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Abstract

An improved feature extraction method has been developed for classification and identification of
time series, in case of the number of the experiments are considerably less than that of the samples
in time series. The method based on the subband analysis of the wavelet transformation of the time
signals, provides lower dimension feature vectors as well as much more robust kernel-based classifier
than the traditional wavelet-based feature extraction method does. The application of this technique
is illustrated by the classification of cerebral blood flow oscillation using support vector classifier
with Gaussian kernel. The computations were carried out with Mathematica 5.1 and its Wavelet
Application.
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1. Introduction

Sometimes the numbers of physiological experiments are restricted by many reasons
(i.e. technical, financial, moral etc.). It can happen, that the number of the different
experiments (m) is considerably less than the number of samples measured in each
experiments (n), namely n >> m. This fact can make it more difficult to classify
or identify such a time series. This study deals with the classification of cerebral
blood flow signals (CBF), where we have faced the above problem.

Oscillation of the CBF is a common feature in several physiological or patho-
physiological states and may significantly influence the metabolic state of the brain.
Medical experiments were carried out to study the effect of special drugs on CBF
in adult male Wistar rats’ brain, [1]. A typical part of such a time signal is shown
in Fig. 1.ts=ReadList["E:\data1.txt",Number℄;
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tRatio → 0.4℄;
The total length of the signal, the number of the samples isn=Length[ts℄
72041

Fig. 1. A part of a time signal of CBF with sampling time 5 ms.

In order to identify different states of CBF oscillation, different classification
methods, based on a two-dimensional feature vector – the maximum amplitude
and its frequency of the Fourier transform of the time signals – have been em-
ployed, using neural network and support vector machine classifiers (SVMC) [2]
and [3]. However, these approaches were only partly successful because the two-
dimensional feature vector could not characterize all the features of the time series.
Even the most promising technique, the SVMC suffered from overlearning [4].

In this paper an improved feature extraction method has been developed for
classification and identification of time series, when the number of the experiments
is considerably less than that of the samples in the time series. The method is based
on the subband analysis of the wavelet transformation of the time signals providing
lower dimension feature vectors as well as much more robust kernel-based classifier
than the traditional wavelet-based feature extraction method. The application of this
technique is illustrated by the classification of CBF oscillation using support vector
classifier with Gaussian kernel. The type of this presentation is a notebook form
of Mathematica, because the computations were carried out with Mathematica 5.1
and its Wavelet Application. In this way, we hope, that nothing is left out or hidden
and the method is much more understandable and its results are easily reproducible
for anyone.
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2. Feature Extraction Via Wavelet Transformation

In recent years, feature extraction methods were developed based on wavelet trans-
formation to recognize acoustic signals. They are applicable to the recognition of
ships from sonar signatures, cardiopulmonary diagnostics from heart sounds, safety
warnings and noise suppression in factories, and recognition of different types of
bearing faults in the wheels of railroad cars and so on [5]. Let us illustrate this
classical technique applying it to a CBF signal.

First, we drop the beginning and the end of this raw signal, getting a signal
of length of 216 samples,

Fig. 2. The phase space plot of the DWT of the time signaltsm=Drop[Drop[ts, -3000℄, n-3000-216℄; length[tsm℄
65536

Loading Wavelet application,

<<Wavelets`Wavelets`
Now the DWT of the time signal can be computed,ws=WaveletTransform[tsm,Daube
hiesFilter[2℄℄;
This transformation decomposes the data into a set of coefficients in the

wavelet basis. There are 16 sublists containing the wavelet coefficients in the
orthogonal basis of the orthogonal subspaces.

The contributions of the coefficients to the signal at different scales are rep-
resented by the phase space plot, see Fig. 2. Each rectangle is shaded according
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to the value of the corresponding coefficient: the bigger the absolute value of the
coefficient, the darker the area. The time unit is 5 msec.PhaseSpa
ePlot[ws,Frame → True,Logarithmi
S
ale → True,FrameLabel → {"Time","Frequen
y"}℄;

The traditional feature extraction method, originally developed for recogni-
tion of acoustic signals of different types of bearing faults in the wheels of railroad
cars, is the following [6]:

From the wavelet coefficients of each of the 16 resolution levels (subbands)
and from sample values of the original time signal let us, compute the average
energy content of the coefficients at each resolution. There are a total of 17 subbands
(16 wavelet subbands and one approximation subband represented by the original
signal) from which features are extracted. The ith element of the feature vector is
given by

vi =
1

ni

ni
∑

j=1

w2
i,j , i = 1, 2, . . . , 17 (1)

where n1 = 2, n2 = 2, n3 = 22, . . . , n16 = 215 and n17 = 216, wi,j is the jth

coefficient of the ith subband. In this way, from a time signal having 2ksamples or
dimensions, one can extract a feature vector of k + 1 dimensions.

This technique has been extended for two dimensional signals, for digital
images [7].

3. Employing Subband Analysis

In order to study the effect of the dimension of the input space on the quality of the
classification as well as to save the morphology of DWT, here we employ a different
approach. We consider the wavelet coefficients belonging to a given subband as
a feature vector based on this given resolution. It can be a reasonable approach,
because the approximated signal representation in the orthogonal subspace corre-
sponding to this subband is given by these coefficients [8].

In our case, there are two sets of time signals, representing two classes of CBF
states and only 40 patterns (2 × 20) are at our disposal. Intuitively, it is possible
to shatter two points by any linear manner in the one-dimensional space and three
points in two-dimensional space. By analogy, it is possible to shatter N+1 points
in the N-dimesional space with probability 1. If the patterns to be classified are
independent and identically distributed, then the 2 N patterns are linearly separable
in the N-dimensional space [9].

The coefficients of the subbands from n2 = 2 up to n6 = 25 = 32 will be
employed as different feature vector components. The magnitudes of the wavelet
coefficients at these subbands are shown in Fig. 3.
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ients[Drop[Drop[ws,1℄,-10℄,Frame → True,FrameLabel → {"Wavelet 
oeffi
ients","Resolution (subbands)"}℄;

Fig. 3. The magnitude of the wavelet coefficients at resolution from n2 = 2 (at the bottom)
up to n6 = 25(at the top)

It means that the very small coefficients belonging to the higher resolutions,
(n7 − n16) and the very big coefficients of the lowest resolution, (n1) are not taken
into consideration. The previous ones have no contributions; the latest one would
suppress all the others (see Fig. 2). With other words, we consider the "measurable"
fine structure of the subband coefficients.max
oeffs=Table[{i,Max[Abs[ws[[i℄℄℄℄},{i,2,16}℄;ListPlot[max
oeffs,Frame → True,PlotRange → {{1,17},{0,320}},PlotStyle → AbsolutePointSize[1℄,FrameLabel → {"Resolution","Max of 
oeffi
ients"},Prolog → Map[Line[{{#[[1℄℄,0},#}℄&,max
oeffs℄℄;

Fig. 4 shows the maximums of the magnitude of the wavelet coefficients of
different resolutions, except of those belonging to the first (lowest) one. To illustrate
the overwhelming magnitudes of the first resolution, here are the coefficients of the
first and second levels,Join[ws[[1℄℄,ws[[2℄℄℄

{74276.2, 74516.4,−171.985,−189.396}
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Fig. 4. The maximal magnitudes of the wavelet coefficients of different resolutions

4. SVM Classifier

For the classification, a support vector machine (SVM) classifier is used. This
kernel-based classifier can be trained on any size of training set, while neural net-
works should have so many input nodes as the dimension of the input space and
need definitely more training patterns than the number of these input nodes. Em-
ploying kernels, a classification problem can be transferred in a higher dimensional
space, where the linear separability is more likely. In addition, the quality of the
classification in any dimension can be measured by the geometric margin of the
SVM classifier [10].

As an example let us load the coefficients of the fifth subband, n5 = 24 = 16,
for all the 40 patterns, and we getwsp=ReadList["F:\data2.txt"℄;
so we have 40 feature vectors of dimension of 16, half of these feature vectors be-
longing to the first, the other half belonging to the second CBF state,Dimensions[wsp℄

{40, 16}

First, these data should be standardized; to be transformed so that their mean is zero
and their unbiased estimate of variance is unity,<<Statisti
s`MultiDes
riptiveStatisti
s`wsps=Standardize[wsp℄;

Let us employ Gaussian kernel, with parameter β = 5,



CLASSIFICATION OF TIME SERIES WITH SVM CLASSIFIER 135

β = 5.;K[u_,v_℄:=Exp[-β(u-v).(u-v)℄
It is useful to compute the determinant and the condition number of the of the Gram
matrix, [10]KK=Table[K[wsps[[i℄℄,wsps[[j℄℄℄,{i,1,40},{j,1,40}℄;
<< LinearAlgebra`MatrixManipulation`

The value of the determinantDet[KK℄1.
The condition number using infinity-norm is,MatrixConditionNumber[KK℄1.
The labels are indicating the first and second set,y ∈ T−1, 1U, thereforezm=Join[Table[1,{i,1,20}℄,Table[-1,{i,1,20}℄℄
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, −1,−1,−1,−1,
−1,−1,−1,−1,−1}

Let the value for the control parameter of regularization be
 = 100.;
To carry out the training of the support vector classifier, we shall employ the

algorithm imbedded into the function, SupportVe
torClassifier developed for
Mathematica [11].F1=SupportVe
torClassifier[wsps,zm,K,
℄;

The short, analytical form of the classifier isShort[F1[[1℄℄,5℄
−1.63702 × 10−13+ << 59 >> +0.990099
e−5·((−0.270843+x1)

2+(−0.056462+x2)
2+<<12>>+(−0.124474+x15)

2)+(3.35514+x16)2)

Let us check the result of the classification. The values of continuous classifier areMap[F1℄℄/.Table[xi → #[[i℄℄, {i,1,16}℄& wsps℄
{0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,

0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, −0.990099,−0.990099,
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− 0.990099,−0.990099,−0.990099,−0.990099,−0.990099,−0.990099,
− 0.990099,−0.990099,−0.990099,−0.990099,−0.990099,−0.990099,
0.990099, 0.990099,−0.990099,−0.990099,−0.990099,−0.990099,
− 0.990099,−0.990099}

Employing the signum decision function, we getPartition[Sign[%℄,20℄//MatrixForm
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

−1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1)

The classification is correct. The values of the weighting coefficients of the
continuous classifier:alfa=F1[[2℄℄

{0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099, 0.990099, 0.990099,
0.990099, 0.990099, 0.990099, 0.990099}

what means, that all patterns are support vector. A sample pattern was considered as
support vector, if its contribution (its weighting coefficient) to the decision function
is greater than 1% of the maximal contribution.

The geometric margin, γ can indicate the quality of the classification [10],
greater the γ , more reliable the classification:

γ = (

∑40
i=1 alfa[[i℄℄ - 1
alfa· alfa )−1/2

0.159695

These computations were carried out for different feature vectors based on the
coefficients of the different subbands Table 1 shows the results.

Decreasing the number of the wavelet coefficients, the Gram matrix is get-
ting ill-conditioned, the geometric margin is becoming narrower and probability of
the misclassification of patterns is increasing, although the classification with four
wavelet coefficients is just acceptable.

Let us employ the traditional feature extraction method, when the elements of
the feature vector are computed as the average of squares of the wavelet coefficients
belonging to the same subband, plus the same contribution of the original signal
as additional "subband". Consequently, the dimension of the feature vector is
16+1=17. Table 2 shows the result for this case.



CLASSIFICATION OF TIME SERIES WITH SVM CLASSIFIER 137

Table 1. The results of the SVM classification with different feature vectors

Subband
level

Number
of
wavelet
coeffi-
cients

Determinant
of Gram
matrix

Condition
number
of Gram
matrix

Number
of sup-
port
vectors

Geometric
margin

Number
of
misclas-
sified
patterns

6 32 1. 1. 40 0.159695 0
5 16 1. 1. 40 0.159695 0
4 8 0.999 1.040 40 0.159701 0
3 4 0.005 69.374 40 0.113922 0
2 2 1.9310−39 1.15107 25 0.083355 4

Table 2. The results of the SVM classification employing traditional feature extraction
technique

Determinant
of Gram
matrix

Condition
number of
Gram matrix

Number
of support
vectors

Geometric
margin

Number of
misclassified
patterns

0.994 1.170 40 0.159374 0

These results correspond to the results of the classification carried out with
the eight dimensional feature vectors based on subband level 4, however now the
dimension of the feature vectors is 17 instead of 8.

5. Classification of Noisy Patterns

Reliability of the classifier may be indicated by the geometric margin, but the
robustness should be studied via perturbation of the time signals. Noise of normal
distribution with mean of unity and standard deviation of σ was used to multiply the
original time signals, randomly, and classification of these noisy signals has been
done using the same SVM classifiers trained with noiseless signals.

<<Statisti
s`ContinuousDistributions`ListPlot[Map[(#Random[NormalDistribution[1.,0.1℄℄)&,Table[1,{100}℄℄,Frame → True,PlotJoined → True,Axes → None,Aspe
tRatio → 0.4℄;
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Fig. 5. Random values of the multiplier in case of σ = 0.1ListPlot[Map[(# Random[NormalDistribution[1.,0.1℄℄)&,Drop[ts,70000℄℄,Frame → True,PlotJoined → True,Axes → None,FrameLabel →{"Samples","Blood Flow AU"},Aspe
tRatio → 0.4℄;

Fig. 6. Noisy time signal, σ = 0.1

Classifications based on the subband method are more robust, less sensitive
for the perturbation of the time signals, and result less misclassified patterns than
that based on the traditional feature extraction.

6. Conclusions

In this article an improved feature extraction method is presented for classification
of time series. The main advantage of this feature extraction method is that it can
be efficiently used for classification even if the number of measurements is limited.
This method results in low dimensional feature vectors. Combining the method
with support vector classification leads to a very robust and reliable classification
procedure. These advantages of the introduced feature extraction were successfully
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Table 3. The number of misclassified patterns, using different σ s in case of the traditional
and two different subband feature vectors.

Standard deviation Traditional feature Subband method Subband method
of noise extraction with level 3 with level 5

0.01 0 0 0
0.02 7 0 0
0.03 9 0 0
0.04 11 0 0
0.05 11 0 0
0.10 - 0 0
0.20 - 2 0
0.30 - 5 0
0.40 - 8 4

illustrated by solving the classification problem of CBF signals, which could be
solved only partially by other traditional methods [12].
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