
Ŕ periodica polytechnica

Electrical Engineering
51/3-4 (2007) 133–139

doi: 10.3311/pp.ee.2007-3-4.07
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

Extending a system with verified
components
Ákos Dávid / Tamás Pozsgai / László Kozma

Received 2007-10-03

Abstract
The verification of component-based systems can be ex-

tremely complicated because it is usually not possible for system
developers to pre-check the compatibility of the individual parts
before the actual integration takes place.

A system cannot be considered correct if its components do
not work properly. Unfortunately, all the information on the
correctness of the individual components become irrelevant and
out-of-date from the moment they are used anywhere but the
original environment. The solution to this problem can be based
on the idea of building correct programs in which reliability is
built-in.

In this paper open incremental model checking – addressing
the changes to a system rather than re-checking the entire system
model including the new extensions – is discussed and compared
to traditional modular model checking methods. In our paper
we study the practical aspects and the efficiency of using Open
Incremental Model Checking by working out a sample system
consisting of verified components.

Keywords
model · component · model checking

Acknowledgement
This research work was supported by GVOP-3.2.2-2004-07-

005/3.0.

Ákos Dávid

Department of Mathematics and Computing, University of Pannonia„ 8200
Veszprém, Egyetem u. 10., Hungary
e-mail: davida@almos.uni-pannon.hu

Tamás Pozsgai

Department of Mathematics and Computing, University of Pannonia„ 8200
Veszprém, Egyetem u. 10., Hungary
e-mail: pozsgai@szt.vein.hu

László Kozma

Department of Software Technology and Methodology, ELTE, 1117 Budapest,
Pázmány P. sétány 1/c., Hungary
e-mail: kozma@ludens.elte.hu

1 Introduction
One of today’s most widely used software technology meth-

ods is component-based software development (CBSD). It
builds around two basic concepts [6, 11, 14, 15, 22]:

– Reuse means the use of preexisting software with or without
some modifications.

– Evolution keeps the costs of a highly componentized system
low by enabling the replacement of certain components with-
out affecting the functionality of other parts.

There are three conditions to be satisfied in order to use these
driving forces of reuse and evolution for developing component-
based systems.

Component library Reuse is only applicable if there are ex-
isting software components to be used for a specific problem
domain. The set of available components should be organized
into a component library, especially for educational purposes.

Component model A component model is also needed to
support the composition of an application based on stan-
dards. The most generally used component models in the
commercial area are CCM (CORBA Component Model),
COM+/.NET (Microsoft Component Object Model Plus) and
EJB (Enterprise Java Beans).

Software architecture Today’s more and more complex sys-
tems cannot be built without a backbone to support the design
and development process, which is software architecture. As
there are several definitions for it, the authors consider soft-
ware architecture an abstraction of a system that defines all
the software elements, their properties and the relationship
between them [2].

In the future we become more and more dependent of the proper
functioning of computer systems, so our confidence in the cor-
rectness of such systems needs to be increased. Today’s most
widely used techniques of testing are only able to post-verify
applications and they are not able to guarantee that there are

Extending a system with verified components 1332007 51 3-4

http://www.pp.bme.hu/ee


no more hidden errors left in the design or in the code. How-
ever, with the emergence of formal methods, it became possi-
ble to create correct programs with respect to a given specifi-
cation. Different types of synthesis methods, correctness proof
and model checking are the most widespread formal techniques
in practice today.

Section 2 gives an overview of today’s most applicable for-
mal verification method, model checking. Section 3 presents the
drawbacks of component-based software development concern-
ing the verification of such systems, and mentions some of the
possible solutions with a special emphasis on contracts. In Sec-
tion 4 a sample system is presented. Section 5 shows the verifi-
cation of the components using standard model checking. Sec-
tion 6 discusses the method of open incremental model check-
ing. Section 7 details the future work while Section 8 presents
some concluding remarks.

2 Model checking
Model checking is an automatic technique for verifying finite

state concurrent systems [5, 12]. It has a number of advantages
over traditional approaches. It is sufficient for the user to provide
a high level representation of the model and the specification to
be checked, so no verification expert is needed. The procedure
normally uses an exhaustive search of the space of a system to
either terminate with the answer true, indicating that the model
satisfies the specification, or give a counterexample that may
give an important clue in finding subtle errors in complex sys-
tems. The procedure is also quite fast, even on moderate-sized
computers. In some cases infinite systems may be verified us-
ing model checking in combination with various abstraction and
induction principles. Finally, the logic used for specifications
can directly express many of the properties that are needed for
reasoning about concurrent systems. Temporal Logic makes it
possible to describe how the behaviour of such systems evolves
over time [13].
The process of standard model checking consists of three main
tasks:

1 The first task is modelling, which is to convert a design into
a formalism accepted by a model checking tool. In order to
reduce the resources needed, the modelling of a design may
require the use of abstraction to eliminate irrelevant details.

2 The second step is specification where it is necessary to state
the properties that the design must satisfy. The specification
is usually given in some logical formalism.

3 The third task is verification, which is ideally completely au-
tomatic. In practice, human assistance is usually needed to
analyse the results.

The main challenge in model checking is dealing with the
state space explosion problem. This problem occurs in systems
with many components that can make transitions in parallel.
During the past ten years considerable progress has been made

in dealing with this problem [10, 20]. Much of the increase has
been due to the use of binary decision diagrams (BDD), a data
structure for representing Boolean functions.

3 Drawbacks of component-based development
3.1 Different environments
Component-based software development is ideally not more

than putting pieces together. Traditional software development
approaches make it possible for system developers to pre-check
the compatibility of the individual parts of the system before
the actual integration process takes place because in most cases
the environment of the development and the deployment are the
same [8, 21, 24]. On the other hand, CBSD uses an approach
assuming that the original deployment environment of a compo-
nent and its new deployment environment into which it is going
to be integrated may be considerably different from each other.
Even if the new environment is the same or similar, the compo-
nent can be used in other, undiscovered ways, lacking any kind
of validation concerning the original purpose it was meant to be
used for.

However, CBSD would not be considered to revolutionize to-
day’s software development technologies if the use of prefabri-
cated components could turn into such a major setback during
the integration process compared to traditional techniques. Then
what is the use of verifying the individual components if all that
information on their correctness becomes irrelevant and out-of-
date from the moment they are used anywhere but the original
environment? The answer is based on the idea of building cor-
rect programs in which reliability is built in. This means the
correctness properties of a program may be transferable or at
least checkable in other environments as well. This concept led
to the method of “design-by-contract” introduced by Bertrand
Meyer in Object-Oriented Programming (OOP) [16]. According
to him, defining a precondition and a postcondition for a routine
is a way to define a contract that binds the routine and its callers.
The notion of contracts is now extended to components where
different reuse and deployment considerations become impor-
tant, parameterizing the pre- and postconditions of components’
contracts. This extension was proposed by Reussner and others
and was referred to as parameterized contracts according to the
“architecture-by-contract” principle [19].

The idea of using contracts in combination with built-in test-
ing technologies according to Hans Gerhard Gross would offer
a long-waited solution to increase our confidence in third-party
components [9]. Built-in testing usually refers to all additional
information for checking assertions and conditions at runtime
with the exception of the assertions associated with the code of
a component. Built-in testing is usually not part of the original
functional requirements of a component and it does not stay in-
corporated in the code after the release of a component, but the
author in [9] argues that components should be developed with
permanent built-in testing capabilities from the beginning.

Built-in contract testing is based on the notion of providing

Per. Pol. Elec. Eng.134 Ákos Dávid / Tamás Pozsgai / László Kozma



individual components with the ability to be checked by their
execution environment at runtime. Whenever a component is
deployed in a new environment, the built-in contract test part of
it is going to check whether the component, the partner compo-
nents and the environment like one another.

The meta information in contracts can be distinguished on
which level and for what purposes they can be used. Beug-
nard distinguishes between four levels of increasingly nego-
tiable properties [4]:

– Basic contracts (a syntactic contract) are specified either at the
programming language level or through some IDL provided
by the component platform.

– Behavioural contracts define the overall functionality of a
component in terms of pre- and postconditions of operations
and externally visible provided and required state transitions.

– Synchronization contracts add another dimension to the be-
havioural contract by providing the necessary information to
coordinate the interdependent operations.

– Quantitative contracts or quality-of-service contracts quan-
tify the expected behaviour or the component interaction in
terms of minimum and maximum response delays, average
response, quality of a result. This category would allow the
comparison of different components built for the same pur-
pose but with various component models by using measurable
data.

Focusing on the interoperability of components the most signifi-
cant is the type of behavioural contracts but from an educational
point of view and in the concurrent programming world quanti-
tative contracts can also play a key role.

3.2 Granularity of components
Defining the range of component granularity can also be dif-

ficult because several factors (level of abstraction, likelihood of
change, complexity of a component, etc.) have to be considered
while designing components. A component should not be too
small as the interaction between smaller components requires
more time and resources, on the other hand a component should
not be too large as it provides more complex interfaces, is sub-
ject to more frequent changes and makes a system using it less
flexible.

That is why it is essential to find a balance between the factors
of cohesion and coupling. One of the main purposes of the edu-
cational framework outlined in [7] is to support to practice those
design decisions. A similar framework (CDT) was developed
by the authors of [3]. However, their framework is focusing pri-
marily on the testability of third-party components outlining a
possible solution using XML and does not contain any educa-
tional aspects.

4 An example: Automatic Betting Machine (ABM)
In our example we designed an automatic betting machine for

the game “TippMix”, the Hungarian version of “Bet and Win”.
The only input needed for the betting machine is the number of
events a person wants to bet on (two-digit numbers entered on a
console), and produces a ticket that is bound to the rules of the
game with a combination of bets. A short overview of the game
can be read below.

Customers of “TippMix” can bet on the outcome of events
listed in the betting offers issued by “Szerencsejatek Zrt.” ev-
ery week or every two weeks typically containing 200 betting
events. (An optional input parameter may be the actual number
of events for a given week.) Bets can be placed on the outcome
of at least 1 and not more than 14 events in single bets or a com-
bination of events in multi bets. In single bets the customer wins
if they get all the outcomes of the events right they placed a bet
on. In multi bets the customer can win with 1, 2 or 3 missed
outcomes as well – depending on the type of the combination.
The most significant constraints concerning the game are listed
below:

– Only one bet can be placed on any one betting event.

– Bets can be placed on any combination of events.

– If you place bets on less than 3 events, these have to be se-
lected from the first 50 events.

– If you place bets on 3 to 5 events these have to be selected
from the first 150 events.

– If you place bets on 5 or more events these can be selected
from all 200 events.

The simplified functioning of the automatic betting machine can
be seen in Figure 1.

6 Dávid Á., Pozsgai T. and Kozma L.

right they placed a bet on. In multi bets the customer can win with 1, 2 or 3 missed
outcomes as well – depending on the type of the combination. The most significant
constraints concerning the game are listed bellow:

– Only one bet can be placed on any one betting event.

– Bets can be placed on any combination of events.

– If you place bets on less than 3 events, these have to be selected from the first
50 events.

– If you place bets on 3 to 5 events these have to be selected from the first 150
events.

– If you place bets on 5 or more events these can be selected from all 200 events.

The simplified functioning of the automatic betting machine can be seen in Figure
1.

Figure 1: A simplified state diagram of the ABM

There are different conditions that need to be satisfied in order to make a
transition from one state to another. These conditions can guarantee the end
results after leaving a state. These constraints are collected into the behavioral
specification of the component, listed in Table 1.

Fig. 1. A simplified state diagram of the ABM

There are different conditions that need to be satisfied in order
to make a transition from one state to another. These conditions
can guarantee the end results after leaving a state. These con-
straints are collected into the behavioural specification of the
component, listed in Table 1.

Extending a system with verified components 1352007 51 3-4



Tab. 1. The behavioural specification of the ABM

Initial State and Precondition Transition Final State and Postcondition

Idle and Enter not Pressed Waiting Idle and Display(0)

Idle and Enter not Pressed EnterNum(Num) Idle and Display(Num)

Idle and EnterNum(0) Press Enter Idle and Display(0)

Idle and EnterNum(Num) Press Enter Checking Num and Display(Num)

Checking Num and 1 ≤ Num < 3 Working and Display(Num) and Max = 50)

Checking Num and 3 ≤ Num < 5 Working and Display(Num) and Max = 150)

Checking Num and 5 ≤ Num ≤ 14 Working and Display(Num) and Max = 200)

Checking Num and Num > 14 Error Idle and Display(0)

Working and Num = 1 Generate Tips and Print Ticket
Idle and Event Num ≤ 50 and

Tip in (“Home”, “Draw”, “Guest”)

Working and Num > 1 Generate Tips and Print Ticket

Idle and Event Numi in (1..Max)

Where i = 1..Num and Event Numi , Event Num j

Where i , j and Tip in (“Home”, “Draw”, “Guest”)

5 Verification of the system
5.1 The NuSMV Model Checker
SMV (Symbolic Model Verifier) is a tool for checking that

finite-state systems satisfy specifications given in Computation
Tree Logic (CTL). NuSMV is originated from the reengineer-
ing, reimplementation and extension of SMV that is robust and
close to industrial systems standards. The analysis of specifica-
tions expressed in Linear Temporal Logic (LTL) is also possible
in this version.

In NuSMV the specification of the system – usually a state
transition machine – and the constraints imposed on its func-
tioning expressed by CTL formulas are present together just as
it can be seen in the following (oversimplified) excerpt of the
main module.

MODULE main

VAR

state : {idle,checking,working} ;

num : {0..99} ;

ASSIGN

init(state) := idle ;

init(num) := 0 ;

next(state) :=

case

(state = idle) & (num > 0) : checking ;

(state = checking) & (num <= 14) : working ;

(state = working) : {working,idle} ;

1 : idle ;

esac ;

next(num) :=

case

(num < 99) : num + 1 ;

1 : 0 ;

esac ;

FAIRNESS !(state = checking)

FAIRNESS !(state = working)

SPEC AG((state = checking) -> AF(state = idle))

SPEC AG((state = checking) -> EF(state = working))

SPEC AG((state = working) -> AF(state = idle))

The variable num in the module is equivalent with the input
data Num from the behavioural specification in Table 1. An
oversimplified algorithm is used to simulate the input of num.
Within a short time NuSMV returns the result that none of the
constraints has been violated, which is quite easy to see.
Fig. 2 shows how the ABM is composed of two components and
how they interact with each other. Labels ex1, ex2, ex3 and re1

are explained in Section 6.

5.2 Extending the sample system with multiple terminals
Now we consider a situation where the previously discussed

ABM should be able to handle two terminals from which input
data can arrive. We require mutual exclusion between the termi-
nal components as only data from one terminal can be processed
at a time. This is provided by a scheduler using a variant of the
method introduced by Peterson [18]. The specification and the
constraints are extended from the previous “base”.

MODULE main

VAR

state0 : {idle,entering,checking,working} ;

state1 : {idle,entering,checking,working} ;

turn : boolean ;

term0 : process terminal(state0,state1,turn,0) ;

term1 : process terminal(state1,state0,turn,1) ;

ASSIGN

init(turn) := 0 ;

Per. Pol. Elec. Eng.136 Ákos Dávid / Tamás Pozsgai / László Kozma



Extending a system with verified components 9

behavioral specification in Table 1. An oversimplified algorithm is used to simulate
the input of num. Within a short time NuSMV returns the result that none of the
constraints has been violated, which is quite easy to see.
Figure 2 shows how the ABM is composed of two components and how they interact
with each other. Labels ex1, ex2, ex3 and re1 are explained in Section 6.

Figure 2: Components of the ABM

5.2 Extending the sample system with multiple terminals

Now we consider a situation where the previously discussed ABM should be able
to handle two terminals from which input data can arrive. We require mutual
exclusion between the terminal components as only data from one terminal can be
processed at a time. This is provided by a scheduler using a variant of the method
introduced by Peterson [18]. The specification and the constraints are extended
from the previous “base”.

MODULE main

Fig. 2. Components of the ABM

FAIRNESS !(state0 = checking)

FAIRNESS !(state1 = checking)

FAIRNESS !(state0 = working)

FAIRNESS !(state1 = working)

SPEC AG !((state0 = checking) & (state1 = checking))

SPEC AG !((state0 = checking) & (state1 = working))

SPEC AG !((state1 = working) & (state0 = checking))

SPEC AG !((state0 = working) & (state1 = working))

SPEC AG((state0 = entering) -> AF(state0 = checking))

SPEC AG((state1 = entering) -> AF(state1 = checking))

SPEC AG((state0 = checking) -> AF(state0 = idle))

SPEC AG((state1 = checking) -> AF(state1 = idle))

SPEC AG((state0 = checking) -> EF(state0 = working))

SPEC AG((state1 = checking) -> EF(state1 = working))

SPEC AG((state0 = working) -> AF(state0 = idle))

SPEC AG((state1 = working) -> AF(state1 = idle))

MODULE terminal(state_sajat,state_masik,turn,turn_sajat)

VAR

num : {0..99} ;

ASSIGN

init(state_sajat) := idle ;

init(num) := 0 ;

next(state_sajat) :=

case

(state_sajat = idle) & (num > 0) : entering ;

(state_sajat = entering) & (state_masik = idle) : checking ;

(state_sajat = entering) & (state_masik = entering)

& (turn = turn_sajat) : checking ;

(state_sajat = checking) & (num <= 14)

& (turn = turn_sajat) : working ;

(state_sajat = checking) & (num > 14)

& (turn = turn_sajat) : idle ;

(state_sajat = working) & (turn = turn_sajat) : {working,idle} ;

1 : state_sajat ;

esac ;

next(num) :=

case

(num < 99) : num + 1 ;

1 : 0 ;

esac ;

next(turn) :=

case

(turn = turn_sajat) & ((state_sajat = checking) |

(state_sajat = working)) : !turn ;

1 : turn ;

esac ;

FAIRNESS

running

Here the constraints are not violated, either. However, strictly
for educational purposes some of the constraints can be changed
because the counterexample generated by NuSMV can help the
understanding of concurrent programming, for instance.

The next question is whether it is always necessary to check
the entire system model or it is sufficient if the constraints satis-
fied in the base component are matched against the constraints
in the extension.

6 Open Incremental Model Checking (OIMC)
OIMC introduced in [23] addresses the changes to a system

instead of re-checking the entire system model including the
new extensions. The model checking is executed in an incre-
mental manner within the extension component only. A sim-
plified model of the ABM extended from the previous model in
such a way can be seen in Fig. 3.

The conditions – basically inter-component constraints – re-
semble to pre- and postconditions in “design-by-contract”.
The definition they used to describe a software system is given
bellow:

A state transition model M is represented by a tuple
〈S, 6, s0, R, L〉 where S is a set of states, 6 is the set of in-
put events, s0 ∈ S is the initial state, R ⊆ S × P L(6) → S is
the transition function (where P L(6) denotes the set of guarded
events in 6 whose conditions are propositional logic expres-
sions), and L : S → 2AP labels each state with the set of atomic
propositions true in that state.

Components can be verified to be consistent via OIMC. Ini-
tially, a CTL property p is known to hold in B where B is the
base component (the original betting machine in our example).
We need to check that E (standing for the extension compo-
nent) does not violate p. The incremental verification method
only needs to verify the conformance at all exit states between
B and E . Corresponding to each exit state ex , within E , the al-
gorithm to verify preservation constraints νB(ex, cl(p)) can be
briefly described as follows [23]:

Extending a system with verified components 1372007 51 3-4



12 Dávid Á., Pozsgai T. and Kozma L.

Figure 3: The model of the extended ABM

Fig. 3. The model of the extended ABM

1 Seeding νB(re, cl(p)) at any reentry state re where cl(p) is
the set of all sub-formulae of p including itself. The assump-
tion function As is: As(re) = νB(re, cl(p)).

2 Executing a CTL assumption model checking procedure in E
to check φ, ∀φ ∈ cl(p). In case of COTS, a standard CTL
model checking is executed within E instead.

3 Checking if νE (ex, cl(p)) = νB(ex, cl(p)).

At the end of the algorithm, if at all exit states, the truth val-
ues with respect to cl(p) are matched respectively, B and E are
consistent with respect to p.

In our example the original betting machine consists of two
components interacting with each other. The terminal compo-
nents have one exit state (ex1) when Enter is pressed and one
reentry state (re1) when the two-digit number entered is greater
than 14 and the terminal returns to the initial state. The genera-
tor component has one exit state (ex2) when a ticket is returned
to be printed at the terminal. The extended betting machine con-
sists of two terminal components, the generator and a scheduler
which we will not consider as it has no effect on the functionality
of the machine. There is no direct connection between any of the
terminal components and the generator anymore. The two con-
straints below (and the closure for each) can easily be checked
at the exit state ex1.

SPEC AG((state = checking) -> AF(state = idle))

SPEC AG((state = working) -> AF(state = idle))

In the next step the extension must be checked with respect
to the properties described above and their closure sets. The
same properties appear twice in the list below as there are two
terminal components in the extended system.

SPEC AG((state0 = checking) -> AF(state0 = idle))

SPEC AG((state1 = checking) -> AF(state1 = idle))

SPEC AG((state0 = working) -> AF(state0 = idle))

SPEC AG((state1 = working) -> AF(state1 = idle))

The properties in connection with the scheduler component
are not considered as they do not affect the interoperability be-
tween the terminals and the generator. These are listed here.

SPEC AG !((state0 = checking) & (state1 = checking))

SPEC AG !((state0 = checking) & (state1 = working))

SPEC AG !((state1 = working) & (state0 = checking))

SPEC AG !((state0 = working) & (state1 = working))

SPEC AG((state0 = entering) -> AF(state0 = checking))

SPEC AG((state1 = entering) -> AF(state1 = checking))

There are two properties present in the original betting ma-
chine that do not need to be checked again as they refer to a
state transition within the generator component, not at any exit
or reentry states. These are the following:

SPEC AG((state0 = checking) -> EF(state0 = working))

SPEC AG((state1 = checking) -> EF(state1 = working))

Finally, the algorithm compares whether the truth values of
the closure sets of the properties at the exit states are equivalent
or not. In the case of the ABM it is relatively easy to see that the
algorithm ends with a successful comparison of the truth values.
In more complex systems the number of properties that do not
need to be re-checked is expected to increase.

The theorem concerning with the scalability of the OIMC
method has already been proved in [17] and can be read below:

Theorem 1 If all respective pairs of base (Ci−1) and refining
(Ei ) components conform, the complexity of OIMC to verify the
consistency between En and B is independent from the n-th ver-
sion of Cn , i.e. it only executes within En .

Despite the proof further studies are necessary to see the
efficiency of OIMC in real applications using third-party
components-off-the-shelf. Also, it is quite important to integrate
the method of OIMC into a commonly used model checker tool
such as the previously mentioned NuSMV.

Per. Pol. Elec. Eng.138 Ákos Dávid / Tamás Pozsgai / László Kozma



7 Future work
Circular dependency between interface states of the base and

the extension cannot be handled by OIMC.
Although defining contracts for the component is still our job,

there are remarkable results in this field as the authors of [1] cre-
ated a tool that is capable of extracting contracts from compo-
nents automatically, but only in the .NET environment. A sim-
ilar tool for the Java platform would not only be appreciated by
component developers and assemblers but it would also provide
an opportunity to compare the contracts extracted by different
tools. A tool should be developed which is able to transform
these contracts to CTL temporal constraints for model checking
(especially OIMC).

An educational framework with a library of verified compo-
nents outlined in [7] needs to be created for providing an envi-
ronment for IT students to practice design decisions.

8 Conclusions
We must not forget about the educational aspect of contracts

either, as the effectiveness of verified components developed for
the same purpose but by using different tools also becomes com-
parable based on measurable data (execution time, etc). The ex-
ample of the automatic betting machine is also suitable to illus-
trate the design decisions concerning the granularity of compo-
nents. If we assume that our client needs an automatic gambling
machine supporting not only betting on sports events but also
different lottery games, etc. then the developer has to decide
which case is the most suitable for the specific task.

– The first alternative is to develop the remaining components
from scratch not paying the least attention to the already ex-
isting component.

– The second solution is to try to adapt the existing component
to the modified situation. The developer may recognize the
similarity between betting on sports events and a lottery game
with five numbers in the following way. A lottery number can
be considered a sports event, the number of all sports events
is 90 and the number of bets placed on sports events is always
five. The bet itself is not important in this scenario.

– The third alternative is to restructure the entire component, for
example the random number generator becomes an indepen-
dent component as it is the most reusable part of the software
in other gambling games as well.

The best solution depends on the specific situation but it is no-
table that it may be another aspect to compare component ef-
ficiency for educational purposes. Hopefully this research can
result in the better use of formal methods in practical applica-
tions, the better understanding of specifications, and finally less
debugging work for developers. The ultimate goal is to make
the processes of integration testing and checking the entire sys-
tem model unnecessary for large and complex systems in the
case of replaced or modified components. As a consequence of

that third-party components formally verified by model check-
ing techniques become more reliable and trustable in practice.

References
1 Arnout K, Meyer B, Finding Implicit Contracts in .NET Components, Pro-

ceedings of FMCO 2002 (Formal Methods for Components and Objects),
Springer-Verlag, Leiden The Netherlands, August 5. LNCS 2852, 2002.

2 Bass L, Clements P, Kazmar R, Software Architecture in Practice (Second

Edition), Addison-Wesley, 2003.
3 Bertolino A, Polini A, A Framework for Component Deployment Testing,

Proceedings of the 25th International Conference on Software Engineering,
2003.

4 Beugnard A, Jézéquel JM, Plouzeau N, Watkins D, Making components

contract aware, IEEE Software 32 (1999), 38-44. Issue 7.
5 Clarke E, Grumberg O, Peled D, Model Checking, MIT Press, 2000.
6 Crnkovic I, Hnich B, Jonsson T, Kiziltan Z, Specification, Implemen-

tation and Deployment of Components, Communications of the ACM 45
(2002), 35-40.

7 Dávid Á, Pozsgai T, Kozma L, Educational framework for developing ap-

plications built from verified components, Proceedings of the Ninth Sym-
posium on Programming Languages and Software Tools, Tartu University
Press, Tartu Estonia, Spring Aug 13, 2005.

8 Fayad ME, Hamu DS, Brugali D, Enterprise frameworks characteristics,

criteria and challenges, Communications of the ACM 43 (2000), 39-46.
9 Gross HG, Component-Based Software Testing with UML, Springer, 2005.
10 Hatcliff J, Deng W, Dwyer M, Jung G, Prasad V, Cadena: An Integrated

Development, Analysis, and Verification Environment for Component-based

Systems, Proceedings of the 25th International Conference on Software En-
gineering, 2003, pp. 160-173.

11 Hopkins J, Component primer, Communications of the ACM 43 (2000),
27-30.

12 Kobryn C, Modeling components and frameworks with UML, Communica-
tions of the ACM 43 (2000), 31-38.

13 Kroger F, Temporal Logic of Programs, Springer-Verlag, 1987.
14 Larsen G, Component-based enterprise frameworks, Communications of

the ACM 43 (2000), 25-26.
15 Lee SC, Shirani AI, A component based methodology for web application

development, Journal of Systems and Software 71 (2004), 177-187. Issue 1-2.
16 Meyer B, Object-Oriented Software Construction (Second Edition), Prentice

Hall, 1997.
17 Nguyen TT., Katayama T, Handling consistency of software evolution in an

efficient way, Proceedings of the IWPSE, 2004, pp. 121-130.
18 Peterson GL, A new Solution to Lamport’s Concurrent Programming Prob-

lem Using Small Shared Variables, ACM TOPLAS 5 (1983), 56-65.
19 Reussner RH, The use of parameterised contracts for architecting systems

with software components, 6th Intl. Workshop on Component-Oriented Pro-
gramming, 2001.

20 Robby A, Dwyer MB, Hatcliff J, Bogor: An Extensible and Highly-Modular

Software Model Checking Framework ACM SIGSOFT Software Engineering

Notes, Proceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foundations
of software engineering, 2003.

21 Sparling M, Lessons learned through six years of component-based devel-

opment, Communications of the ACM 43 (2000), 47-53.
22 Szyperski C, Component Software Beyond Object-Oriented Programming

(Second Edition), Addison-Wesley/ACM Press, 2002.
23 Thang NT, Katayama T, Specification and verification of inter-component

constraints in CTL, Proceedings of the 2005 conference on Specification and
verification of component-based systems, Vol. 31, ACM Press. Issue 2, 2005.

24 Vitharana P, Risks and Challenges of Component-based Software Develop-

ment, Communications of the ACM 46 (2003), 67-72.

Extending a system with verified components 1392007 51 3-4


	Introduction
	Model checking
	Drawbacks of component-based development
	Different environments
	Granularity of components

	An example: Automatic Betting Machine (ABM)
	Verification of the system
	The NuSMV Model Checker
	Extending the sample system with multiple terminals

	Open Incremental Model Checking (OIMC)
	Future work
	Conclusions

