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Abstract

In this paper, the extension of the Bergman model (minimal model) is proposed with an internal insulin
control (IIC) part, representing the own insulin control of the human body. The model has been verified
with clinical experiments, by oral glucose intake tests. Employing parameter estimation, for inverse
problem solution technique (SOSI – ‘single output single input’) was developed using Chebysev
shifted polynomials, and linear identification in time domain based on measured glucose and insulin
concentration values was applied. The glucose and insulin input functions have been approximated
and the model parameters of IIC were estimated. This extended Bergman model suits considerably
better to the practical clinical situation, and it can improve the effectivity of the external control
design for glucose-insulin process. The IIC part has been identified via dynamical neural network
using the proposed SOSI technique. The symbolic and numerical computations were carried out with
Mathematica 5.1, and with its application Neural Networks 2.0.
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1. Introduction

Nowadays health experts refer to diabetes mellitus as the ‘disease of the future‘. The
World Health Organization’s (WHO) newest statistics show that 4% of the adult
society of the world suffer from diabetes mellitus, and this value could increase
to 5.4% by 2025. Van den Berghe [15, 16] has shown that tight glucose control
can reduce the Intensive Care Unit (ICU) patient mortality by 45% if the glucose
level is kept less than 6.1 mmol/L for a cardiac care population. It was shown
that automated control algorithms capable of tight regulation for glucose intolerant
ICU patients would reduce mortality, as well as the current burden on ICU medical
resources and time.

To design an appropriate control, an adequate model is necessary. During
the last 50 years, various models for the interaction between glucose and insulin
have been suggested [1, 6, 9, 13, 14], but the benchmark model was the minimal
model of Bergman [3]. Bergman’s two compartment minimal model explains and
evaluates in the simplest way the results of the intravenous glucose tolerance test
(IVGTT).
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However, the shortcoming is its big sensitive to variance in the parameters
and that the plasma insulin concentration must be known as a function of time.
Therefore, extensions of this minimal model have been proposed, [4, 10, 11] using
even control algorithms [5], trying to capture the changes in patient dynamics of
the glucose-insulin interaction, particularly with respect to insulin sensitivity.

Our researches have been focused on the optimization of the amount of insulin.
The proposed modified Bergman model has kept the minimal model’s properties
[2, 7], and good results have been achieved [8, 12], but the shortcomings of the
Bergman model remained.

This paper proposes an extension of the minimal model, but in a different
way, than the mentioned works have done. We are adding an internal insulin
control (IIC) part, representing the own insulin control of the human body by using
mostly control theory and less physiological aspects. However, the obtained model
is built by clinical experiments made on oral glucose intake tests, and measured
at the Heim Pál Hospital for Sick Children from Budapest, proving the long-term
applicability of our model.

The symbolic and numerical computations were carried out and presented as a
live worksheet with Mathematica 5.1, and with its application Neural Networks 2.0.

2. Materials and Results

2.1. Model Equations

The original Bergman model consists of two well-known equations, [3]:deq1 = X'[t℄ == p1X[t℄ + p2h[t℄;deq2 = Y'[t℄ == (p3 - X[t℄)Y[t℄ + i[t℄ + p4; (1)
with the following parameters, [6]:parameters = {p1 → -0.021151, p2 → 0.092551,p3 → -0.014188, p4 → 0.077947}; (2)
The terms h(t) and i(t) stand for exogenous insulin and glucose as inputs of the
system. X(t) and Y (t) are the concentration of glucose in the plasma and that of the
insulin remote from plasma, respectively. In our caseX(t) and Y (t) represent both
the states and the output of the system, because the dynamic of the measurement and
actuator devices are considerably faster than that of the system itself. The constants
pi(i = 1, 2,…, 4) are the model parameters.

We should like to extend this model in order to take into consideration an
important phenomenon, the internal insulin control (IIC), namely the own insulin
control of the body. We neither want to develop a new model nor estimate new values
for parameters pi of Bergman’s model, just to add a new part, which considerably
improves its applicability for real clinical situations.

Therefore, we tried to extend the minimal model with a third equation:



EXTENSION OF THE BERGMAN MINIMAL MODEL FOR THE GLUCOSE-INSULIN INTERACTION 25iint = F(iint,X(t),Y(t),h(t)) (3)
where the insulin inlet i(t) in the second equation of (1) is divided into an internal
iint (t) and an external part iext(t) (see Fig. 1):i(t) = iint(t) + iext(t) (4)

In order to identify our suggested extension, the input and output signals of the
model are needed. The clinical experiments were taken using oral glucose intake
(OGI), instead of intravenous injection and only the values of X(t) and Y (t) were
measured. Therefore, first the signals iint (t) and h(t) should be computed from
these measurements.

Fig. 1. The block diagram of the extended Bergman model.

2.2. Theoretical Approach of Oral Glucose Intake

In case of oral glucose intake – in contrast to intravenous glucose injection – it takes
time while the glucose is absorbed in the stomach and the glucose concentration
in the blood increases. The simplest model for this process is the perfectly mixed
tank model with first order reaction,V dXdt = -kX. (5)

Solving this equation with the initial condition X(0) = X0,X(t) = X0e- kV t (6)
Then glucose inlet flux into the blood circuit is proportional with,- dXdt = X0 kVe- kV t (7)
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Consequently, the glucose influx in the Bergman model h(t) can be expressed ash[t_℄ := αe-βt (8)
2.3. Estimation of the Parameters α and β

Now, the first equation of the Bergman model is:deq1
X′TtU == αe−βtαp2 + p1XTtU (9)

which can be solved with the initial condition:i1=X[0℄==X0 (10)X[t_℄=X[t℄/.(DSolve[{deq1,i1},X[t℄,t℄//Simplify)[[1℄℄
etp1(βX0 + p1X0 + (α − e−t (β+p1)α)p2)

β + p1

We have determined α and β parameters by clinical experiments using the
oral glucose intake test as measurement method. At the Heim Pál Hospital for Sick
Children from Budapest we have made tests on 14 different patients.

Oral glucose intake test known as oral glucose tolerance test (OGTT) is usually
performed to verify diagnosis when diabetes is suspected but symptoms are absent.
Data from an OGTT can be used to determine if an individual has an impaired
glucose tolerance, which is a prerequisite for diabetes.

Patients should be drink in five minutes 2-3 dl water with maximum 75g
glucose. After this, glucose level is measured at adults in two hours duration at
each 30 minute. In children measurements are taken also 150 and 180 minutes after
drinking the sugared water.

The estimation is presented over an oral glucose measurement set of a child
(see Fig. 2):gluosedata={0.,0.0432,0.0378,0.024,0.0234,0.009,0.}; (11)times={0.,30.,60.,90.,120.,150.,180.}; (12)
Employing our solution, the parameters α and β can be estimated on the bases of
these measured values. Substituting the parameter values p1 and p2, we get:model=X[t℄/.parameters/.X0 → 0 (13)

0.092551e−0.021151t(α - e−t (−0.021151+β)α)
β − 0.021151

<< Statistis`NonlinearFit` (14)
αβ =BestFitParameters/.NonlinearRegress[Transpose[{times,gluosedata}℄,model,t,{α, β}℄

{α → 0.0340007, β → 0.0322824}
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8.31443e−0.021151t (0.0340007 − −0.0340007e−0.0111314t )

Checking statistical significance it can be seen that the resulted model fits
well the measured values (11) and (12):NonlinearRegress[Transpose[{times,gluosedata}℄, model,t,{α, β}℄(15)

{BestF itP arameters → {α → 0.0340007, β → 0.0322824}

2.4. Approximation of the Insulin inlet of Internal Insulin Control

In order to identify a model for IIC, first one needs to estimate the insulin influx
produced by the internal insulin control. Therefore an inverse problem should
be solved, namely, we know the model (now represented by the second equation
of the Bergman model (1)) and the output (the measured values of the insulin
concentration in time) exemplified by the same patient as in (11), but now for his
insulin parameters:insulindata={25.3, 91.2, 64.2, 73.5, 51.3, 37.4, 24.1}; (16)

Fig. 2. The measured glucose values and the estimated model.

We are looking for the input, the insulin i(t) function. In these experiments,
no external insulin control took place, therefore i(t) ≡ iint (t). To solve this inverse
problem for non-autonomous SISO system in formy'(t) = a(t)y(t) + b(t)u(t) + (t) (17)
a numerical method has been developed (SOSI), which approximate the unknown
u(t) function (representing iint (t)) with the linear combination of shifted Chebyshev
polynomials (Ti), namely:
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∑

i=0
γ i Ti (

2 t
θ

− 1
) (18)

where these polynomials are valid in [0, θ] interval. The derivative of y(t)is ap-
proximated by a three point finite difference formula.

2.5. Implementation of Function SOSI

In the followings the realization of the SOSI module is presented. This is basically
the implementation of the Chebyshev polynomials:

<<LinearAlgebra`MatrixManipulation`SOSI[a_, b_, _, tm_, xm_, n_℄ := Module[{m, 3, i, t, x, u, eqs, A,B, P, p},m = Length[xm℄;
3= tm[[2℄℄-tm[[1℄℄;Do[ti= i3, {i, 0, m-1}℄;Do[xi= xm[[i+1℄℄, {i, 0, m-1}℄;p = Table [zi, {i, 0, n}℄u=Apply[Plus,Table[zi Chebysev[i, 2ηtm-1 -1℄,{i,0,n}℄℄;eqs = {t22 (x0 -x1 )+ 2to (t2 (-xo +x1) +t1 (xo -x2 ))++t21 (-xo +x2)+t2o (-x1 +x2)}/((to -t1)(to -t2)(t1 -t2) ====a[to℄xo +b[to ℄(u/.η → to)+;eqs=Join[{eqs},Table[(t21+i(x-1+i -xi ) --2ti (t1+i (x-1+i -xi)+t-1+i (xi -x1+i))++t2i (x-1+i -x1+i)+t2-1+i(xi -x1+i))//((t-1+i -ti )(t-1+i -t1+i )(ti -t1+i))==== a[ti℄xi +b[ti℄(u/.η → ti)+,{i,1,m-2}℄℄;eqs=Append[eqs,(t2-1+m (-x-3+m +x-2+m) --2t-2+mt-1+m (x-3+m-x-1+m)+t2-3+m (x-2+m -x-1+m)++t2-2+m(-x-3+m +x-1+m)+2t-3+mt-1+m(-x-2+m +x-1+m))//((t-3+m-t-2+m)(t-3+m-t-1+m)(t-2+m-t-1+m ))====a[tm-1℄xm-1+b[tm-1℄(u/.η → tm-1)+℄;{A, B}= LinearEquationsToMatries[eqs,p℄;P=PseudoInverse[A℄;
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n+1
∑

i=1
p[[i℄℄ChebysevT[i-1, 2ηtm-1 -1℄

Applying the SOSI algorithm on the glucose-insulin model we have got:a[t_℄ = (p3 -- X[t℄) /. parameters /.αβ ) /. X0 →0 (19)
−0.014188 − 8.31443e−0.021151t (0.0340007 − 0.0340007e−0.0111314t )b[t_℄=1; (20) = p4 /.parameters
0.077947

For SISO input we need to generate artificial measurements using spline
interpolation (see Fig. 4), because we need to estimate the γi parameters (i =

0 . . . n) of the shifted Chebyshev polynomials, (6). Results are presented in Fig. 4
illustrating the approximation of the input inlet insulin flux generated by IIC.

By using the computed i(t) function, the second equation of the Bergman
model can be solved only by numerical integration with the initial condition Y[0] =
25.3 µU/ (kg min) (see (16)). The obtained solution gave us the same interpolation
as in Fig. 3 and it corresponds also to the open loop simulation test of the insulin.

Fig. 3. The interpolated measured insulin values.

2.6. Identification of IIC Model via Dynamic Neural Network

Now having the output iint(t) and the inputs X(t), Y (t) and h(t) of IIC a dynamic
neural network can be built to identify the IIC model. As input function we have
used the previously calculated α and β values:
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Fig. 4. The insulin inlet flux generated by IIC.h[t℄/.αβ (21)
0.0340007e−0.0322824t

Therefore, the equation for iint(t) is (see Fig. 1):iint[t℄ =F[iint[t-1℄,X[t℄,Y[t℄,h[t℄,X[t-1℄,Y[t-1℄,h[t-1℄℄ (22)
Consequently, the dynamical neural network of IIC has been built as follows:

<<NeuralNetworks`y=Table[{i[t℄},{t,0,180}℄;u=Table[{Xint[t℄,Yint[t℄,h[t℄/.αβ},{t,0,180}℄;{model1,fitreord}=NeuralARXFit[u,y,{{1},{2,2,2},{0,0,0}},FeedForwardNet,{1},CriterionPlot → False,RandomInitialization → LinearParameters,Regularization → 0.0001℄;
As a result the estimated internal insulin regulator nonlinear model in discrete form
is:model1[[1℄℄[{y[t-1℄,u1[t℄,u2[t℄,u3[t℄,u1[t-1℄,u2[t-1℄,u3[t-1℄}℄(23)

−3.46165 + 10.671/(1 + e0.935576t+0.269209u1T−1+tU−3.71082u1TtU.
e−3.8279u2T−1+t U−2.87889u2Tt U−3.46827u3T−1+t U−0.278068u3TtU.
e−0.195113yT−1+t U)

Results show (see Fig. 5) that in the obtained model the insulin variation could
describe not only critical care situation, but it fits well also the interstitial insulin
(two peaks in the insulin response). Therefore, we improved the minimal model
proposed by Bergman.
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Fig. 5. Comparison between the insulin inlet flux generated by IIC and by Dynamic Neural
Network.

3. Conclusion

In this paper we proposed an extension of the minimal model, based on control
theory aspects and we have validated it based on clinical experiments. We would
like to point out that we didn’t develop a new model or estimate new values for
parameters pi of Bergman’s model, but just added a new part, the internal insulin
control (IIC) part, representing the own insulin control of the human body.

The advantage of this model is that insulin variation could describe not only
critical care situation, but it fits well also the interstitial insulin and not only the
insulin in a remote compartment as proposed by Bergman.

Statistical parameters gave good results, also demonstrated by the insulin inlet
flux generated by Dynamic Neural Network.

As a result we believe that after further verifications the model could provide
a useful help to control the blood glucose level, and in the optimization process of
diabetic administration.
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