Obviously (
1 −

1
N`

)i

(
1 −

1
Nm

)i = 1, if N` = Nm > 1. (7)

From Equations (6) and (7), it follows immediately, that

Wi =

∑L
`=1 N`

(
1 −

1
N`

)i

∑L
`=1

(
1 −

1
N`

)i

=

∑L
`=1 N`

(
1−

1
N`

)i

(
1−

1
Nm

)i

∑L
`=1

(
1−

1
N`

)i

(
1−

1
Nm

)i

→ Nm, if i → ∞. �

Fig. 2 demonstrates the behaviour of the table representation.
The horizontal axis is the number of pages in the buffer cache.
The vertical one shows the expected number of pages retrieved
from the disk. The Estimation denoted by ‘Est.’ in the chart is
the limit of the f (Bi ) function:

Estimation =
N − Bi

Nm
.

We conclude this section by summarising the findings:

• If we assume requests with uniform distribution, then the ex-
pected number of database pages brought into the memory at
a database access is a linear function of the number of pages
in the buffer cache.

• Specifically, for the multidimensional representation, it
equals

1 −
B
N

,

where B is the number of pages in the buffer cache and N is
the size of the compressed multidimensional array in pages.

• For the table representation, it is

f (Bi ) = L −

L∑
`=1

B(`)
i

N`
,

where L is the number of levels, B(`)
i is the number of pages

in the buffer cache from level `, Bi =
∑L

`=1 B(`)
i and N` is

the total number of pages on level `.

• The expression above is a linear function of
B(1)

i , B(2)
i , . . . , B(L)

i , but for large i values, it can be
considered as a linear function of Bi , as well, because

f (Bi ) →
N − Bi

Nm
, if i → ∞,

where Nm = max{N1, N2, . . . , NL} and N =
∑L

`=1 N`.

4 An Alternative Model
In this section we shall examine how the caching affects the

speed of retrieval in the different physical database representa-
tions. For the analysis, a model will be proposed. Then we will
give sufficient and necessary conditions for such cases where the
expected retrieval time is smaller in one representation than in
the other.

The caching can speed up the operation of a database manage-
ment system significantly if the same block is requested while it
is still in the memory. In order to show how the caching modifies
the results of this paper, let us introduce the following notations.

Definition 7.
M = the retrieval time, if the information is in the memory,
D = the retrieval time, if the disk also has to be accessed,
p = the probability of having everything needed in the memory,
q = 1 − p,
ξ = how long it takes to retrieve the requested information. �

In our model we shall consider M and D constants. Obvi-
ously, ξ is a random variable. Its expected value can be calcu-
lated as follows:

E(ξ) = pM + q D.

Notice that D does not tell us how many blocks have to be
read from the disk. This also means that the value of D will
be different for the table and the multidimensional representa-
tions. The reason for this is that, in general, at most one block
has to be read with the multidimensional representation. Ex-
actly one reading is necessary if nothing is cached, because only
the compressed multidimensional array is kept on the disk. Ev-
erything else (the header, the dimension values, and so forth) is
loaded into the memory in advance. With the table representa-
tion, more block readings may be needed because we also have
to traverse through the B-tree first, and then we have to retrieve
the necessary row from the table.

M is also different for the two alternative physical represen-
tations. This is because two different algorithms are used to
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Fig. 2. The expected number of pages copied
from the disk into the memory, if the table represen-
tation is used

CACHING IN MULTIDIMENSIONAL DATABASES 13
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0 50,000 100,000 150,000 200,000 250,000 300,000 350,000
0

1

2

3

4

5

f(Bi)

Est

Obviously (
1− 1

N`

)i

(
1− 1

Nm

)i
= 1, if N` = Nm > 1. (7)

From Equations (6) and (7), it follows immediately, that
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∑L
`=1 N`
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=
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Figure 2 demonstrates the behaviour of the table representation. The hori-
zontal axis is the number of pages in the buffer cache. The vertical one shows
the expected number of pages retrieved from the disk. The Estimation denoted
by ‘Est.’ in the chart is the limit of the f(Bi) function:

Estimation =
N −Bi

Nm
.

We conclude this section by summarising the findings:

• If we assume requests with uniform distribution, then the expected number
of database pages brought into the memory at a database access is a linear
function of the number of pages in the buffer cache.

• Specifically, for the multidimensional representation, it equals

1− B

N
,

retrieve the same information from two different physical rep-
resentations.

Hence, for the above argument, we are going to introduce four
constants.

Definition 8.
Mm = the value of M for the multidimensional representation,
Mt = the value of M for the table representation,
Dm = the value of D for the multidimensional representation,
Dt = the value of D for the table representation. �

If we sample the cells/rows with uniform probability3, we can
then estimate the probabilities as follows:

p =
the number of cached pages

the total size in pages
,

q = 1 − p.

By the ‘total size’ we mean that part of the physical represen-
tation which can be found on the disk at the beginning. In the
multidimensional representation, it is the compressed multidi-
mensional array, whereas in the table representation, we can put
the entire size of the physical representation into the denomina-
tor of p. The cached pages are those that had been originally on
the disk, but were moved into the memory later. In other words,
the size of the cached blocks (numerator) is always smaller than
or equal to the total size (denominator).

The experiments show that the alternative physical represen-
tations differ from each other in size. That is why it seems rea-
sonable to introduce four different probabilities in the following
manner.

Definition 9.
pm = the value of p for the multidimensional representation,
pt = the value of p for the table representation,
qm = 1 − pm ,
qt = 1 − pt . �

3In this section, just like in the previous one, we shall make the same as-
sumption that every cell/row is sampled with the same probability.

When does the inequality below hold? This is an important
question:

E(ξm) < E(ξt ).

Here ξm and ξt are random variables that are the retrieval times
in the multidimensional and table representations, respectively.

In our model, E(ξi ) = pi Mi + qi Di (i ∈ {m, t}). Thus the
question can be rephrased as follows:

pm Mm + qm Dm < pt Mt + qt Dt .

The values of the Mm , Dm , Mt and Dt constants were mea-
sured by carrying out some experiments. (See the following sec-
tion.) Two different results were obtained. For one benchmark
database (TPC-D), the following was found:

Mt < Mm � Dm � Dt .

Another database (APB-1) gave a slightly different result:

Mm � Mt � Dm � Dt .

The Mm � Dm and Mt � Dm inequalities hold because
disk operations are slower than memory operations by orders of
magnitude. The third one (Dm � Dt ) is because we have to
retrieve more blocks from the table representation than from the
multidimensional one to obtain the same information.

Note here that E(ξi ) is the convex linear combination of Mi

and Di (pi , qi ∈ [0, 1] and i ∈ {m, t}). In other words, E(ξi )

can take any value from the closed interval [Mi , Di ].
The following provides sufficient condition for E(ξm) <

E(ξt ):
Dm < pt Mt + qt Dt .

From this, we can obtain the inequality constraint:

Dm < pt Mt + (1 − pt )Dt ,

pt <
Dt − Dm

Dt − Mt
.
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The value for Dt −Dm
Dt −Mt

was found to be 63.2%, 66.5% and
66.3% (for TPC-D, TPC-H and APB-1, respectively) in the ex-
periments. This means that, based on the experimental results,
the expected value of the retrieval time was smaller in the multi-
dimensional representation than in the table representation when
less than 63.2% of the latter one was cached. This was true re-
gardless of the fact whether the multidimensional representation
was cached or not.

Now we are going to distinguish two cases based on the value
of Mm and Mt .

Case 1: Mt < Mm . This was true for the TPC-D bench-
mark database. (Here the difference sequence consisted of 16-
bit unsigned integers, which resulted in a slightly more com-
plicated decoding, as the applied Huffman decoder returns 8
bits at a time. This may be the reason why Mm became larger
than Mt .) In this case, we can give a sufficient condition for
E(ξm) > E(ξt ), as the equivalent transformations below show:

pt Mt + qt Dt < Mm,

pt Mt + (1 − pt )Dt < Mm,

Dt − Mm

Dt − Mt
< pt .

For Dt −Mm
Dt −Mt

we obtained a value of 99.9%. This means that
the expected retrieval time was smaller in the table represen-
tation when more than 99.9% of it was cached. This was true
even when the whole multidimensional representation was in
the memory.

Case 2: Mm < Mt . This inequality holds for the TPC-H
and the APB-1 benchmark databases. Here we can give another
sufficient condition for E(ξm) < E(ξt ):

pm Mm + qm Dm < Mt ,

pm Mm + (1 − pm)Dm < Mt ,

Dm − Mt

Dm − Mm
< pm .

The left hand side of the last inequality was equal to 99.9%
and 98.3% for the TPC-H and APB-1 benchmark databases, re-
spectively. In other words, when more than 99.9% of the mul-
tidimensional representation was cached, it then resulted in a
faster operation on average than the table representation regard-
less of the caching level of the latter.

Finally, let us give a necessary and sufficient condition for
E(ξm) < E(ξt ). First, let us consider the following equivalent
transformations (making the natural assumption that Dt > Mt ):

E(ξm) < E(ξt ), (8)

pm Mm + qm Dm < pt Mt + qt Dt , (9)

pm Mm + (1 − pm)Dm < pt Mt + (1 − pt )Dt , (10)

pt <
Dm − Mm

Dt − Mt
pm +

Dt − Dm

Dt − Mt
. (11)

The last inequality was the following for the three tested

databases, TPC-D, TPC-H and APB-1, respectively:

pt < 0.368pm + 0.632,

pt < 0.335pm + 0.665,

pt < 0.343pm + 0.663.

Theorem 6. Suppose that Dt > Mt . Then the expected retrieval
time is smaller in the case of the multidimensional physical rep-
resentation than in the table physical representation if and only
if

pt <
Dm − Mm

Dt − Mt
pm +

Dt − Dm

Dt − Mt
.

Proof. The truth of the theorem is a direct consequence of
Eqs. (8) – (11). �

Now, let us change our model slightly. In this modified ver-
sion, we shall assume that the different probabilities are (piece-
wise) linear functions of the memory size available. This as-
sumption is in accordance with Theorems 2 and 5. With the mul-
tidimensional representation, the formula below follows from
the model for the expected retrieval time:

Tm(x) = Mm pm(x)+Dmqm(x) = Mm pm(x)+Dm(1− pm(x)),

Tm(x) = (Mm − Dm)pm(x) + Dm,

where

pm(x) = min
{

x − H
C

, 1
}

,

H is the total size of the multidimensional representation part,
which is loaded into the memory in advance (the header and the
dimension values), C is the size of the compressed multidimen-
sional array and x (= H ) is the size of the available memory.

In an analogous way, for the table representation, we obtain
the formula:

Tt (x) = Mt pt (x) + Dt qt (x) = Mt pt (x) + Dt (1 − pt (x)),

Tt (x) = (Mt − Dt )pt (x) + Dt ,

where
pt (x) = min

{ x
S
, 1
}

,

S is the total size of the table representation and x (= 0) is the
size of the memory available for caching.

It is not hard to see that the global maximum and minimum
values and locations of the functions Tm(x) and Tt (x) are the
following:

max{Tm(x) | x = H} = Dm and
Tm(x) = Dm if and only if x = H,

min{Tm(x) | x = H} = Mm and
Tm(x) = Mm if and only if x = H + C,

max{Tt (x) | x = 0} = Dt and
Tt (x) = Dt if and only if x = 0,

min{Tt (x) | x = 0} = Mt and
Tt (x) = Mt if and only if x = S.
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Definition 10. For x = H values, let us define the speed-up
factor in the following way:

speed-up(x) =
Tt (x)

Tm(x)
.�

The global maximum of the speed-up factor can be achieved,
when the entire multidimensional representation is cached into
the memory. This is specified in the following theorem.

Theorem 7. Suppose that

0 >
Mt − Dt

S
>

Mm − Dm

C

and 0 < −
Mm − Dm

C
H + Dm < Dt . (12)

Then the global maximum of the speed-up(x) function can be
found at C + H .

Proof. The speed-up(x) function is continuous, because Tt (x)

and Tm(x) are continuous and Tm(x) , 0. Hence, to prove the
theorem, it is enough to show that this function is strictly mono-
tone increasing on interval (H, C + H), strictly monotone de-
creasing on (C + H, S) and constant on (S, ∞). On the first
interval,

speed-up(x) =
(Mt − Dt )pt (x) + Dt

(Mm − Dm)pm(x) + Dm

=
(Mt − Dt )

x
S + Dt

(Mm − Dm) x−H
C + Dm

.

For convenience, let us introduce the following notation:

a1 =
Mt − Dt

S
,

b1 = Dt ,

a2 =
Mm − Dm

C
,

b2 = −
Mm − Dm

C
H + Dm .

The first derivative of the speed-up(x) function is

speed-up′(x) =

(
a1x + b1

a2x + b2

)′

=
a1b2 − a2b1

(a2x + b2)2 .

The first derivative is positive if and only if a1b2 − a2b1 > 0.
Eq. (12) can be written as

0 > a1 > a2 (13)

and
0 < b2 < b1. (14)

Let us multiply Eq. (13) by b1, Eq. (14) by a1. Then we obtain
that

a1b1 > a2b1

and
a1b2 > a1b1.

From the last two inequalities, we get that a1b2 > a2b1, which
is equivalent with a1b2 − a2b1 > 0. Thus speed-up′(x) > 0
and speed-up(x) is strictly monotone increasing on interval
(H, C+H).

Now, suppose that x ∈ (C + H, S). In this case

speed-up(x) =
(Mt − Dt )pt (x) + Dt

Mm

=
(Mt − Dt )

x
S + Dt

Mm

=
a1x + b1

Mm
.

The fist derivative is

speed-up′(x) =
a1

Mm
< 0,

because a1 < 0 and Mm > 0. So speed-up(x) is strictly mono-
tone decreasing.

Finally, let us take the case, when x ∈ (S, ∞). The speed-up
factor

speed-up(x) =
Mt

Mm
,

which is constant. �

The location of the global maximum is C + H . The global
maximum value is obviously

speed-up(C+H) =
a1(C + H) + b1

Mm
=

Mt −Dt
S (C + H) + Dt

Mm
.

As it will be described in details in the next section, experiments
were made to determine the value of the constants. For these
data, see Table 6 there. The sizes were also measured and can
be seen in Table 1 (in bytes) together with the global maximum
locations and values per benchmark database. As it can be seen
from the latter table, the speed-up can be very large, 2 – 3 orders
of magnitude. The maximum value for the TPC-D benchmark
database was more than 400, while for the APB-1 benchmark
database, it was more than 1,500.

Tab. 1. Global maximum of speed-up(x)

Symbol TPC-D TPC-H APB-1

S 279,636,324 1,419,181,908 1,295,228,960

C 48,007,720 239,996,040 99,144,000

H 19,006,592 154,024,844 4,225,039

C + H 67,014,312 394,020,884 103,369,039

speed-up(C + H) 416 1,066 1,549

We can draw the conclusions of this section as follows:

• If (nearly) the entire physical representation is cached into the
memory, then the complexity of the algorithm will determine
the speed of retrieval. A less CPU-intensive algorithm will
result in a faster operation.

• In the tested cases, the expected retrieval time was smaller
with multidimensional physical representation when less than
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Tab. 2. Hardware and software used for testing Processor Intel Pentium 4 with HT technology, 2.6 GHz, 800 MHz FSB, 512 KB cache

Memory 512 MB, DDR 400 MHz

Hard disk Seagate Barracuda, 80 GB, 7200 RPM, 2 MB cache

Filesystem ReiserFS format 3.6 with standard journal

Page size of B-tree 4 KB

Operating system SuSE Linux 9.0 (i586)

Kernel version 2.4.21-99-smp4G

Compiler gcc (GCC) 3.3.1 (SuSE Linux)

Programming language C

Free procps version 3.1.11

63.2% of the table representation was cached. This was true
regardless of the caching level of the multidimensional repre-
sentation.

• Depending on the size of the memory available for caching,
the speed-up factor can be very large, up to 2 – 3 orders of
magnitude! In other words, the caching effects of the al-
ternative physical representations modify the results signifi-
cantly. Hence these effects should always be taken into ac-
count, when the retrieval time of the different physical repre-
sentations are compared with each other.

5 Experiments
We carried out experiments in order to measure the sizes of

the different physical representations and the constants in the
previous section. We also examined how the size of the cache
influenced the speed of retrieval.

Table 2 shows the hardware and software used for testing.
The speed of the processor, the memory and the hard disk all
influence the experimental results quite significantly, just like
the memory size. In the computer industry, all of these param-
eters have increased quickly over the time. But the increase of
the hard disk speed has been somewhat slower. Hence, it is ex-
pected that the results presented will remain valid despite the
continuing improvement in computer technology.

In the experiments we made use of three benchmark
databases: TPC-D [15], TPC-H [16] and APB-1 [8]. One re-
lation (R) was derived per benchmark database in exactly the
same way as was described in [12]. Then these relations were
represented physically with a multidimensional representation
and table representation.

Tables 3, 4 and 5 show that DHC results in a smaller multidi-
mensional representation than difference sequence compression.
(For TPC-H, the so-called Scale Factor was equal to 5. That is
why the table representation of TPC-H is about five times greater
than that of TPC-D.)

In the rest of this section, we shall deal only with DHC. Its
performance will be compared to the performance of the un-
compressed table representation.

In order to determine the constant values of the previous sec-
tion, an experiment was performed. A random sample was taken
with replacement from relation R with uniform distribution. The
sample size was 1000. Afterwards the sample elements were re-

Tab. 3. TPC-D benchmark database

Compression Size in bytes Percentage

Table representation
Uncompressed 279,636,324 100.0%

Multidimensional representation
Difference sequence compression 67,925,100 24.3%

Difference – Huffman coding 67,014,312 24.0%

Tab. 4. TPC-H benchmark database

Compression Size in bytes Percentage

Table representation
Uncompressed 1,419,181,908 100.0%

Multidimensional representation
Difference sequence compression 407,414,614 28.7%

Difference – Huffman coding 394,020,884 27.8%

Tab. 5. APB-1 benchmark database

Compression Size in bytes Percentage

Table representation
Uncompressed 1,295,228,960 100.0%

Multidimensional representation
Difference sequence compression 113,867,897 8.8%

Difference – Huffman coding 103,369,039 8.0%

trieved from the multidimensional representation and then from
the table representation. The elapsed time was measured to cal-
culate the average retrieval time per sample element. Then the
same sample elements were retrieved again from the two physi-
cal representations. Before the first round, nothing was cached.
So the results help us to determine the constants Dm and Dt . Be-
fore the second round, every element of the sample was cached
in both physical representations. So the times measured in the
second round correspond to the values of the constants Mm and
Mt . The results of the experiment can be seen in Table 6.

Tab. 6. Constants

TPC-D TPC-H APB-1

Symbol (ms) (ms) (ms)

Mm 0.031 0.014 0.012

Mt 0.021 0.018 0.128

Dm 6.169 7.093 6.778

Dt 16.724 21.165 19.841
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Fig. 3. The retrieval time for the TPC-D bench-
mark database as a function of the memory size avail-
able for caching
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Figure 3: The retrieval time for the TPC-D benchmark database as a function
of the memory size available for caching

memory in bytes, while the vertical one displays the expected/average retrieval
time in milliseconds.

In order to verify the model with empirical data, we performed the following
tests. Random samples were taken with replacement. The sample size was set
at 300 in TPC-D and 100 in TPC-H and APB-1 in order to stay within the
constraints of the physical memory. The average retrieval time was measured
as well as the cache size used for each physical representation. In the multi-
dimensional representation, the utilized cache size was corrected by adding H
to it, as this representation requires that some parts of it are loaded into the
memory in advance. Then the above sampling and measuring procedures were
repeated another 99 times. That is, altogether 30,000 elements were retrieved
from the TPC-D database, and 10,000 from TPC-H and APB-1. The average
retrieval time, as a function of the cache size (or memory) used, can also be
seen in Figures 3 – 5. The data relating to the multidimensional physical rep-
resentation are labelled as ‘Array,’ and the data for the table representation as
‘Table.’

The diagrams suggest that the model fits the empirical data quite well. Only
the table representation of TPC-H and ABP-1 deviates slightly from it.

The test results of the first ten passes and the last ten passes can be seen
in Tables 7 and 8, as well. Column A is the sequence number. Columns B – E
correspond to TPC-D, columns F – I to TPC-H, while columns J – M are for
APB-1. Columns B, F and J show the memory needed for the multidimensional
representation, while columns C, G and K give the same for the table repre-
sentation. The retrieval time with the multidimensional representation can be
found in columns D, H and L, and the table representation in columns E, I and
M. The ‘memory used’ values are strictly increasing. This can be attributed to
the fact that increasingly larger parts of the physical representations are cached

Fig. 4. The retrieval time for the TPC-H bench-
mark database as a function of the memory size avail-
able for caching
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Figure 5: The retrieval time for the APB-1 benchmark database as a function
of the memory size available for caching

Fig. 5. The retrieval time for the APB-1 bench-
mark database as a function of the memory size avail-
able for caching
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Figure 5: The retrieval time for the APB-1 benchmark database as a function
of the memory size available for caching
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In the next experiment, we examined how the size of memory
available for caching influenced the speed of retrieval. In Figs. 3,
4 and 5, Tm(x) is labelled as ‘Array Est.,’ Tt (x) as ‘Table Est.’
The horizontal axis shows the size of the memory in bytes, while
the vertical one displays the expected/average retrieval time in
milliseconds.

In order to verify the model with empirical data, we per-
formed the following tests. Random samples were taken with
replacement. The sample size was set at 300 in TPC-D and 100
in TPC-H and APB-1 in order to stay within the constraints of
the physical memory. The average retrieval time was measured
as well as the cache size used for each physical representation.
In the multidimensional representation, the utilized cache size
was corrected by adding H to it, as this representation requires
that some parts of it are loaded into the memory in advance.
Then the above sampling and measuring procedures were re-
peated another 99 times. That is, altogether 30,000 elements
were retrieved from the TPC-D database, and 10,000 from TPC-
H and APB-1. The average retrieval time, as a function of the
cache size (or memory) used, can also be seen in Figs. 3 – 5. The
data relating to the multidimensional physical representation are
labelled as ‘Array,’ and the data for the table representation as
‘Table.’

The diagrams suggest that the model fits the empirical data
quite well. Only the table representation of TPC-H and ABP-1
deviates slightly from it.

The test results of the first ten passes and the last ten passes
can be seen in Tables 7 and 8, as well. Column A is the se-
quence number. Columns B – E correspond to TPC-D, columns
F – I to TPC-H, while columns J – M are for APB-1. Columns
B, F and J show the memory needed for the multidimensional
representation, while columns C, G and K give the same for the
table representation. The retrieval time with the multidimen-
sional representation can be found in columns D, H and L, and
the table representation in columns E, I and M. The ‘memory
used’ values are strictly increasing. This can be attributed to the
fact that increasingly larger parts of the physical representations
are cached into the memory.

Looking at Tables 7 – 8 and Figs. 3 – 5, it can be seen that the
multidimensional representation was always significantly faster
over the tested range.

Summarizing our experimental results, we may say that:

• The size of DHC was smaller than that of the difference se-
quence compression.

• With suitably designed experiments, we were able to measure
the constants of the model proposed in the previous section.

• We verified the model with empirical data.

• Over the tested range of available memory, the multidimen-
sional representation was always much quicker than the table
representation in terms of retrieval time.

Tab. 7. Memory used (in 210 bytes) and retrieval time (in milliseconds) for
the TPC-D and TPC-H benchmark databases

A B C D E F G H I

1 20,893 8,500 6.57 18.32 151,215 3,524 9.00 29.86

2 23,093 15,488 5.96 16.50 152,015 6,644 7.54 24.10

3 25,097 21,732 5.48 15.64 152,811 9,684 7.21 21.36

4 27,025 27,420 5.58 14.36 153,591 12,652 6.43 21.01

5 28,841 32,668 5.26 14.00 154,367 15,528 6.66 19.61

6 30,565 37,896 4.83 13.88 155,139 18,328 6.23 19.63

7 32,113 42,908 4.61 13.87 155,919 21,160 6.75 18.54

8 33,557 47,684 4.60 13.92 156,707 23,992 6.67 19.14

9 34,949 52,228 4.37 12.56 157,463 26,760 6.70 18.85

10 36,289 56,792 4.12 14.58 158,231 29,456 6.53 18.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

91 63,609 216,352 0.35 2.94 211,143 193,868 5.28 15.78

92 63,677 217,228 0.70 3.69 211,683 195,556 5.02 14.93

93 63,729 218,060 0.24 3.83 212,235 197,240 5.07 14.91

94 63,769 218,784 0.22 3.29 212,795 198,940 4.93 15.29

95 63,813 219,484 0.28 3.31 213,359 200,584 4.82 14.95

96 63,841 220,200 0.34 2.82 213,895 202,164 5.56 13.67

97 63,857 220,804 0.13 2.78 214,439 203,760 5.42 14.48

98 63,905 221,592 0.30 3.23 215,019 205,464 5.34 14.54

99 63,925 222,260 0.11 2.94 215,583 207,140 5.43 15.57

100 63,949 222,908 0.32 2.78 216,099 208,864 5.03 14.89

6 Conclusions
It often turns out that caching significantly improves response

times. This was also found to be the case for us when the same
relation was represented physically in different ways. In order
to analyse this phenomenon, we proposed two models.

In the first model, the dominance of the I/O cost rule was used
to examine the caching effects. Uniform distribution was as-
sumed for the analysis. We found that the expected number of
pages brought into the memory is a linear function of the buffer
cache size. And we know that the time to retrieve a cell/row
from the database is proportional to the number of database
pages copied from the disk into the memory.

The second model was built in accordance with the findings of
the first one. In the latter model, four constants were introduced
for the retrieval time from the memory (Mm and Mt ) and from
the disk (Dm and Dt ). It was necessary to have four symbols as
we had to distinguish between the multidimensional represen-
tation (Mm and Dm) and the table representation (Mt and Dt ).
Based on the model, necessary and sufficient conditions were
given for when one physical representation results in a lower
expected retrieval time than the other. Actually, with the tested
benchmark databases, we found that the expected retrieval time
was smaller with a multidimensional physical representation if
less than 63.2% of the table representation was cached. This
was true regardless of the caching level of the multidimensional
representation.

We were able to infer from the second model that the com-
plexity of the algorithm could determine the speed of retrieval
when (nearly) the entire physical representation was cached into
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Tab. 8. Memory used (in 210 bytes) and retrieval time (in milliseconds) for
the APB-1 benchmark database

A J K L M

1 4,926 3,840 7.10 24.99

2 5,698 7,204 6.55 21.53

3 6,478 10,312 6.48 19.83

4 7,262 13,452 6.85 20.03

5 8,002 16,328 6.35 19.25

6 8,774 19,336 6.52 19.99

7 9,506 22,208 6.42 19.56

8 10,266 25,076 7.02 19.23

9 10,978 27,884 6.35 19.13

10 11,726 30,664 6.68 19.92
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

91 52,334 201,140 3.72 13.82

92 52,726 202,836 4.46 14.86

93 53,046 204,540 3.55 14.75

94 53,438 206,240 3.98 14.52

95 53,754 207,960 3.47 15.77

96 54,090 209,516 3.82 14.12

97 54,382 211,100 3.09 14.01

98 54,670 212,660 3.13 13.53

99 55,054 214,404 3.89 14.74

100 55,358 216,144 2.97 14.83

the memory. A less CPU-intensive algorithm will probably re-
sult in a faster operation. It is important to mention that the first
model is unable to explain this phenomenon. The reason for
this is that the dominance of the I/O cost rule ignores the time
requirements of the memory operations.

Using a slightly modified version of the second model, we
investigated the speed-up factor, which can be achieved, if the
multidimensional representation is used instead of the table one.
We found that, depending on the memory size available for
caching, the speed-up can be 2 – 3 orders of magnitude. That
is why it is very important to also take into account the caching
effects, when the performances of the different physical repre-
sentations are compared.

Experiments were performed to measure the constants of the
model. We found that there was a big difference in values be-
tween Mm and Mt , as well as Dm and Dt . The difference of the
first two constants can be accounted for by the different CPU-
intensity of the algorithms. The reason why Dm � Dt is that
the multidimensional representation requires much less I/O op-
erations than the table representation when one cell/row is re-
trieved. This latter observation is in line with the dominance of
the I/O cost rule. However, instead of counting the number of
I/O operations, we chose to determine the values of Dm and Dt

from empirical data.
We verified the model with additional experiments and found

that the model fitted the experimental results quite well. There
was only a slight difference with the table representation of the
TPC-H and APB-1 benchmark databases.

Finally, over the tested range of available memory, the mul-

tidimensional representation was always much faster than the
table representation in terms of average retrieval time, as it can
be seen in Figs. 3 – 5.

Based on the above results, we think, like Westmann et al.
[18], that today’s database systems should be extended with
compression capabilities to improve their overall performance.
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