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Abstract

In this case study, an optimal control in H2/Hinf space is presented for glucose– insulin system of
diabetic patients under intensive care. The analysis is based on a modified two-compartment Bergman
model. To design the optimal controller, the disturbance rejection LQ method based on the minimax
differential game is applied. The critical, minimax value of the scaling parameter γcrit is determined
by symbolic solution of the modified Riccati equation. The numeric evaluation of the symbolic
computation for γ > γcrit leads to two different solutions, but the norms of the vectors {λ1, λ2}
formed by the eigenvalues of the pair of the gain matrices are the same. The numerical results are in
good agreement with that of the µ-Toolbox of MATLAB. One of the gain matrices with increasing γ ,
approaches the gain matrix computed with the traditional LQ optimal control design. The symbolic
and numerical computations were carried out with Mathematica 5, and with the CSPS Application 2
as well as with MATLAB 6.5.

Keywords: Glucose–insulin control, LQ control, disturbance rejection LQ method, symbolic compu-
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1. Introduction

From engineering point of view, treatment of diabetes mellitus can be represented
by outer control loop to replace the partially or totally failing blood-glucose control
system of the human body. To maintain the glucose level in a diabetic patient under
intensive care is currently an actively researched topic in the field of Biomedical
Engineering. To design an appropriate control, an adequate model is necessary.
During the last 50 years, a variety of models for the interaction between glucose
and insulin have been suggested in the literature [2, 8, 14, 18, 19] as well as control
strategies have been designed and applied to the problem [3, 4, 6, 7, 12, 17]. Most
of the models were realized for "artificial pancreas" function, in such conditions,
where the patient’s blood glucose level being monitored and insulin injection are
performed continuously during surgery.

For this study the Bergman model was selected, which is not complicated,
however it is able to properly describe the performance of the physiological system
to be controlled [8]. Therefore, comparing the mentioned models, the authors
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choose a modified two-compartment model [5], considering it as the best appropriate
model.

Improving the control strategy an optimal glucose-insulin control in H2 /Hinf

space (disturbance rejection LQ method) has been designed and simulation for
food (sugar) intake was carried out. The symbolic and numerical computations
were carried out with Mathematica 5, with the CSPS Application 2 as well as with
MATLAB 6.5.

2. Materials and Methods

2.1. Model Equations

To simulate the insulin-glucose interactions in human body the following two-
compartment Berman-model was employed [8]:deq1==X′1[t℄= p1X1[t℄+p2h[t℄;deq2==X′2'[t℄=(p3-X1[t℄)X2[t℄+i[t℄+p4; (1)

The terms h(t) and i(t) stand for exogenous insulin and glucose as inputs of
the system. X1(t) and X2(t) are the concentration of glucose in the plasma and
that of the insulin remote from plasma, respectively. In our case X1(t) and X2(t)
represent both the states and the output of the system, because the dynamic of the
measurement and actuator devices are considerably faster than that of the system
itself. The constants pi(i = 1, 2,…, 4) are the model parameters.

To design optimal control, the first step is the linearization of the nonlinear
model in the vicinity of steady state [11, 12], namely at (X10, X20, h0, i0), where
x(t) is the state variable, u(t) and y(t) are the input and output variables:

ẋ =
(

p1 0
p4
p3

p3

)

x +
(

p2 0
0 1

)

u

y =
(

1 0
0 1

)

x +
(

0 0
0 0

)

u

, (2)

x, y and u are relative variables, deviations from the steady state.
To check the necessary conditions of the LQ problem (whether the system can

be stabilized at all); first we should test the controllability of the linearized system.
While the rank of the controllability matrix is equal with the rank of the system
[11], [12], the system can be stabilized. Now, the LQ control can be realized based
on Eq. (2).
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2.2. LQ control

It is well known [20], that the dynamic of an LTI (linear time invariant) system can
be described in the following way:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

, (3)

where A, B, C are constant matrices. Using a classical LQ control, the requirement
on designing is to minimize the following quadratic cost functional:

J (u, d) =
1

2

∞
∫

0

TyT (t)Qy(t) + uT (t)Ru(t)Udt . (4)

The classical LQ attempts to find an optimal control u∗(t), t ∈ T0,∞U, based on
the CARE (Control Algebraic Riccati Equation) such that:

J (u∗(t)) ≤ J (u(t)), (5)

for all u(t) on t ∈ T0,∞U, under properly chosen R and Q matrices. Hereafter, the
system considered is characterized by the following parameter values, [9]:numerialValues = {p1 → -0.021151, p2 → 0.092551,p3 → -0.014188, p4 → 0.077947}; (6)

The first component of u(t), the exogenous glucose, h(t) stands for disturbance.
Therefore, it should be eliminated from the LQ control. Consequently, R11 should
be considerably greater than R22. We choose the following matrices for R and Q:

R =
(

1000 0
0 0.001

)

, Q =
(

0.001 0
0 0.001

)

. (7)

Then the optimal gain matrix and the eigenvalues can be easily computed by:KLQ = LQRegulatorGains[ControlObjetSS/.numerialValues, Q, R℄; MatrixForm[KLQ℄
(

0.000068134 −4.90865x 10−7

−5.30373 0.985913

)

(8)

where ControlObjetSS represents the linearized Bergman model as control ob-
ject in CSPS Application of Mathematica, [11, 16].

It can be seen that the first row in KLQ is negligible. The eigenvalues of the
closed loop also can be computed:Eigenvalues[(A-B.KLQ)/.numerialValues℄

(−1.0001 − 0.021151) (9)
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2.3. Disturbance Rejection LQ Method

The disturbance rejection LQ method represents a generalization of the classical LQ
method and is based on the minimax criteria. The system dynamics are generally
described as before. However, now the input variable u(t) is separated in control
input ū(t) and disturbance d(t), which can be considered unmeasured, namely:

ẋ(t) = Ax(t) + Bū(t) + Ld(t)
y(t) = Cx(t)

. (10)

Therefore, in this situation the quadratic cost functional will be modified with the
disturbance explicitly:

J (ū, d) =
1

2

∞
∫

0

TyT (t)y(t) + ūT (t)ū(t) − γ 2dT (t)d(t)Udt . (11)

Now, the disturbance – while it appears with negative sign - attempts to
maximize the cost, while we want to find a control ū(t) that minimizes the maximum
cost achievable by the disturbance (by the worst case disturbance). This is a case of
so-called “worst-case” design and leads to the formulation of a differential-game,
[20]:

max
d(t)

J (ū, d) → min
ū(t )

J (ū, d) , (12)

ū(t), d(t) satisfying the state equation. It can be demonstrated that the unique
solution of the differential-game {ū∗(t), d∗(t)} exists and satisfies the saddle point
condition:

J (ū∗, d) ≤ J (ū, d) ≤ J (ū, d∗), (13)

where ū∗ is the optimal control and d∗ is the worst-case disturbance. According to
[20], the optimal control and the worst-case disturbance are given by:

ū∗(t) = −BT Px∗(t) (14)

d∗(t) =
1

γ 2
LT Px∗(t) (15)

where P is the positive definite symmetric solution of the modified control algebraic
Riccati equation (MCARE), [20]:

PA + AT P + CT C − P(BBT −
1

γ 2
LLT )P = 0. (16)
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2.4. Symbolic Solution of MCARE with Mathematica

In case of glucose-insulin control, one of the system matrices, B should be modified
and a new one, L will be introduced:

B =
(

0 0
0 1

)

, L =
(

p2 0
0 0

)

. (17)

We are looking for the symmetric solution matrix of the modified Riccati equations
in the following form:

P =
(

p11 p12
p21 p22

)

. (18)

Keeping in mind, that in our case C is identity matrix, the left hand side of the
Riccati equation becomes:RI = P.A + Transpose[A℄.P + IdentityMatrix[2℄ -- P.(B.Transpose[B℄ - 1

γ 2 L.Transpose[L℄).P (19)

It is easy to see, ([16] that RI is a symmetric matrix, and therefore, to solve
the modified Riccati equation, only three equations have to be solved, namely:eq1 = RI[[1, 1℄℄ == 0

1 − P 2
12 + 2P11p1 +

P 2
11p

2
2

γ 2
+

2P12p4

p3
== 0,eq2 = RI[[1, 2℄℄ == 0 (20)

−P12P22 + P12p1 +
P11P12p

2
2

γ 2
+ P12p3 +

P22p4

p3
== 0,eq3 = RI[[2, 2℄℄ == 0

1 − P 2
22 +

P 2
12p

2
2

γ 2
+ 2P22p3 == 0 .

However, to solve these three nonlinear equations in symbolic form is not an easy
task. As a result we resort to a trick by solving only two equations for unknowns
P11 and P22, and with the third one P12 as parameter, [16]:solR = Solve[{eq1, eq2},{P11, P22}℄; (21)

Because the elements of matrix P should be real numbers, the discriminator
(it is the same in every solution):dRI=4γ 4p21p23-4p22p3 (γ 2p3 -P212 γ 2p3 +2P12 γ 2p4);
should be positive, dRI ≥ 0. Now, we consider the worst case, namely dRI = 0:
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{{P12 →
p2

2p4 −
√

−γ 2p2
1p

2
2p

2
3 + p4

2p
2
3 + p4

2p
2
4

p2
2p3

}},

{P12 →
p2

2p4 −
√

−γ 2p2
1p

2
2p

2
3 + p4

2p
2
3 + p4

2p
2
4

p2
2p3

}

Using the same technique, the critical value of γ can be computed from dP12 = 0,
where:dP12 = -γ 2p21p22p23+p42p23+p42p24; (24)

Solving this equation for γ :solγ rt = Solve[dP12 == 0, γ ℄ (25)

{{γ → − i
√

−p2
2p2

3+p2
2p2

4
p1p3

}, {γ → i
√

−p2
2p2

3+p2
2p2

4
p1p3

}}

The value of γ should be positive, therefore only the first solution, the positive
one could be considered (model parameter p2 is positive):

γ rit=Simplify[√p22p23+p22p24p1p3 , Assumptions → p2 >0℄ (26)

p2

√

p2
3 + p2

4

p1p3

In case of γ = γ crit , P = Pcrit , the elements of the critical solution matrix are:P12rit = ((P12/.solP12[[1℄℄)/. γ→γ rit)//Simplify (27)

p4

p3

and then the critical solution for P11 will be:P11rit = (P11/.solR[[1℄℄)/.{γ→γ rit, P12 → P12rit})//Simplify
(28)

−
p2

3 + p2
4

p1p
2
3

but for P22, the critical solution is blowing up:P22rit = (P22/.solR[[1℄℄)/.{γ→γ rit, P12→ P12rit})//Simplify
(29)
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which means that the solution of the modified Riccati equation at γ = γ crit is a
singular solution.

The optimal value ofγ is just greater thanγ crit because the smallest admissible
γ should be chosen. The modified Riccati equation for matrix P with numerical
values of the model parameters is:eqs[γ_℄ = Map[(#/.numerialValues)&,{eq1,eq2,eq3}℄; (30)

Employing the numerical values of the model parameter, the critical value of γ is:Nγ rit = SetPreision[γrit/.numerialValues, 20℄ (31)
24.434658651258303053

Let us consider γ = (1 + ε)γcrit , where ε is a small number, for example,
ε = 10−10, than the corresponding admissible γ value is:Nγ = SetPreision[(1+ε)Nγ rit, 20℄ (32)

24.434658653701768918

Now the modified Riccati equation can be solved numerically:NsolR = Solve[eqs[Nγ℄,{P11, P12, P22}℄; (33)

The solutions providing positive definite P matrix should be selected:solPD = Selet[{{P11, P12}, {P12, P22}} /.NsolR,(Eigenvalues[#℄[[1℄℄ > 0∧ Eigenvalues[#℄[[2℄℄ > 0) &℄ (34)
{{{1453.28,−5.41431}, { − 5.41431, 0.986123}},
{{1494.44,−5.41751}, { − 5.41751, 0.986123}}}

Indeed, these solutions are positive definite:Map[Eigenvalues[#℄ &, solPD℄ (35)
{{1453.3, 0.965938}, {1494.46, 0.966471}}

In order to use matrix norm, the following standard package should be loaded:

<< LinearAlgebra`MatrixManipulation` (36)

These solutions satisfy the modified Riccati equation:Map[MatrixNorm[RI/.Join[numerialValues, {P11→#[[1, 1℄℄,P12→#[[1, 2℄℄, P22→#[[2, 2℄℄,
γ → Nγ }℄℄ /MatriesNorm[#℄ &, solPD℄

{

2.49617 x 10−12, 2.42568 x 10−12
}

(37)

The L matrix is:
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{{0.092551, 0}, {0, 0}}

Having the solutions of the Riccati equation, the corresponding gain matrices
can be computed as follows:K = Map[(Transpose[B℄.# + 1

Nγ 2 Transpose[NL℄.#) &, solPD℄; (39)Map[MatrixForm[#℄ &, K℄;
{(

0.22578 −0.000839538
−5.41341 0.986123

)

,

(

0.231658 −0.000839786
−5.41751 0.986123

)}

These two solutions are fairly close to each other, so we consider the average value
of them:KLQR = (K[[1℄℄ + K[[2℄℄) /2; MatrixForm[KLQR℄ (40)

(

0.228533 −8.39916 x 10−8

−5.41835 0.985913

)

The eigenvalues of the closed loop are:Eigenvalues[(A/.numerialValues) - B.KLQR℄
{ − 1.00031,−0.021151} (41)

We should mention that MATLAB provides only numerical value for γ crit , and
only one solution for the gain matrix, which is very close to the average gain KLQR,
namely the MATLAB solution for the gain matrix and eigenvalues are, [13]:

KLQR =
(

0.2284 −0.00083
−5.4159 0.9861

)

(42)

Eig =
(

–1.00031 –0.02115
)

These values show that the average of symbolic solutions of MCARE and the
numeric solution of MATLAB are in very good agreement.

2.5. Comparing LQ and Disturbance Rejection LQ Control Methods

The gain matrix KLQR, provided by the disturbance rejection LQ method depends
on the actual value of the scaling parameter γ . In case γ → ∞, we get the gain
matrix designed by the classical LQ method, namely: lim

γ→∞
KLQR = KLQ.
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Considering γ = 100 γ crit , we repeat the computations for solving Riccati
equation. The obtained results are as follows [13]:

KLQR∞ =
(

0.0000114139 −8.22153 x 10-8

−5.30377 0.985913

)

(43)

EigLQ∞ =
(

–1.0001 –0.02115 1
)

3. Results

First, the dynamical performance of the nonlinear system is simulated in case of
food intake. We considered that the sugar absorption in the body has the following
exponential form [10] (see Fig. 1):

δ[t_℄:=0.034 Exp[-0.0323 t℄/; t > 0
δ[t_℄:=0/; t == 0 (44)

To illustrate the control action, first the simulation was carried out without control
(see Fig. 1, Fig 2). A considerable drop in the insulin remote from the plasma can
be seen, what indicates the necessity of control (see Fig. 2).

Using the classical LQ (with the given R and Q matrices), the decrease of the
insulin concentration is now very small (see Fig. 3), demonstrating LQ’s superiority
over the other applied control strategies. However, the glucose concentration is not
affected.

Moreover, Fig. 3 and Fig. 4 show that the LQR controller design provides a
better control performance than the LQ controller design.

Employing symbolic computation, it was possible to determine the critical
value of the scaling parameter γ as function of the model parameter:

γcrit =
p2

√

p2
3 + p2

4

p1p3
(45)

It turned out that for γ > γ crit there are more than one positive definite
solutions of the modified Riccati equation (see Table 1), and they are in good
agreement with the result of MATLAB. However, MATLAB gives only one of
solutions, Ka . As an illustration, the K11 (γ ) is computed for different γ (see
Fig. 6).

4. Conclusion

The main advantage of the selected model, in comparison with the other mentioned
models is, that it is on-line adaptive, based on strong theoretical foundations as
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Fig. 1. Glucose concentration in the inlet stream, h(t) as disturbance.

Fig. 2. The solution for the insulin concentration without control.

Fig. 3. The solution for the glucose concentration without control.
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Fig. 4. The performances of LQ (dashed line) and disturbance rejection LQ control con-
sidering insulin concentrations.

Fig. 5. The performances of LQ (dashed line) and disturbance rejection LQ control con-
sidering glucose concentrations.

Fig. 6. Bifurcation of the gain matrix element K11 (γ ) from the singular point, γ = γcrit .
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Table 1. Bifurcation of the gain matrix element K11 (γ )

γ

γcrit
1.1 1.3 1.5 2 3 5

Ka
11 0.2284 0.0824 0.0580 0.0305 0.0130 0.0046

Kb
11 0.3237 0.3745 0.3988 0.4264 0.4439 0.4524

well as describes the physiological system appropriately. However, in the literature
there are some articles dealing with more sophisticated models of glucose-insulin
interaction, but they have not been applied to control problems, [2, 15]. Nowadays
scientists are trying to obtain on-line adaptive control laws using compartment
theory, but results are still in an initial phase [1]. As we illustrated in this study,
the application of the computer algebra provides a considerable contribution to
following this trend.

Using the presented control model, a continuous control input can be achieved.
Moreover, the model is not complicated (it uses only two differential equations),
so it could give a great advantage in case of practical implementation. According
to this case-study, the disturbance rejection LQ control proved to be superior to the
classical LQ.

However, the model is not implemented yet in a real (practical) application,
but after the necessary further verifications it could provide a useful help to control
the blood glucose level, and in the optimization process of diabetic administration.
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