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Abstract

The paper deals with the simulation on the n variable random system developed from the well-known
second order feedback system. The investigated system can be transformed into an n dimensional
linear differential equation of the form ξ̇n+1 = An+1ξn+1 + Bu, having a system matrix An+1 of
random entries of dispersion σ . The main idea is that every participant is acting on the others by
the rule of second order feedback. It was proved that if c > σ

√
n the system is (a.s.) stable, where

the c>0 constant measures the “headstrongness” of the participants. The simulation results show the
effect of σ on stability.
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1. Introduction

Recent years the investigations of large complicated systems came to the front
seriously. The sociological, ecological, economical etc. systems often show high
dimensionality and the effects of randomness too. The block random approach
seems to be one of the promising initiations for the study of such complicated
systems. This means that the model consists of deterministic and even random
elements, allowing to handle the regular and also the occasional events.

2. The Model

The equation of non-linear problems – after linearization - often take the form of
second order linear differential equations, where T1, T2 are the usual parameters of
the system:

T 2
2

d2y

dt2
+ T1

dy

dt
+ y = b (1)

The sufficient condition of the stability means that the above two parameters should
be positive. In our study we assume the same. As it is well-known the equation is
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equivalent to the following two-variable system:
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ẏ1
ẏ2
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The equation can be considered to describe the behaviour of one mass point (posi-
tion, velocity). In a more complicated situation it is supposed that we have many
participants (mass points), besides we assume that the state of a participant affects
the behaviour of all other participants. Thus we have n2 equations which - using
the method in [1] – sum up to the following system:

ξ̇n+1 = An+1ξn+1 + Bu (3)

Since the system is the sum of second order components, the motion of the n
participants can be simulated with 2n state variables. In the model we use instead
of the n variable corresponding to the positions the sum of these variables. Thus the
system can be described by n + 1 so-called structural variables where the system
matrixA = An+1 = (ai,j ) in case of n participants is the following (n+1)× (n+1)
matrix. Here the c > 0 constant can be called the “headstrongness”, which measures
the difference between the strenght of interactions of a praticipant to itself and that
one to the others.
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(4)

It can be seen that the matrix A has 2×2 blocks: A11 = (ai,j ; i,j=1…n), A12 = (ai,j ;
i=1…n, j=n+1), A21=(ai,j ; i=n+1 ,j=1…n), A22 = (ai,j ; i,j=n+1).

Assume that the behaviour of the participants is not exactly the same, but
varies around an average. Exactly, we assume that the elements of the A11 block
of the system matrix are independent identically distributed random variables. The
matrix with independent identically distributed random variables is called Wigner
type random matrix.

The most important theorem about the stability of the above random dynamic
system is the following.

THEOREM 2 1 Let ξ̇ = An+1ξ +Bu be the above described random linear system
of differential equations. Assume that A11 is a Wigner type random matrix i.e.
ai,j − Eai,j (i,j=1…n) are independent identically distributed random variables of
expected values:

Eaii = − T1

T 2
2

− c (i=1…n) (5)

Eaij = − T1

T 2
2

(i,j=1…n, i6=j) (6)
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We assume that the variance is σ . Besides, suppose that ai,n+1 = − n

T 2
2

(i=1…n), an+1,j = n (j=1…n), an+1,n+1 = 0. Let Q be a 2×2 matrix derived from
the parameters and the dimension of the matrix A.

Q =
1

n + 1

(

− T1

T 2
2
n −n

√
n

T 2
2

n
√

n c

)

(5)

If
c > ι (Q) σ

√
n (6)

then the system is almost surely stable, where ι (Q) is the Jordan condition number
of the matrix Q.

Remark. It was proved in [4] that

ι (Q) → 1 (n → ∞) (7)

3. Simulation

During our investigations we made simulations with large number of participants
(n > 20) and the results agreed with those in the corresponding systems with four
participants. So we use a four participant random model to illustrate the behaviour
of the model. A sinus was used as the excitation on the first variable, the system
parameters were T1 = 1; T2 = 0.5; c = 0, 5.

Table 1 illustrates the statement of the theorem, showing the changes of the
proportion of the stable and unstable systems in connection with different disper-
sions.

Table 1. Number of generated systems: 20 (n = 4)

σ Number of stable systems Number of unstable systems

0.5 8 12
0.4 10 10
0.25 18 2
0.1 20 0

If σ=0.5 then most of the generated systems should be unstable. We selected
an unstable one and followed the trajectories of it. These trajectories can be seen
on Fig. 1-3 in different time interval. The variety in the shape of trajectories is the
consequence of the random part of the system. These differences can be seen in
details on Fig. 1.

Fig. 2 already shows the first signs of instability, while in a larger time interval
it becomes evident that the system is unstable (Fig. 3).
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Fig. 1. The variety in the shape of trajectories.

Fig. 2. The first signs of instability in the shape of trajectories.
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Fig. 3. Unstable system for large time intervals.

Fig. 4. Stable system in case of decrease of the dispersion of the entries.



146 M. JUHÁSZ

The decrease of the dispersion of the entries resulted in turning the system
into a stable one (Fig. 4).

4. Conclusions

The simulation results support the result of the above mentioned theorem. The
increasing dispersion implies decreasing stability. On the other hand the “head-
strongness” (c > 0) also affects the stability.

Since the model handles a number of participants together it can be considered
to be a multi-body simulation technique. The close connection of this method to
the turbulence offers the applications in ecology, economics, etc. [2].
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