
Ŕ periodica polytechnica

Electrical Engineering
51/3-4 (2007) 147–156

doi: 10.3311/pp.ee.2007-3-4.09
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2007

RESEARCH ARTICLE

An agent-based framework for
supporting e-health: from OWL
description to MAS
Gianfranco Pedone

Received 2007-10-03

Abstract
The increasing level of elder patients across the European

countries obliges governments to face health services in a more
flexible and uniform manner. The idea of this research project is
to prospect the possibility of building an intelligent agent-based
ICT (Information&Communication Technology) platform in or-
der to grant home care services close to the patient’s needs. In
particular, this paper presents the unexplored possibility to add
an intelligence automation to the implementation, creation and
deployment of agents participating the e-Health MAS, starting
from their Ontology Web Language description. This approach
will convey the advantages inherent both the involvement of se-
mantic representations and the agent paradigm.

Keywords
Ontologies · multi-agent systems · intelligent e-health · auto-

matic agent creation · automatic agent deployment

Gianfranco Pedone

Computer and Automation Research Institute, Hungarian Academy of Sciences,
Lágymányosi u 11 1111 Budapest, Hungary
e-mail: gianfranco.pedone@sztaki.hu

1 Introduction
Multi-Agent Systems (MAS) in health-care domains are

showing a progressive and rapid increase, in order to manage
complex tasks and adapt gracefully to unexpected events. On
the other hand, the lack of well-established and industry-wide
accepted MAS development methodologies represents a serious
slack in the development process of a MAS. This inhibits the
possibility to grant a sufficient degree of automation in the cre-
ation and population of a Multi-Agent System.

Multi-Agent Systems (MAS) can represent a real technologi-
cal core competence for an organization in the actual panorama
of artificial systems [22]. The enormous circulation of infor-
mation within all application domains obliges actors involved
into a specific context to find intelligence solutions [23] in order
to support decision-making processes. This also holds, with a
higher emphasis, for those ones in health services area.

The work realized and presented in this paper is part of a
much wider project, which aims at building an intelligent agent-
based platform for granting uniform and well-suited care ser-
vices for elder people, across all European countries. In par-
ticular way, in this paper we will present an approach for au-
tomatically building and setting up a Multi-Agent System’s[10]
preliminary structure, starting from its ontological description.

The objective is to extract all necessary knowledge concern-
ing the MAS described by the Ontology Web Language[26]
(OWL) and delegate the composition and deployment of agents
to an automation framework. As previously stated, the lack of
well-established development methodologies[7] causes an im-
portant slow down in performance and it does not ease the en-
gineering process of analysis, design and implementation of
a MAS. Despite this, we will adopt some precise develop-
ment premises in order to suggest an ontological representation
roadmap of the system.

We consider of fundamental importance the introduction of
some key concepts which will clarify their use within this work.
This paper will be structured as follows:

• in the course of next section, we justify the reason for the
use of agents and their most important characteristics, their

An agent-based framework for supporting e-health: from OWL description to MAS 1472007 51 3-4

http://www.pp.bme.hu/ee

agglomeration into MAS and the need of ontologies for a se-
mantic description of artificial resources;

• in section three, we propose all technological elements in-
volved into the realization of the OWL-to-MAS framework;

• in the subsequent section we will expose in details the philos-
ophy and the functioning of the mentioned framework, focus-
ing on obtained outcomes;

• we will conclude the presentation of this paper by highlight-
ing the obtained results and tracing future works.

2 Why the agent paradigm?
Artificial Intelligence (AI) deals with intelligent behaviours

in artificial systems [27], which do not exist in nature, and it has
found application in a natural way in the context of agents-based
software. Behaviours involve abilities, such as reasoning, learn-
ing, communication and social perception[3] in complex envi-
ronments. The agents are the natural solution to all these ex-
pectations [23]. They refer to the intention of man to reproduce
behavioural-model-driven artificial systems. The enormous cir-
culation of information obliges us to dominate a decisional com-
plexity more and more onerous. From here, the necessity to em-
ploy technologies demonstrating proactive capabilities, such as
learning behaviours and delegation skills. The use of intelligent
technologies can give an essential and competitive approach to
the achievement of goals[24]. In addition, they can permit us to
evaluate their transportability and adaptability on the industrial
context.

The possibility to express behavioural models based on onto-
logical knowledge makes agents a resource ready for the seman-
tic web[25]. In particular contexts, like health care, the informa-
tion can play an even more critical role, dealing with humans
surviving issues. The care of chronic and disabled patients can
involve life-long treatments under the continuous supervision of
experts and this could be, in part, based on artificial intelligent
systems. All agents’ definitions presuppose a base of intelli-
gence, which, depending on the context, can be manifested em-
phasizing some characteristics in place of others: we can assert
that intelligence is the behavioural premise of an agent. In other
words, the undertaken actions of an agent are nothing else but
the result of internal intelligence synthesis processes. For this
reason, we propose to view an agent through the “agent-metric
net” Fig. 1: just as a net is composed of rays, this vision places
the characteristics of agents long radial directions. Therefore, as
all rays are critical elements for the resistance of a net, the thor-
oughness of the agent-metric net guarantees the critical adapt-
ability of the agent to the environment.

2.1 Multi-Agent Systems
A paradigm itself is not enough to give form to an architec-

tural structure: we need the necessary technology enabling such
a paradigm. Multi Agent Systems are the necessary infrastruc-
tures for agents to act: a physical environment in which agents

Fig. 1. : Representation of Agents Capabilities

are able to operate in order to achieve their goals and complete
their life cycles.

Abstraction leads to have concepts much stronger than math-
ematical logics: considering that software is nothing else than
a machine-level representation of human needs, abstracting just
means to bring the “cold” computer closer to human necessi-
ties. Cooperation, on the other hand, is the solution for closed
systems: every single program has to interface and communi-
cate in order to lighten computational difficulties and reduce the
amount of resources needed to achieve goals. In fact, agents
combine several characteristics in order to interact with other
entities available in the environment and find solutions to their
goals.

2.2 Ontologies
The goal of the ontological representation of knowledge is to

make explicit the semantics of a particular domain of interest,
for the purposes of sharing the knowledge among humans and
computer artefacts [1,2]. Sowa [4] subdivides knowledge repre-
sentation into categories:

• Logic, provides the formal structure and rules of inference;

• Ontology defines the kinds of things that exist in the applica-
tion domain;

• Computation supports the applications that distinguish
knowledge representation from pure philosophy.

There is a strong relationship between some specific ontology
and the logical rules and computational artefacts that use that
ontology, in that when they communicate among themselves,
they have some level of assurance that the same terms have the
same meanings to all. However, this use requires that the logi-
cal rules and the computational artefacts have explicit linkages
with the ontology; often in the form of hard-coding the ontolog-
ical terms into the rules and/or the application code itself. In an
agent-based system, common ontologies specify the ontological

Per. Pol. Elec. Eng.148 Gianfranco Pedone

commitments of a set of participating agents [3]. An ontological
commitment is an agreement to use a vocabulary in a way that
is consistent with ontology. An agent or human committed to an
ontology understands (some subset of) the ontology and agrees
to use it in a manner consistent with its semantics.

Agents and humans committed to the same ontology can
share knowledge among themselves with some certainty that
they share an underlying understanding of what is being said.
Commitment to common, shared ontologies facilitates openness
in an agent-based system.

In this paper, furthermore, we will evaluate the possibility to
settle the whole MAS implementation on its ontological descrip-
tion, elevating the mutual acceptance of the concept of MAS at
the level of human designer.

3 Technological requirements
3.1 Protégé
Protégé1 is a free, open-source platform that provides a suite

of tools to construct domain models and knowledge-based appli-
cations with ontologies. It implements a rich set of knowledge-
modelling structures and actions that support the creation, visu-
alization, and manipulation of ontologies in various representa-
tion formats.

Protégé can be customized to provide domain-friendly sup-
port for creating knowledge models and entering data. Fur-
ther, it can be extended by way of a plug-in architecture and a
Java-based Application Programming Interface (API) for build-
ing knowledge-based tools and applications.

The Protégé platform supports two main ways of modelling
ontologies:

• the Protégé-Frames editor, that enables users to build and pop-
ulate ontologies that are frame-based, in accordance with the
Open Knowledge Base Connectivity2 protocol (OKBC);

• the Protégé-OWL editor, that enables users to build ontolo-
gies for the Semantic Web, in particular in the W3C3’s Web
Ontology Language (OWL).

3.2 Protégé OWL Plug-in
The OWL Plug-in is a semantic web extension of the Protégé

ontology development platform [6]. The OWL Plug-in can be
used to edit ontologies in the Web Ontology Language (OWL),
to access description logic reasoners, and to acquire instances
for semantic mark-up. In many of these features, the OWL Plug-
in has created and facilitated new practices for building semantic
web contents.

3.3 Java Agent DEvelopment Framework
JADE4 is a middleware for the development and run-time ex-

ecution of peer-to-peer applications which are based on agents
1http://protege.stanford.edu/
2http://www.ai.sri.com/~okbc/
3http://www.w3.org/
4http://jade.tilab.com/

paradigm and which can seamless work and interoperate both
in wired and wireless environment. Two main aspects of the
conceptual model are the following: distributed system topol-
ogy with peer-to-peer networking and software component ar-
chitecture with agent paradigm. JADE is a software framework
completely implemented in JAVA language. It simplifies the
implementation of multi-agent systems through a middle-ware
that complies with the FIPA5 specifications and through a set of
tools that supports the debugging and deployment phases. The
agent platform can be changed at run-time by moving agents
from one machine to another one. JADE is a free software and
it is distributed and copyrighted by TILAB6 under the terms of
the LGPL (Lesser General Public License).

3.4 Ontology Beangenerator for JADE
The Beangenerator helps creating java files representing an

ontology that can be used for within the JADE environment
(version 2.5). The Beangenerator is implemented as a plug-in
for Protégé (version 1.6), by which we are enabled in importing
and exporting RDF and RDFS. This tool permits us to gener-
ate FIPA/JADE compliant ontologies from RDF(S), XML and
Protégé projects.

4 OWL to MAS Automating Framework
The intention to develop a whole Multi-Agent System pre-

liminary structure starting from its ontological description is
new in literature. Well-established procedures can be found in
agents’ communication and interactions through ontologies, as
described by FIPA and implemented by JADE. Here our inten-
tion is to capitalize the benefits coming from the semantics of an
ontology exploitation.

We have identified six main modules in the composition of
the framework, each of them oriented to a precise step in the
automation process. The design refinement has led to logically
divide the framework into 3 main phases: extraction (OWL de-
scription and analysis), coding (ontology translation and MAS
code composition) and deployment (agents’ creation and load-
ing). One of the most important components of the framework is
represented by the OWL-based MAS description: all successive
modules depend on this one, which contains all relevant agent-
oriented concepts: behaviours, interaction, communication, ser-
vice, actions and so on.

We would like to emphasize once more that the intention of
the framework is to automate the composition and population of
MAS in a sufficiently detailed manner, but we do not pretend
to create a final MAS complete in its business and functioning
logic.

5 FIPA is an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other tech-
nologies - http://www.fipa.org/

6 http://www.telecomitalia.it/cgi-in/tiportale/TIPortale/

ep/home.do?LANG=IT{\&}tabId=2

An agent-based framework for supporting e-health: from OWL description to MAS 1492007 51 3-4

http://protege.stanford.edu/
http://www.ai.sri.com/~okbc/
http://www.w3.org/
http://jade.tilab.com/
http://www.fipa.org/
http://www.telecomitalia.it/cgi-in/tiportale/TIPortale/ep/home.do?LANG=IT{&}tabId=2
http://www.telecomitalia.it/cgi-in/tiportale/TIPortale/ep/home.do?LANG=IT{&}tabId=2

4.1 MAS OWL Description Module
This module contains the OWL-based ontology description

representing the Multi-Agent System. The most considerable
effort requested by this framework component was to conciliate
an appropriate conceptualization of the e-Health MAS together
with the absence of an Agent-Oriented Software Engineering
(AOSE) methodology. According with [7], none of the actually
existing AOSE seems to completely suite this purpose. Numer-
ous methodologies and metaphors for developing agent-based
systems have been proposed in the literature [7, 8, 28]:

• the ant algorithms metaphor [11, 12] has shown to be useful
in efficiently solving complex distributed problems;

• physical metaphors [13, 14], focusing on the spontaneous re-
shaping of a system’s structure, may have useful applications
in pervasive and mobile computing;

• societal metaphors have been effectively applied in robotics
applications[15][16] and in the understanding and control of
highly decentralized systems [17, 18].

The GAIA methodology approach[09] focuses on the devel-
opment of large size systems, that have to guarantee predictable
and reliable behaviours. For these kinds of systems, we are per-
suaded by the fact that the most appropriate metaphor is that one
reflecting the human organization [19–21].

Evaluating strengths and weaknesses of a methodology is a
fundamental phase toward its adoption as a standard and it is of
crucial importance for the success of the whole system realiza-
tion. After the analysis of the project requirements our decision
has focused on GAIA methodology, in order to model the MAS
ontology description. The choice has been justified by the ap-
proach of the methodology in conceptualizing the environmen-
tal elements and their characteristics Fig. 2, which seemed to
naturally match with the concept of an agent within the JADE
platform.

Every agent living in a MAS container plays a well-defined
organizational role, following the specifications of the Health
care system. Each agent provides (guarantees) one or more ser-
vices fruition. A service has been modelled as a pair of object
properties in Protégé: behaviour and interaction. The first rep-
resents the dynamic intelligence of the agent, whilst the second
produces the environmental knowledge-base of each MAS en-
tity. Due to its connecting functionality between the MAS de-
sign and its physical implementation, this module had to con-
ciliate concepts coming from the chosen methodology (role, en-
vironment, permission, obligations, etc.), as well as those ones
necessary to the JADE MAS platform (agent identification, di-
rectory facilitator, mobility, message, etc.). Finally, all inter-
actions (i.e. communications) are based upon the ontological
description of concepts, such as behaviour and message.

4.1.1 Scenario description
The conceptualization of our MAS is defined around the fol-

lowing elements: Environmental Role (agent in the sense of

Fig. 2. An abstract vision of an agent in GAIA

JADE), Behaviour, Communication, Health Structure, Interac-
tion Protocol, Interaction Role, Language, Message, Ontology,
Service.

We simplified the MAS implementation by three agents role
definition: a Gynaecologist Agent, a Home Assistant Agent and
a Nurse Agent. Each of them will provide a specific service,
which will always be translated into a behavioural model and an
interaction pattern. A simplified example of the gynaecologist
agent model (in square brackets we intend the Protégé object
property range class) is the following:

aGynaecologistAgent, offersGinaecologistService [Monitor-
ingService] and actsInside[HealthStructure];

a MonitoringService, hasMonitoringBehaviour [CyclicBe-
haviour] and asInteractionBy[Communication];

a CyclicBehaviour, hasActionBy[Activity];

a Communication, hasInferenceOn[Ontology], hasInterac-
tionInitiator[Initiator], hasInteractionResponder[Responder],
hasLanguage[Language], hasMessage[Message] and hasPro-
tocol[Protocol].

The goal of this agent is to continuously check the status of its
patients and to trigger the intervention of the nurse agent in case
of assistance plan invocation. We assume that a standard mes-
sage of alarm will be sent by the doctor to the nurse, in order to
inform on the number of the action room. The NurseAgent, on
the other hand, has to provide the alarm and monitoring services,
customizing of course its behavioural model, its communication
patterns and its interaction protocols and responder(s). Similar
considerations can be asserted for the third agent, the HomeAs-
sistantAgent, whose aim is to provide an intervention service in
case of alarm and to register a new patient to the e-Health plat-
form from an external care structure.

4.1.2 Module results
In the following, we report the output of the first module of

the automating framework: an OWL description (simplified in

Per. Pol. Elec. Eng.150 Gianfranco Pedone

Fig. 3. OWL Classes of the MAS Description in
Protégé

(Fig. 3) in Protégé of the MAS organizational relationships and
a snippet of the OWL-to-MAS description file.

The ontological representation of the MAS is composed of
several important diagrams. First of all we have realized the nec-
essary OWL classes and properties (Fig. 3 and Fig. 4), listing all
relevant concepts for the model. After that, we could proceed
with the instantiation of the individuals, which will physically
populate our Multi-Agent System: the final result of the auto-
mated modelling framework.

The following code represents a snippet of the file describing
the Multi-Agent Sytem:

<rdf:RDF>

. . . .

<Activity rdf:ID="gmbActionTwo">

<activitySignature

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

gmbActionTwo(Object paramTwo)

</activitySignature>

</Activity>

<Activity rdf:ID="gmbActionOne">

<activitySignature rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">gmbActionOne(Object paramOne)

</activitySignature>

</Activity>

<MonitoringService

rdf:ID="K4CareGynaecologistAgentHospitalMonitoringService">

<hasInteractionBy

rdf:resource="#GynaecologicalMonitoringCommunication"/>

<hasMonitoringBehaviour>

<CyclicBehaviour

rdf:ID="GynaecologicalMonitoringBehaviour">

<hasActionBy rdf:resource="#gmbActionTwo"/>

<hasActionBy rdf:resource="#gmbActionOne"/>

<behaviourName rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

gynaecologicalMonitoringBehaviour</behaviourName>

<hasActionBy>

<Activity rdf:ID="gmbActionThree">

<activitySignature rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string">

gmbActionThree(Object paramThree)

</activitySignature>

</Activity>

</hasActionBy>

</CyclicBehaviour>

</hasMonitoringBehaviour>

<serviceName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

hospital_gynaecological_monitoring

</serviceName>

<dfServiceName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

HOSPITAL_GYNAECOLOGICAL_MONITORING

</dfServiceName>

An agent-based framework for supporting e-health: from OWL description to MAS 1512007 51 3-4

</MonitoringService>

<HealthStructure rdf:ID="HealthCenter"/>

<GynaecologistAgent rdf:ID="K4CareGynaecologistAgent">

<agentName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

k4cGynaecologist

</agentName>

<offersGinaecologistService

rdf:resource=

"#K4CareGynaecologistAgentHospitalMonitoringService"/>

<container-name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

K4CareGynaecologistContainer

</container-name>

<container

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">

true</container>

</GynaecologistAgent>

<HealthStructure rdf:ID="ConsultingRoom"/>

</rdf:RDF>

Fig. 4. OWL Object Properties List

4.2 MAS Description Analysis Module
The objective of this module is to analyse, recognize and ex-

tract all the FIPA/JADE compliant agent-oriented information
contained into the OWL file produced in the previous step. The
designated class to achieve this goal is the OWLJenaExtractor.
We have already mentioned the fact that, for this purpose, we
will be helped by the Protégé OWL plug-in API set, in order to
query and traverse the contents of the MAS.

Among all the available APIs we have to highlight the impor-
tance of those ones granting the instantiation of the OWL model
and its interrogations.

The Protégé OWL API makes a clear distinction between
named classes and anonymous classes. Named classes are used
to create individuals (i.e. classes instantiations), while anony-
mous classes are used to specify logical characteristics (restric-
tions) of named classes. Note that the class OWLModel from
the APIs contains many more classes than those returned by the:
owlModel.getUserDefinedOWLNamedClasses() method. We
used this method to filter out the system resources such as the
owl:Class metaclass, owl:Thing and rdfs:subClassOf. If you
want to access other resources by their names, you can easily
use methods such as:

OWLModel.getOWLNamedClass()
or OWLModel.getOWLObjectProperty().
To summarize, the class OWLModel provides access to all

resources in the model, and then you can call other getter meth-
ods on the objects that are delivered by the OWLModel. Other
queries, like:

OWLModel.getRDFResourcesWithPropertyValue() get all re-
sources that have a certain property value.

Starting from the results of the previous module, in the MAS
there will be the three agents mentioned above, and, by the
appropriate classes and methods exposed before, we will pass
their information to the composing module. The agent-oriented
information extracted from the OWL file will be stored as a
knowledge-base inside an AgentInsightDTO object.The struc-
ture of this object complies the need to store all data used by
the module that will compile and deploy the agents. We can
summarize the properties of the class AgentInsightDTO, as fol-
lows:

– agentName (String) [the name of the agent within the con-
tainer];

– container (Boolean) [specifies that this instance of JADE is a
container and that it must join with a main-container];

– backupmain (Boolean) [specifies that this instance of JADE
is a backup main container and that it must join with a main-
container];

– host (String) [specifies the host name where the main con-
tainer to register with is running; its value is defaulted to lo-
calhost;

– port (String) [this option allows to specify the port number
where the main container to register with is running];

– local-host (Integer) [specifies the host name where this con-
tainer is going to run];

– local-port (Integer) [this option allows to specify the port
number where this container can be contacted];

– name (String) [this option specifies the symbolic name to be
used as the platform name; this option will be considered only
in the case of a main container; the default is to generate
a unique name from the values of the main container’s host
name and port number];

Per. Pol. Elec. Eng.152 Gianfranco Pedone

– container-name (String) [this option specifies the symbolic
name to be used as the name of this container];

– nomobility (Boolean) [disable the mobility and cloning sup-
port in the launched container. In this way the container will
not accept requests for agent migration or agent cloning, op-
tion that might be useful to enhance the level of security for
the host where this container is running. The platform can
include both containers where mobility is enabled and con-
tainers where it is disabled. In this case an agent that tries to
move from/to the containers where mobility is disabled will
die because of a Runtime Exception];

– service (ServiceClass) [OO representation of the service car-
ried out by the agent];

Within the service class we will find the following further
structured information:

– behavioralModel (BehaviorClass);

– communication (CommunicationClass);

– interacionProtocol (InteractionClass);
– interactionInitiator (InitiatorClass);
– interactionRespoder (ResponderClass);

– healthStructure (HealthStructureClass) [OO representation
of the care structure in which the agent acts].

4.3 Ontology Translation Module
The aim of this module is to produce conversational on-

tologies, used by agents during their interactions. The Pro-
tégé Beangenerator creates the necessary representation of ex-
changed concepts in JAVA classes, defining a JADE compliant
structure of classes that will be imported inside our project as
added packages. We call attention to the fact, that even if the
Beangenerator is able to create agent-oriented concepts, such
as agent and activity, it is absolute inappropriate for our pur-
pose: the Benagenerator composes agents code structure singu-
larly, without any perception of the fundamental interconnect-
ing concepts that are necessary to the MAS modelling, such
as roles, services, communications, interactions and, above all,
there is no methodology at the basis of such process. For this
reason, we confine the tool at the creation of the ontologies that
will be queried by an ACL-based (Agent Communication Lan-
guage) message exchange. A snippet of extracted ontology can
be viewed in the following code, concerning the concept

PatientRecord:

//

public class PatientRecordOntology extends Ontology {

// The name identifying this ontology

public static final String ONTOLOGY_NAME =

"Patient-record-ontology";

// VOCABULARY

public static final String ENVIRONMENTAL_ROLE =

"Environmental_role";

public static final String PATIENT = ‘‘Patient’’;

public static final String NAME = "Name";

public static final String SURNAME = "Surname";

public static final String ADDRESS = "Address";

public static final String BIRTHDATE = "Birthdate";

public static final String CITY = "City";

public static final String STATE = "State";

public static final String ASSISTENCE_NUMBER =

"Assistance_number";

public static final String ASSURANCE_NUMBER =

"Assurance_number";

// The singleton instance of this ontology

private static Ontology theInstance =

new PatientRecordOntology();

// This is the method to access the singleton

patient record ontology object

public static Ontology getInstance() {

return theInstance;

}

// Private constructor

private PatientRecordOntology() {

// The patient record ontology extends the basic ontology

super(ONTOLOGY_NAME, BasicOntology.getInstance())

try {

add(new ConceptSchema(ENVIRONMENTAL_ROLE),

Environmental_role.class);

add(new ConceptSchema(PATIENT), Patient.class);

// Structure of the schema for the Item concept

ConceptSchema

cs = (ConceptSchema) getSchema(ENVIRONMENAL_ROLE);

cs = (ConceptSchema) getSchema(PATIENT);

cs.add(NAME, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(SURNAME, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(ADDRESS, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(BIRTHDATE, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(CITY, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(STATE, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(ASSISTENCE_NUMBER, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

cs.add(ASSURANCE_NUMEBR, (PrimitiveSchema)

getSchema(BasicOntology.STRING));

} catch (OntologyException oe) {

oe.printStackTrace();

}}}

4.4 MAS Code Composition and Orchestration Module
Once collected all information relating to the agents of the

MAS, their behaviours, activities, communications, basic mes-
sages and ontologies, we can delegate this module to compose
the agents final code structure. The elected main class for this
purpose is the MASCodeComposer.

The agent code can be divided into two categories of ele-
ments: fixed and invariable, regarding all keywords involved
into the JAVA programming and JADE agent-oriented coding,

An agent-based framework for supporting e-health: from OWL description to MAS 1532007 51 3-4

and automation-framework-derived, necessary to the embed-
ding of those expressions which comply the correct code com-
pletion of an agent. In other words, this module owns the parsing
knowledge needed to decide whether to insert a fixed expression
from the “composing vocabulary” or whether to get data from
the AgentInsightDTO object.

Here an example of automatically composed agent class code
follows (note that bolded expressions between [] indicate the
automation-framework-derived ones).

//

public class [gynaecologistAgentInsideDTO.getAgentClassName()]

extends Agent {

protected void setup() {

addBehaviour(new

[gynaecologistAgentInsideDTO.getMonitoringService()](this)

{

private boolean finished = false;

public void action() {

try{

//

//

ACLMessage inform = new ACLMessage(ACLMessage.INFORM);

inform.setProtocol(FIPANames.

InteractionProtocols.FIPA_INFORM);

inform.setOntology([gynaecologistAgentInsideDTO.

getOntologyName()]);

inform.setContent([gynaecologistAgent

InsideDTO.getMessageContent()]);

inform.addReceiver(new

AID([gynaecologistAgentInsideDTO.

getInteractionResponderLocalName()],

AID.ISLOCALNAME));

addBehaviour(new AchieveREInitiator(this,

[gynaecologistAgentInsideDTO.getProtocol().getName()])

{

protected void handleInform(ACLMessage reply) {

System.out.println("Protocol finished.

Rational Effect achieved." +"Received

the following message: "+reply);

}

});

//

4.5 Agents Creation Module
The simple goal of this module is to compile under the right

directives the .java files previously created, arranged and saved
by the module explained in the previous paragraph.

During this process we must pay attention to the file system
folders structure, in order to grant the right dependencies among
all files containing the agents’ code.

4.6 Agents Loading Module
Within JADE there is an in-process implemented interface

that allows external Java applications to use JADE as a kind of
library and to launch the JADE Runtime from within the appli-
cation itself.

A singleton instance of the JADE Runtime can be obtained
via the static method jade.core.Runtime.instance(), it provides

two methods to create a JADE main-container or a JADE remote
container (i.e. a container that joins an existing main-container,
giving form in this way to a distributed agent platform); both
methods require passing as a parameter a jade.core.Profile ob-
ject that keeps the configuration options (e.g. the hostname and
port number of the main container) required to start the JADE
runtime.

Both these two methods of the Runtime return a wrapper
object, belonging to the package jade.wrapper, that wraps the
higher-level functionality of the agent containers, such as in-
stalling and uninstalling MTPs (Message Transport Protocols,
FIPA), killing the container (where just the container is killed
while the external application remains alive) and, of course, cre-
ating new agents. The createNewAgent() method of this con-
tainer wrapper returns as well a wrapper object, which wraps
some functionalities of the agent, but still tends to preserve the
autonomy of agents.

In particular, the application can control the life-cycle of the
Agent but it cannot obtain a direct reference to the Agent object
and, as a direct consequence, it cannot perform method calls on
that object. Notice that, having created the agent, it still needs to
be started via the method start(). The following code lists a very
simple way to launch an agent from within an external class:

// Create a peripheral container within the JVM

Profile p = new ProfileImpl(false);

p.putProperty(Profile.MAIN, "true");

AgentContainer another = rt.createAgentContainer(p);

// Launch the Gynaecologist agent

// and pass it 1 argument: a String

Object[] arguments = new Object[1];

arguments[0] = "In action. Good Morning!";

AgentController gynaecologistController =

another.createNewAgent("DR.Laszlo",

"k4care.mas.owlagents.K4CareGynaecologistAgent", arguments);

gynaecologistController.start();

An alternative to the previous code consists in the creation of
batch file to compose, save and launch as an external application
from within the JAVA class MASAgentDeployer:

java -classpath "{\$}CLASSPATH{\$}" jade.Boot -container-name

GynaecologistAgentContainer

DR.Laszlo:k4care.mas.owlagents.K4CareGynaecologistAgent

The Fig. 5 gives an abstracted representation of the frame-
work functioning, highlighting the deployment phase of the
agents entering the MAS.

4.7 Final considerations on obtained outcomes
Following all previous MAS development steps (representing

the automation framework) we were able to automate the ar-
rangement of a whole e-Health supporting MAS. Agents acting
and cooperating inside JADE containers have the right capabili-
ties (modelled by their behaviours) to provide the required care
services. Some manual developing intervention will be manda-
tory in order to clarify the business logic of a single agent action
(which is out of the scope of this paper).

Per. Pol. Elec. Eng.154 Gianfranco Pedone

Fig. 5. Framework Functioning Abstraction

5 Conclusions and Future Works
Information technology’s traditional approaches to modern

applicative contexts are no longer sufficient, due to the enormous
amount of available information and system’s highly changing
requirements. Software technologies must express a degree of
sufficient intelligence in order to ease the human decisional pro-
cess. The context of electronic care services manifests the same
necessities. In this sense, Multi-Agent Systems can give a real
competitive advantage, thanks to their capabilities, such as au-
tonomy, mobility and social-capacity, all concepts based on a
behavioural model. The development of MAS is not a simple
task at all: a considerable help can derive from the use of the on-
tologies during the implementation phase. Ontologies can rep-
resent a fundamental semantic description of artificial systems.
On the basis of this approach, we tried to give intelligence to an
automation framework that builds and populates a MAS starting
from its ontological representation, indeed.

The outcome actually obtained is an ontology-based frame-
work for MAS development automation which simplifies the
creation of the whole architectural structure (without omitting
important concepts of the agent paradigm, such as behaviours,
communications, protocols, ontologies, messages). We have
given a semantic weight not only to the agent communication
level, but even to the MAS implementation itself. Future plans
regard the intention to empower the automating framework, by
trying to describe in a more formal manner the definition of
agent’s behaviours, in relation to the business logic of the service
they provide. We are interested in a mapping procedure which
could express, with a certain degree of intelligent automation,
the logics deriving from a service (business) in terms of agent
behavioural model.

References
1 Cranefield S, Purvis M, Nowostawski M, Hwang P, Ontologies for inter-

action protocols. Whitestein Series in Software Agent Technology, Ontolo-
gies for Agents: Theory and Experiences.
,

2 Nodine MH, Fowler J, on The Impact Of Ontological Commitment.
Whitestein Series in Software Agent Technology, Ontologies for Agents:
Theory and Experiences.

3 Karunatillake NC, Jennings NR, Rahwan I, Norman TJ, Arguing and

Negotiating in the Presence of Social Influences, CEEMAS 2005, Budapest,
Hungary – September 2005, Proceedings.

4 Sowa JF, Knowledge Representation : Logical, Philosophical, and Compu-

tational Foundations, Brooks Cole Publishing Co., 2000. Pacific Grove, CA.
5 Gruber TR, Translation approach to portable ontology specifications,

Knowledge Acquisition 5 (1993), no. 2.
6 Knublauch H, Fergerson RW, Noy NF, Musen MA, The Protégé OWL

Plugin: An Open Development Environment for Semantic Web Applications

- Stanford Medical Informatics, Stanford School of Medicine.
7 Dam KH, Winikoff M, Comparing Agent Oriented Methodologies, Proceed-

ings of the 5th Int’l Bi-Conference Workshop on Agent Oriented Information
Systems (AOIS), 2003.

8 Wooldridge M, Jennings NR, Kinny D, A methodology for agent-oriented

analysis and design, May 1999. ACM.
9 , The Gaia methodology for agent-oriented analysis and design, Au-

tonomous Agents and Multi-Agent Systems 3 (2000), no. 3.
10 Zambonelli F, Jennings NR, Wooldridge M, Developing Multiagent Sys-

tems: The Gaia Methodology, Autonomous Agents and Multi-Agent Systems
3 (2000).

11 Bonabeau E, Dorigo M, Theraulaz G, Swarm Intelligence. From Natural

to Artificial Systems, Oxford University Press, Oxford, U.K., 1999.
12 Babaoglu O, Meling H, Montresor A, A framework for the development of

agent-based peer-to-peer systems, 2002.
13 Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight T, Napal

R, Rauch E, Sussmann G, Weiss R, Amorphous computing, Commun.
ACM 43 (5 May 2000), 43–50.

14 Mamei M, Zambonelli F, Leonardi L, Distributed motion coordination in

co-fields, Apr. 2003, pp. 63–70. IEEE Computer Society Press,Los Alamitos,
Calif.

15 Moses Y., Tennenholtz M., Artificial social systems, Comput. Artif. Intel.
14 (1995), 533–562.

16 Collinot A, Benhamou P, Agent-oriented design of a soccer robot team,
1996. Los Alamitos, Calif.

17 Hattori F, Ohguro T, Yokoo M, Matsubara S, Yoshida S, Socialware:

Multiagent systems for supporting network communities, Communi. ACM
42 (1999), no. 3, 55–61. (Mar.)

18 Ripeani M, Iamnitchi A, Foster I, Mapping the gnutella network, 2002,
pp. 50–57.

19 Handy C, Understanding Organizations, PENGUIN BOOKS publishing,
1976.

20 Demazeau Y, Costa R, Populations and organizations in open multi-agent

systems, 1996.
21 Zambonelli F, Jennings NR, Omicini A, Wooldridge M, Agent-oriented

software engineering for internet applications, Springer-Verlag, Berlin, Ger-
many, 2001.

22 Jayalath N, Karunananda AS, Meeting competitive advantages through

Mobile Agent Technology,.
23 Wooldridge MJ, Jennings NR, Intelligent agents: Theory and practice,

The Knowledge Engineering Review 10 (1995), no. 2, 115 152.
24 M.B. Blake, B2B Electronic Commerce: Where Do Agents Fit In?, July 28

2002.

An agent-based framework for supporting e-health: from OWL description to MAS 1552007 51 3-4

25 Petrie C, Bussler C, Service Agents and Virtual Enterprises: A Survey,
IEEE Internet Computing (August 2003), 1-12.

26 available at http://www.w3.org/TR/owl-features/.
27 Rodney A. Brooks, MIT Artificial Intelligence Laboratory: Intelligence

without representation, Vol. 47, January 1991.
28 Onn Shehory, Evaluation of Modelling Techniques for Agent-Based Sys-

tems, 2001, pp. 624–631.

Per. Pol. Elec. Eng.156 Gianfranco Pedone

http://www.w3.org/TR/owl-features/

	Introduction
	Why the agent paradigm?
	Multi-Agent Systems
	Ontologies

	Technological requirements
	Protégé
	Protégé OWL Plug-in
	Java Agent DEvelopment Framework
	Ontology Beangenerator for JADE

	OWL to MAS Automating Framework
	MAS OWL Description Module
	Scenario description
	Module results

	MAS Description Analysis Module
	Ontology Translation Module
	MAS Code Composition and Orchestration Module
	Agents Creation Module
	Agents Loading Module
	Final considerations on obtained outcomes

	Conclusions and Future Works

