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Abstract

The state equation describing the relationship between the input signal u(t), the state variable x(t)and
the output signal y(t) of a linear, time invariant nth order SISO process is: dx/dt=Ax+Bu, y=Cx+Du.
The transfer function between the output signal and the input signal of the process is: y(s)/u(s)=Wp(s)
and the time constants characterizing the delays of signals due to energy storage elements result
from the eigenvalues of the state matrix A. In the classical feedback control system, the controller
computes the control signal according to the expression u(s) = Wc(s)Tua(s) − y(s)U. The reduction
of signal delay in the process is implemented by the PID algorithm described by the transfer function
Wc(s)that accelerates the feedback system by overexciting the control signal to a specified extent.
The reduction of signal delay in the process can also be implemented by negative feedback of the
state variables x. If the process is state controllable and the control signal is computed according
to the algorithm u = kcua − Fx, the time constants of the feedback system can be freely specified
by appropriate selection of F and kc. The design of the feedback gain F can be performed using
the Ackermann formula; the system is accelerated by means of overexcitation of the control signal
to an appropriate extent even in this case. The paper presents the fact that the gain can be chosen
according to kc = TC(A−BF−1BU−1CA−1B, and the overexcitation ratio of the control signal can
be calculated using the relationship u(0)/u(∞) = T1+F(A−BF)−1BU−1. This overexcitation ratio
is in connection with the rate of pole transfers that can be expressed analytically. It occurs frequently
that the state variables x of the process cannot play any part in the computation of the control signal
since the state variables cannot be measured. In such cases, the state feedback can be implemented
from the state variables x ∗ (t) of a state observer according to the expression u = kcuaFx∗. The
paper presents the fact that the state feedback implemented based on the state observer – as opposed to
the common concept – can also be interpreted as a state feedback of the process model, with the task
of computing the control signal that fulfils the requirements of acceleration. This signal is applied at
the input of both the process model and the real process.
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Symbols

A,B,C,D process parameter matrices,
u(t), x(t), y(t) input signal, state variable, output signal of the

process,
yA set point, i.e. the preset value of controlled vari-

able y,
Wp(s) = mp(s)/np(s) transfer function of the process,
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n order of process,
kp = y0/u0 = −CA−1B dc gain of the process,
Co = TB AB . . . An−1BU state controllability matrix,
Ob = TC AC . . . An−1CUT state observability matrix,
pi = λi poles of the process, eigenvalues of A, roots of

np(s) = 0,
det(λI − A) = np(λ) characteristic polynomials of the process,
ni (i = 1, 2, . . .n) coefficients of characteristic polynomial,
ua(t) set point of the system,
Wc(s) transfer function of the controller,
kc, TI , TD, T parameters of the PID controller,
F = T0 0 . . . 0 1UCo−1nR(A) feedback matrix of the state variables, row vector,
A − BF state matrix of the feedback system,
pRi = λRi poles of the feedback system, eigenvalues of A−

BF ,
det(λI − (A − BF)) = nR(λ) characteristic polynomial of the feedback sys-

tem,
nRi (i = 1, 2, . . .n) coefficients of the characteristic polynomial,
nR(A) the characteristic polynomial with substitution

λ = A,
T0 0 . . . 0 1U last row of n × n dimension unity matrix,
kc = gain factor,
= TC(A − BF)−1BU−1CA−1B
kR = y0/ua0 = resulting dc gain of the feedback system,
= −C(A − BF)−1Bkc

ut = u(0)/u(∞) = over-excitation ratio,
= T1 + F(A − BF)−1BU−1

x∗(t) state variable of the state observer,
A − GC state matrix of the observer,
pMi = λMi poles of the state observer, eigenvalues of A −

GC,
detTλI − (A − GC)U = nM(λ) characteristic polynomial of state observer,
nMi (i = 1, 2, . . .n) coefficients of the characteristic polynomial,
G feedback matrix of the state observer,
AR, BR, CR,DR parameter matrices of the system with state ob-

server,
yR(t) = Ty(t) u(t) h(t)UT output signals of the system,
xR(t) = Tx(t) x∗(t)UT state variables of the system,
h(t) = x(t) − x∗(t) difference between the state variables of the

process and the observer.
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1. Introduction

Let the nth order linear SISO process be state controllable and state observable.
Based on the knowledge of the physical function of the process or the measurements
performed on it, the mathematical model of the process can be determined. If this
model is described by the state equation (1), its parameter matrices are known and
are as follows: A(n × n), B(n × 1), C(1 × n) and D(1 × 1).

dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(1)

As a result of delays in signals due to the energy storage elements, generally D = 0.
This means that under the effect of step change in the input signal u the output signal
y will not jump. In fact, in case of D = 0, the output signal y will change only under
the effect of the state variable x; however, since the state variable is the output of an
integrating element, in principle x is unable to undergo any step change. After all,
this means that a time delay is present between the output signal y and the excitation
u. The transfer function of a SISO process is:

Wp(s) = y(s)/u(s) = C(sI − A)−1B + D = mp(s)/np(s).

Since D = 0, the degree m of the numerator mp(s) is necessarily smaller than the
degree n of the denominator np(s) in the transfer function (m < n), the value of
vp(t) step response at t = 0 is vp(0) = 0. The block diagram of the process is as
follows:

Fig. 1. Block diagram according to the state equation of the process

If the process is proportional with u = u0 constant input signal in steady state,
the steady state value of x state variable will be x0 = −A−1Bu0 and the steady
state output signal will be y0 = Cx0 = −CA−1Bu0. The dc-gain is kp = y0/u0 =

−CA−1B. The steady state is reached when the transients are settled (in principle
at time t = ∞) and the transients ’decay’ according to the function exp(pi t) where
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Fig. 2. Step response of the proportional SISO process

pi = λi 1, 2, . . . n) are the negative eigenvalues or the eigenvalues with negative
real part of the state matrix A, i.e. the poles of the transfer function of the system.

For example, in the case of an asymptotically stable third order process with
damped oscillations in its step response, the eigenvalues λi of state matrix A, i.e. the
poles pi of the transfer function are: λ1= p1, λ2 = p2, λ3 = p3. In a general case,

Fig. 3. Eigenvalues of the state matrix A, i.e. the poles of process

the poles are located either on the real axis of the complex plane or symmetrically
to the real axis. The characteristic equation of the process is:

det(λI-A)=np(λ) = λn + n1 λn−1+… + nn−1 λ+nn=
(λ-p1)(λ-p2)…(λ-pi)…(λ-pn) = 0

The roots pi (i=1,2,…n) of this equation determine the transient behaviour of
the process, i.e. whether it is stable or unstable. Note that the value of the coefficient
nn is equal to the product of the poles of the process: nn = (−1)np1p2…pi…pn.

NOTES. In the traditional control structure, the control signal u is set by the controller
according to the control algorithm, from the difference ua − y between the set point ua

representing the set value yA of the manipulated variable and the effective value y of
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the manipulated variable. Very often this control algorithm is characterized by Wc(s)

transfer function having PID characteristics, and it is the PD part of the controller that,
by overexciting the usignal, brings about the effect that causes the system to be, so to say,
accelerated. The design of the controller using serial compensation is widespread in control
engineering. The classical control algorithm of the control signal u and its overexcitation
ratio are as follows:

u(s) = Wc(s) [ua(s) − y(s)] = kc

(

1 + 1
sTI

+ sTD

1+sT

)

[ua(s) − y(s)]

ut =
u(0)
u(∞)

= kckp

(

1 +
TD

T

)

The controller design based on compensation resumes at determining Wc(s) (its parameters
kc, TI , TD and T ). Taking these into consideration, the block diagram of the classical
feedback system is the following:

Fig. 4. Block diagram of the feedback control system with serial compensation

2. State Feedback

The system transients can also be accelerated by feeding back the state variables of
the process. Using state feedback on x(t) with a matrix (row vector) F and inserting
a scalar gainkc into the structure, the input signal of the closed loop system will be the
reference ua(t),while the input of the process will be the control signal, according
to the algorithm u(t) = kcua(t) − Fx(t). So, by selecting F and kc properly,
the transients can be shortened, which appears as if the poles p1, p2, . . .pi, . . . pn

of the process were replaced by the poles pR1, pR2, . . . pRi, . . .pRn of the closed
loop system. Due to the acceleration, the condition real(pRi )< real(pi) < 0
must be fulfilled, since this results in the transients of time function exp(pRi t) to
settle quickly. Based on the above, the control structure established by using state
feedback is as follows:
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Fig. 5. Block diagram of state feedback

The state equations of the feedback system are:

dx(t)

dt
= Ax(t) + Bu(t)

u(t) = −Fx(t) + kcua(t)
y(t) = Cx(t)

and:
dx(t)

dt
= (A − BF)x(t) + Bkcua(t)

y(t) = Cx(t)
(2)

Based on the state equations, the block diagram of the resulting system will be:
The state matrix of the resulting system is A-BF, thus, its pRi=λRi eigenvalues

Fig. 6. Block diagram of the system with state feedback

can freely be specified with appropriate selection of F (dimensioning for specified
eigenvalues). If the feedback system is also required to track a step reference signal,
the resulting system gives the responses x0=-(A-BF)−1Bkcua0, and y0=Cx0=-C(A-
BF)−1Bkcua0 , respectively, to a constant input signal ua0 in steady state. Accord-
ingly, the dc-gain of the resulting feedback system is kR = −C(A − BF)−1Bkc.
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The specified pole distribution (e.g. in case of a third order system) is depicted
below: The characteristic equation of system with state feedback is:

Fig. 7. The specified eigenvalues of the A-BF resulting state matrix in the system with
state feedback, i.e. the pR poles of the feedback system

detTλI − (A − BF)U = nR(λ) = λn + nR1λ
n−1 + . . . nRiλ

n−i + . . . nR(n−1)λ + nRn =

= (λ − pR1)(λ − pR2) . . . (λ − pRi) . . . (λ − pRn) = 0

Each coefficient nRi of this equation is given, if the pRi poles are considered to
be design requirements. Note that, just like in the case the characteristic equation
of the process, the value of the nRn coefficient is determined by the product of the
poles of the feedback system, i.e.: nRn = (−1)npR1pR2…pRi…pRn.

For design, F and kc must be determined. The eigenvalues pi of the state
matrix A of the process are known, the eigenvalues pRi of the state matrix A-BF of
the system are given as design requirements. ConsideringA,B and pRi as known,
the value of F must be selected so as to make the λRi eigenvalues of A-BF state matrix
of the feedback system equal to the specified values pRi . Knowing A,B and pRi ,
the feedback gain F can be calculated from the Ackermann formula as follows:

F = [0 0 ... 0 1] Co−1nR(A)

If the dc-gain of the original system is required to the same with the dc-gain of the
feedback system, then the following condition must be fulfilled: kp = −CA−1B =

−C(A − BF)−1Bkc = kR. From this, after calculating the feedback matrix F , the
gain kc can be determined.

kc = TC(A − BF)−1BU−1CA−1B (3)

The calculations are also supported efficiently by the MATLAB a
ker function:F = a
ker(A,B,pR)k
 = inv(C*inv(A-B*F)*B)*C*inv(A)*B
From a physical point of view, accelerating the transients of the system by means
of state feedback means that, for example, under the effect of a step reference ua
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applied to the input of the system being at rest, a signal u(0) = kcua(0) appears at
the direct input of the process at the time t = 0; in fact, at this point each of the x
state variables is still equal to zero: x(0) = 0. This forced u signal accelerates the
system transients. At the end of the transitory process, the feedback resets the u
signal to the value u(∞) = kcua(∞)−Fx(∞). The degree of overexcitation ratio
u(0)/u(∞) can be expressed by the extent of pole transfer. Having the input signal
ua(t) = ua01(t), the signals u(0) and u(∞) of the process are:

u(0) = kcua(0) = kcuao

u(∞) = kcua(∞) − Fx(∞) = kcua0 − Fx(∞)

Considering that the equilibrium value of state variable x is x(∞) = −(A −

BF)−1Bkcua0, we obtain:

u(∞) = kcua0 − Fx(∞) = kcua0 + F(A − BF)−1Bkcua0 = T1 + F(A − BF)−1BUu(0)

From this, the ut overexcitation ratio will be:

u(0)

u(∞)
= ut =

[

1 + F(A − BF)−1B
]−1

=
nRn

nn

=

n
∏

i=1

pRi

pi

(4)

This is overexcitation of the control signal u(t),and resetting the overexcitation

Fig. 8. Overexcitation of the input signal u under the effect of a step reference input
ua(t)=ua01(t).

in an appropriate manner induces the effect that appears as an acceleration of the
process. Physically speaking, the overexcitation results in acceleration, while the
state feedback restrains the extent of this forced intervention. An intervention of this
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type can result not only from structures with state feedback; but similar acceleration
can also be obtained by means of serial compensation using PD type elements [7].

If the state equation of SISO process is available in a canonical form, the design
of the state feedback, i.e. the determination of the parameters F , kc and ut can be
performed by means of very simple relationships instead of using complicated and
labour intensive matrix operations [7].

EXAMPLE. State feedback of a third order SISO process
The transfer function of third order lag SISO process is as follows:

Wp(s)=
y(s)

u(s)
=

mp(s)

np(s)
=

m3

s3 + n1s2 + n2s + n3
=

m3

(s − p1)(s − p2)(s − p3)
=

=
6

s3 + 6s2 + 11s + 6
=

6

(s + 1)(s + 2)(s + 3)

By using state feedback in order to shorten the transient response, let us design
a system having the prescribed poles: pR1 = −3, pR2 = −6, and pR3 = −9,
and characteristic polynomial as follows: detTλI − (A − BF)U = nR(λ) = (λ −
pR1)(λ − pR2)(λ − pR3) = λ3 + nR1λ

2 + nR2λ + nR3 = λ3 + 18λ2 + 99λ + 162.
In addition, the dc-gain of the system with state feedback must be the same as
the dc-gain of the process: kR = kp = m3/n3 = 6/6 = 1. Let us calculate the
overexcitation ratio. (n1 = 6, n2 = 11, n3 = 6, m3 = 6, nR1 = 18, nR2 = 99,
nR3 = 162).

The third order linear differential equation with constant coefficients will be:

d3y(t)

dt3
+ n1

d2y(t)

dt2
+ n2

dy(t)

dt
+ n3y(t) = m3u(t)

d3y(t)

dt3
= −n1

d2y(t)

dt2
− n2

dy(t)

dt
− n3y(t) + m3u(t)

Based on the differential equation, or by means of direct decomposition of the
transfer function Wp(s), the block diagram of the process built from basic elements
can be determined. This block diagram will enable us to describe the state equation
in the controllability canonical form.

With the symbols used in the block diagram, the state equation and parameter
matrices of the process are as follows:

dx1(t)

dt
= −n1x1(t) − n2x2(t) − n3x3(t) + u(t)

dx2(t)

dt
= x1(t)

dx3(t)

dt
= x2(t)

y(t) = m3x3(t)
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Fig. 9. Third order system – Block diagram according to the controllability canonical form

A =

[

−n1 −n2 −n3
1 0 0
0 1 0

]

B =

[

1
0
0

]

C =
[

0 0 m3
]

D = 0

The dc-gain of the plant transfer function:

kp = −CA−1B =
m3

n3

If the state variables x1(t), x2(t) and x3(t) are measurable with sensors, state feed-
back structure can be implemented. Its block diagram built with basic elements
will be:

Fig. 10. Block diagram of a system with state feedback

Here the state variables are fed back through the f1, f2 and f3 gains to the
input. The purpose of feedback is to place the poles of the system pR1, pR2 and pR3
according to the design specification. The feedback structure – since the summation
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elements can be freely interchanged – can be simplified. In order to do this, it can
be seen that the elements with gains −n1 and f1 , −n2 and f2 as well as −n3 and f3
are connected in parallel. Therefore, the simplified block diagram is shown below:

Fig. 11. Simplified block diagram of the system

The modified block diagram of the resulting system also corresponds to a
canonical form of controllability. Using the symbols used in the block diagram, the
state equation and parameter matrices of the feedback system are:

dx1(t)

dt
= −(n1 + f1)x1(t) − (n2 + f2)x2(t) − (n3 + f3)x3(t) + kcu(t)

dx2(t)

dt
= x1(t)

dx3(t)

dt
= x2(t)

y(t) = m3x3(t)

AR = A − BF =





−(n1 + f1) −(n2 + f2) −(n3 + f3)

1 0 0
0 1 0



 BR = Bkc =





kc

0
0





CR = C =
[

0 0 m3
]

DR = D = 0

kR = −C(A − BF)−1Bkc =
kcm3

n3 + f3

The prescribed poles of the feedback system are: pR1 = −3, pR2 = −6, and
pR3 = −9. The corresponding characteristic polynomial is: det[λI −(A−BF)U =

nR = (λ−pR1)(λ−pR2)(λ−pR3)=(λ+3)(λ+6)(λ+9) = λ3+nR1λ
2+nR2λ+nR3 =

λ3 + 18λ2 + 99λ + 162.
(nR1 = 18, nR2 = 99, nR3=162). The feedback gain F=[ f1f2f3] and kc as well as
the ut overexcitation ratio is calculated as follows:

F = T0 0 1U Co−1nR(A) = T0 0 1U
[

B AB A2B
]−1 (

A3 + nR1A
2 + nR2A + nR3I

)

kc =
[

C(A − BF)−1B
]−1

CA−1B

ut =
[

1 + F(A − BF)−1B
]−1

(5)



158 B. SZILÁGYI et al..

The calculus of kc and ut must be preceded by the determination of the feedback
gain F that can be calculated by means of the Ackermann formula. The state
matrix A and controllability test matrix Co of an nth order SISO process are of
n × n size. The size of the input matrix B is n × 1, while the matrices F and C
are of 1 × n size. It also follows that, even in case of the given n = 3rd order
system, complicated matrix operations must be performed (raising to a power,
inverse calculations, multiplication). It appears to be nearly hopeless without using
the services of MATLAB. In order to determine the values of F , kc and ut , let us
use the MATLAB tools for handling symbolic variables. Thus:

syms n1 n2 n3 m3 nR1 nR2 nR3 real A=[-n1 --n2 --n3;1 0 0;0 1 0];B=[1 0 0]’;

C=[0 0 m3];D=0; % Parameter matrices of the process

Co=[B A*B Aˆ2*B]; % Test matrix of controllability

nR=[1 nR1 nR2 nR3]; % Characteristic polynomial of the

nRA=polyvalm(nR,A); % system

F=[0 0 1]*inv(Co)*nRA; % The feedback matrix

kc=inv(C*inv(A-B*F)*B)*C*inv(A)*B; % The dc-gain

ut=inv(1+F*inv(A-B*F)*B); % The overexcitation ratio

disp(F);

disp(kc);

disp(ut);

n1=6;n2=11;n3=6;m3=6;

nR1=18;nR2=99;nR3=162;

disp(subs(F)); % F=[12 88 152]

disp(subs(kc)); % kc=27

disp(subs(ut)); % ut=27

Results obtained by using the MATLAB features are:

F = T−n1 + nR1 − n2 + nR2 − n3 + nR3U = T12 88 156U

kc =
nR3

n3
= 27

ut =
1

1 −
−n3 + nR3

nR3

=
nR3

n3
= 27

(6)

It must be noted again that the n3 coefficient is the product of the poles pi of the
process, while the coefficient nR3 is the product of pRi poles of the system with
state feedback. As shown, the ut overexcitation ratio is determined by the ratio of
pole transfer.

NOTES. In this example, the parameter matrices in the canonical form of controllability
were allocated to the transfer function of the process. Due to all these properties, the
characteristic polynomial of the system with state feedback can also be determined directly
from the block diagram. Taking these into consideration, one gets:

λ3 + (n1+f1)λ2 + (n2+f2)λ + n3+f3 = λ3 + (6+f1)λ2 + (11+f2)λ + 6+f3

λ3 + nR1λ
2 + nR2λ + nR3 =

3
∏

i=1

(λ − pRi) = λ3 + 18λ2 + 99λ + 162
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By comparing the coefficients of polynomials, we obtain:

6 + f1 = 18 11 + f2 = 99 6 + f3 = 162

f1 = 12 f2 = 88 f3 = 156

These values are the same with the results calculated by using the Ackermann formula.

3. State Feedback Using State Observer

State feedback from the state variables x(t) of the process is possible when these
state variables are measurable with sensors. This sometimes is not possible, and
even the mathematical model of the process is often unavailable. In such cases, the
mathematical model of the process must be developed based on the results of mea-
surements using certain identification procedures [8]. Typically, the identification is
based on determining the step response experimentally or measuring the frequency
function of the process. The final result of the identification is the transfer function
of the process from which the state-space representation can also be determined.

After determining experimentally the transfer function Wp(s)of the process
and its parameters or the state-space representation and its parameter matrices
A,B,C, a physical system can be established, represented for example in the form
of an electrical network. The state variables of this are the x∗ state variables and
its parameter matrices are the A,B,C parameter matrices already identified. In ad-
dition, this physical model (the state observer) must be designed in such a manner
that the variables x∗ are also accessible to measurements. Having this done, if the
u input signal is applied to the input of both the process and the observer at the
same time and the state feedback is implemented from the x* state variables of this
physical model instead of the x state variables of the process, a similar effect is
obtained as if the feedback were made from the x state variables of the process. The
state feedback from the state observer can be equivalent to the feedback from the
state variables of the process if the x ∗ (t) and x(t) have the same variation. (For
the technical implementation of state observer, a digital computer can also be used;
in such cases, it is the program running on the computer that plays the part of the
process model). The structure of the process and the observer is shown in the block
diagram in Fig. 12.
It is shown that, if the u(t) is applied to the input of the process and the model
of process (the state observer), and the initial conditions x(0) and x ∗ (0) are the
same, then x(t) = x∗(t) and therefore y(t) = y∗(t).This also means that the input
signal of the feedback gain G of the state observer is zero, that is Gplays no part in
this case. The gain G has an active role if the signal difference y∗ − y has a value
other than zero. This may occur if x(0) 6= x∗(0), that is, the initial conditions of
the process and the observer (with the same input signal u(t) applied) are different.
Thus, in case of state feedback implemented with the state observer, the design task
consists in determining the feedback gain G, after having designed the gain F . In
this case, x(t) and x∗(t) are different and, therefore, in determining G, the design
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Fig. 12. Structure of process and state observer

requirement may be that x(t) and x∗(t) approach to each other quickly even if
x(0) 6= x∗(0). The design solution can be traced back to the topics related to a
state feedback in which the state variable is the difference x(t)− x∗(t) between the
state variables of process and those of the observer. After all, the design of the state
observer means the determination of Gfeedback matrix (column vector).

Based on Fig. 12, for the process and the state observer we obtain:

dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t)

dx∗(t)

dt
= Ax∗(t) + Bu(t) − G

(

y∗(t) − y(t)
)

Ax∗(t) + Bu(t) − G
(

Cx∗(t) − Cx(t)
)

y∗(t) = Cx∗(t)

From this the difference between the differential equations of process and observer:

d

dt

(

x(t) − x∗(t)
)

= (A − GC) ·
(

x(t) − x∗(t)
)

(7)

The solution of this homogeneous state equation with the state matrix A-GC will
be:

x(t) − x∗(t) = e(A−GC)t
(

x(0) − x∗(0)
)

(8)

In case of nonzero initial conditions x(0) 6= x∗(0), this solution approaches to zero
quickly – i.e. the x∗(t) state variable of observer becomes nearly the same as the



STATE FEEDBACK DESIGN CONSIDERING OVEREXCITATION 161

x(t)state variable of process as quickly as possible – if the eigenvalues pMi = λMi

of the matrix A − GC are very small negative numbers (pMi ≪ 0).

Fig. 13. Free response of the process and the observer

The characteristic equation containing the eigenvalues of A-GC matrix will be:

detTλI − (A − GC)U = nM(λ) = λn + nM1λ
n−1 + . . . + nM(n−1)λ + nMn =

(λ − pM1)(λ − pM2). . .(λ − pMi). . .(λ − pMn) = 0

It is recommended to select the eigenvalues pMi=λMi so as to be even less than the
eigenvalues of the system λRiaccelerated by means of the state feedback FλMi <
λRi). Considering the eigenvalue λMi to be a design specification, the value of
G can be determined. As the matrices A,B are controllable and the matrices
A,C are observable, therefore G can also be determined by using the MATLAB
functionacker. It is important to note that the observability of matrices A, C ensures
not only the theoretical possibility that the observed state variables x∗(t) can be
computed from the control signal u and the output signal y; instead, it also warrants
for that, by appropriate selection of G, the eigenvalues λMi of the state observer
can be freely specified [3].

NOTES. In order to do this, it must be taken into consideration that, when designing the
state feedback, the acker function can be used in respect of the det[λI(ABF)] characteristic
polynomial, while the eigenvalues pRi=λRi of ABF are the design specifications. In this
case, the feedback matrix F is multiplied from the left by the known input matrix B and
F=acker(A,B,pR).

When designing the observer, the matrix Gshall be determined based on the specified
root pMi=λMi of the characteristic polynomial det[λI(AGC)] and it must be taken into
account that, in this case, the G to be dimensioned is multiplied from the right by the
known C output matrix.

According to a mathematical theorem, the roots pMi of the characteristic
polynomial detTλI − (A − GC)U are identical to the roots of the detTλI − (A T −
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CT GT )U polynomial and, for the latter, the Ackermann formula of the MATLAB
function acker can already be used:

GT =[0 0 …0 1][CT AT CT …(AT )n−1CT ]−1[(AT )n+ nM1(AT )n−1+…nMnI]GT=a
ker(A',C',pM);G=GT';
Although setting the poles pMi according to pMi < pRi < 0 ensures that the

difference x(t)−x∗(t) disappears quickly, however, this condition gives no warranty
for the initial errors. The reason is that the time functions are also influenced by the
numerators of the transfer functions; these, however, cannot be kept under control
by the design of this type [3].

As a summary, it can be stated that, if the mathematical model (the transfer
function and the state equation, respectively) of a process is known, the poles pi

of the process can also be considered as known. If, in order to achieve the quick
settling of the transients, the poles pi are “transferred” by means of state feedback
to the predetermined places pRi , the task is solved by designing the feedback gain
F and the gain kc VF=a
ker(A,B,pR);k
=inv C*inv(A-B*F)*B)*C*inv(A)*B

If the sensors do not have access to the state variables x of the process, the
feedback F is implemented from the state variables x∗ of the state observer that
models the process. The design of the state observer means the determination of
the feedback matrix G based on considering the eigenvalues pMiλMiof the matrix
A − GC as design specification:GT=a
ker(A',C',pM);G=GT';

Of course, in case of state feedback using a state observer, the state observer
itself must also be realized. In addition to that, access to x∗ shall be ensured, it is
also necessary that the process and the signals u and y of the model can also be
adapted to each other.

The block diagram of the feedback system with a state observer is shown
below [3]:

When writing the state equation of the system, let us take the control signal
u(t) and the signals h(t) = x(t)−x∗(t) in addition to the output signal y as further
output signals, based on the block diagram. By means of tracing these signals,
a comprehensive overview of the transients of the process, the observer and the
complete control system can be obtained. The state equation of the system will be:
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Fig. 14. Block diagram of the complete system

dx(t)

dt
= Ax(t) + B

(

kcua(t) − Fx∗(t)
)

dx∗(t)

dt
= Ax∗(t) − G

(

Cx∗(t) − Cx(t)
)

+ B
(

kcua(t) − Fx∗(t)
)

y(t) = Cx(t)

u(t) = −Fx∗(t) + kcua(t)

h(t) = x(t) − x∗(t)

Arranged to a normal form:
[

dx(t)

dt
dx∗(t)

dt

]

=

[

A −BF
GC A − BF − GC

] [

x(t)
x∗(t)

]

+

[

Bkc

Bkc

]

ua(t)

[

y(t)
u(t)
h(t)

]

=

[

C 01×n

01×n −F
In×n −In×n

]

[

x(t)
x∗(t)

]

+

[

0
kc

0n×1

]

ua(t)

Substituting: dxR(t)/dt = Tdx(t)/dtdx∗(t)dtUT , xR(t) = Tx(t)x∗(t)UT andyR(t) =
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Ty(t)u(t)h(t)UT :
dxR(t)

dt
= ARxR(t) + BRua(t)

yR(t) = CRxR(t) + DRua(t)
(9)

The resulting parameter matrices and the block diagram of the system based on the
state equations are:

AR =

[

A −BF
GC A − BF − GC

]

BR =

[

Bkc

Bkc

]

CR =

[

C 01×n

01×n −F
In×n −In×n

]

DR =

[

0
kc

0n×1

] (10)

Fig. 15. Block diagram of a state control with state observer

In these system matrices, A,B,C are the parameter matrices of the state con-
trollable and state observable SISO process. The row vector F and gain kc are
designed based on the knowledge of the poles pRi specified for the state feedback,
while the column vector G is determined based on the requirements upon the ob-
server poles pMi . If the matrices AR, BR, CR and DR are available, and using the
MATLAB facilities, the analysis of the control system can easily be performed.
The characteristic equation of the system will be:

det(λI − AR) = detTλI − (A − BF)UdetTλI − (A − GC)U = 0

In order to ensure the asymptotic stability, the matrices A−BF and A−GC
each must have separate negative eigenvalues. The MATLAB program for designing
and testing the system is included in the Appendix.

EXAMPLE. State control of a third order SISO process using observer
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The third order lag process is defined by its Wp(s) transfer function as follows:

Wp(s) =
y(s)

u(s)
=

m3

s3 + n1s2 + n2s + n3
=

m3

(s − p1)(s − p2)(s − p3)
=

=
6

s3 + 6s2 + 11s + 6
=

6

(s + 1)(s + 2)(s + 3)

Using a state observer and keeping the gain kp = m3/n3 =1 of the process, let us
design a system with state feedback in which the prescribed poles of the accelerated
system are: pR1 = −3, pR2 = −6, pR3 = −9, and the poles of observer are:
pM1 = pM2 = pM3 = −10.

The block diagram, state equation and parameter matrices of third order
process were already calculated. The diagram built with basic elements using
state observer is the following:

Fig. 16. Block diagram including the process, the state observer and the state feedback

For system design the program described in the Appendix was used. The
obtained results are:

F=acker(A,B,pR) % f1=12 f2=88 f3=156

kc=inv(C*inv(A-B*F)*B)*C*inv(A)*B % kc=27

ut=inv(1+F*inv(A-B*F)*B) % ut=27

GT=acker(A’,C’,pM) % g1=-23.33 g2=24.16 g3=4.00
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It can be read also from the block diagram, that actually the state feedback
of the estimated state variables x∗(t) is implemented, and the control signal u(t)
resulting from the state feedback is present simultaneously at the input of both the
process and the state observer. The principle mentioned is particularly expressive
if the initial conditions of both the process [x(0)] and the observer [x∗(0)] are the
same. In this case – given that y∗(t)−y(t) = 0 – the block diagram of the feedback
system can be simplified; in fact, the G factor has no role, and therefore G = 0 can
be assumed. See block diagram for demonstration:

Fig. 17. State feedback using state observer with G=0.

It might be examined what are the requirements to be set relatively to the
observer in order to obtain G = 0 as a result of the design. As indicated earlier,
the Ackermann formula that determines the G feedback gain of the observer is the
following:

GT = T00 . . . 01UTC T AT CT . . . (A)T )n−1CT U−1T(AT )n + nM1(A
T )n−1 + . . . nMnI U

It follows that GT = 0 is possible if T(AT )n + nM1(A
T )n−1 + . . . nMnI U = 0.

According to Cayley-Hamilton’s theorem, AT fulfils its own characteristic equation,
therefore, GT = 0 can only be ensured if nMi = ni (ni are the coefficients of the
characteristic equation of the process det(λI − A) = 0). Yet, this means as if the
poles pi of the process were prescribed for the poles pM of the matrix A − GC.
This would not be a good choice, since the error x(t) − x∗(t) would disappear
slowly, as a function of x(t) − x∗(t) = exp(At)Tx(0) − x∗(0)U as determined by
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the poles pi of the process. Even more, if any of the poles pi were of positive
value, the state feedback would be unable to stabilize the system, as a result of the
lack of G feedback matrix. For all these reasons, the observer having state matrix
A − GC must be stable (each one of the poles pM of the characteristic polynomial
det(sI − (A − GC)) shall have negative real part) what, in case of unstable A and
G = 0 is in principle impossible.

If the prescribed roots of the characteristic equation of the matrix A−GC are
pMi , and the coefficients are nMi (i = 1, 2, 3 . . . n), then, in this example n = 3,
therefore:

detTλI − (A − GC)U =

det

[

λ

(

1 0 0
0 1 0
0 0 1

)

−

(

−n1 −n2 −n3
1 0 0
0 1 0

)

+

(

g1
g2
g3

)

(

0 0 m3
)

]

=

= det

[

λ + n1 n2 n3 + g1m3
−1 λ g2m3
0 −1 λ + g3m3

]

λ3 + (g3m3 + n1)λ
2 + ((n1g3 + g2)m3 + n2)λ + (g1 + n1g2 + n2g3)m3 + n3 =

λ3 + nM1λ
2 + nM2λ + nM3

Based on the identity of coefficients, we obtain:

g3m3 + n1 = nM1

(g2 + n1g3)m3 + n2 = nM2

(g1 + n1g2 + n2g3)m3 + n3 = nM3

Expressing the solution obtained for G in a more compact manner:

G =

[

g1
g2
g3

]

=

[

1 n1 n2
0 1 n1
0 0 1

]−1 [
nM3 − n3
nM2 − n2
nM1 − n1

]

1

m3

Based on this formula – suitable for determining the gain G – it can easily be
shown that the x(t) − x∗(t) error which is due to the different initial conditions of
the process [x(0)] and the observer [x∗(0)] with coefficients nMi = ni disappears
according to the poles pi of the process and, in this case, G = 0.

It may be a better choice if the poles pRi of accelerated system are prescribed
for the poles pMi . This choice is appropriate even if the process is unstable, but it
is stabilized by using state feedback. Finally, this requirement means that the same
eigenvalues λRi = pRi = pMi = λMi are required for the matrices A − BF and
A − GC. Hence, if the coefficients are selected according to nMi = nRi , the above
mentioned error disappears according to the poles pRi of the accelerated system.
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The gain G that implements this (taking into consideration that, in this particular
case, nMi − ni = nRi − ni = fi) will be:





1 n1 n2
0 1 n1
0 0 1









g1
g2
g3



=





f3
f2
f1





1
m3

⇒





g1
g2
g3



=





1 n1 n2
0 1 n1
0 0 1





−1 



f3
f2
f1





1
m3

=

=





1 6 11
0 1 6
0 0 1





−1



156
88
12





1
6 =





−12
8/3
2





Choosing the value pM1 = pM2 = pM3 = −10 for the poles pMi , the characteristic
polynomial of A-GC will be: det(λI-(A-GC))=(λ+10)(λ+10)(λ+10)=λ3 + 30λ2 +

300λ + 1000 · (nM1 = 30, nM2 = 300, nM3 = 1000). Therefore:

G =

[

g1
g2
g3

]

=

[

1 n1 n2
0 1 n1
0 0 1

]−1 [
nM3 − n3
nM2 − n2
nM1 − n1

]

1

m3
=

[

1 6 11
0 1 6
0 0 1

]−1 [ 1000 − 6
300 − 11
30 − 6

]

1

6
=

[

−70/3
145/6
4

]

=

[

−23.3333
24.1666
4.0000

]

This, of course, is in conformity with the result obtained earlier.
From the block diagram of the case G = 0, another unusual concept of the

state feedback implemented by means of state observer can also be interpreted. Its
essence is that, based on the mathematical model of the process, a physical model
is developed with state variables that can be measured with sensors. Based on this,
a state feedback is implemented in the process model thus developed which, of
course, also includes the control signal as an internal signal built according to the
u(t) = kcua(t)−Fx∗(t) algorithm, that is applied at the input of the process model.
This signal u(t) contains forcing which accelerates the process model. As a result,
if this signal u(t) is also applied to the input of the real process, the actual output
signal of the process is also accelerated according to the output signal of the model.

Given the technical possibilities available at present, the process model and
its state feedback are implemented on a digital computer. In this case, the program
running on the computer can be considered as the algorithm to calculate the discrete
ud control signal. As the control signal udcan be interpreted as a series of discrete
samples, therefore the discrete signal ud is connected through Zero Order Hold,
implemented by a DAC digital-analogue converter, to the input of the process. The
ADC analogue-digital converter converts the continuous signal y into a series of
discrete samples yd . At the choice of the Ts sampling time the fastest transients of
the system must be taken into account.
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Fig. 18. Algorithm to produce the control signal

4. Conclusion

In the classical feedback control the controller generates the control signal u(t)
applied at the input of the process by processing the error signal — typically based
on the PID control algorithm. The delay of signals caused by the lag elements of
the process can be reduced if the controller applies the control signal with overex-
citation at the process input, and then reduces this overexcitation gradually with an
appropriate rate.

If the state variables x(t) of the process can be measured with sensors, the
delays due to the time constants of the process can also be reduced by means of state
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feedback through a gain F , as well as by inserting an appropriate gain kc , and also the
poles of the feedback system can be freely specified. The acceleration is achieved
by means of overexcitation even in this case, the overexcitation is determined by
the ratio of pole transfer (the rate of acceleration).

If the sensors do not have access to the state variables of the process, the
state feedback can be implemented by using the state variables x∗(t) of the process
model. The model shall be designed so that its state variables are accessible to
measurements and the state control can be implemented by their feedback. This
structure can be interpreted as a usual state feedback applied to the process model
which also computes the control signal applied at the input to the model. If this
control signal is also applied to the process input, the acceleration of the model, as
a result of its state feedback, is also implemented upon the process.

Appendix

The MATLAB program that supports the system design and analysis of state feed-
back:

%Data entry

mp=input(’mp=’);np=input(’np=’); % Wp=mp/np

[A,B,C,D]=tf2ss(mp,np); % Parameter matrices of the process

A=input(’A=’);B=input(’B=’);C=input(’C=’);D=0;

step(A,B,C,D);grid;pause; % Step response of

the process

n=lengt(A); % Order of the process

p=eig(A); % Poles of the process

%Design requirements

pR=input(’pR=’); % Prescribed poles of the system

pM=input(’pM=’); % Prescribed poles of the observer

disp([p pR’ pM’]);%

% Design of the state feedback

F=acker(A,B,pR);kc=inv(C*inv(A-B*F)*B)*C*inv(A)*B;%

% Design or the observer

GT=acker(A’,C’,pM);G=GT’;

% Displaying the results of design

FGT=[F;GT];ut=inv(1+F*inv(A-B*F)*B);

disp(FGT);pause;disp([kc ut]);pause;

% Parameter matrices of the system

AR=[A --B*F;G*C A-B*F-G*C];BR=[B*kc;B*kc];

CR=[C zeros(1,n);zeros(1,n)-F;eye(n)-eye(n)];DR=[0;kc;zeros(n,1)];

printsys(AR,BR,CR,DR);pause;kR=dcgain(AR,BR,CR,DR);disp(kR);pause;

% Determination of the transfer function and step response of the system

[mR,nR=]ss2tf(AR,BR,CR,DR); % Transfer matrix of the system

step(mR(1,:),nR);grid;pause;hold; % The vR(t) step response

step(A,B,C,D);pause;clg; % The vp(t) step response

step(mR(2,:),nR);grid;pause; % The u(t) control signal

% Simulation of the system

xpo=input(’xpo=’); % Initial values of the state variables of system

xmo=input(’xmo=’); % Initial values of the state variables of observer

xRo=[xpo xmo]’;

tmax=input(’tmax=’);t=linspace(0,tmax,1000);
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ua=ones(1,lengt(t)); % The ua(t) set point

[yRi,xRi]=initial(AR,BR,CR,DR,xRo,t); % The self-movement of the system

initial(AR,BR,CR,DR,xRo);grid;pause;plot(t,xRi);grid;pause;

for i=1:n

plot(t,xRi(:,i),t,xRi(:i+n));grid;pause; % Signals x(t) and x*(t) end;

[yR,xR]=lsim(AR,BR,CR,DR,ua,t,xRo); % Forced movement of the system

lsim(AR,BR,CR,DR,ua,t,xRo);grid;plot(t,xR);grid;

for i=1:n

plot(t,xR(:,i),t,xR(:,i+n));grid;pause; % Signals x(t) and x*(t)

end;

disp(end)
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