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Abstract

This paper investigates the possibility of realizing the core of an XML database system by a pure
modal logical formalism providing query and constraint languages with well-defined syntax semantics
and computational elements. The paper also introduces a domain-specific modal logic for XML
documents which can be used to implement some of the basic services of an XML database.
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1. Introduction

During the last few years, several attempts were made to develop databases and
database technologies for XML documents. These attempts can be separated into
two major categories. On the one hand, existing relational database technology is
extended to handle XML documents [1]. These attempts try to exploit the precise
theoretical framework of the relational algebra and extend it to Web documents
[2]. On the other hand, Xpath (XML Path language) is being extended to an XML
query language (XQuery) [3, 4]. However, this direction is in lack of simple formal
semantics or efficient well-known algorithms. Unfortunately, no real industrial
solution with precise theoretical framework and fast algorithms is known at this
point.

Modal, especially description logics are simple logical formalisms which
primarily focus on describing terminologies and graph-style knowledge [5]. For
example, Entity-Relationship diagrams or semantic networks can easily be trans-
lated to description logical formulas, having a more precise representation than the
original ones [6]. Hence, these logics have pretty good computational properties,
like EXPTIME satisfaction algorithms. Therefore, description logics seem to be
adequate basis for developing a common computational environment for several
Web document processing tasks.

This paper investigates the possibility of realizing the core of a database
system by a pure modal logical formalism providing query and constraint languages
with well-defined syntax semantics and computational elements. The paper also
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introduces a domain-specific modal logic for XML documents which can be used
to implement some of the basic services of an XML database.

The reminder of this paper is organized as follows. Related work is surveyed
in Section 2. Section 3 introduces the basic architecture of the database. Physical
and Conceptual layers of the database are discussed in Section 4 and Section 5.
Section 6 covers the language layer including query and constraint expressions
in details. Algorithms of the database engine are briefly introduced in Section 7.
Section 8 deals with some implementation issues. Finally, Section 9 draws some
conclusions.

2. Related Work

There are several different approaches which try to develop either a query language
or query and transformation framework for XML documents [7]. LOREL was orig-
inally designed for querying semi-structured data. The original data was extended
to handle XML documents as well. It is a user-friendly language in SQL/OQL style,
which includes a strong mechanism for type coercion and permits very powerful
path expressions [8]. Similarly to XQuery, it is rather a query and transformation
framework than a simple query language. XML-GL is a graphical query language
relying on graphical representation of XML documents and DTDs. The graphical
representation is a special labelled graph. All elements of XML-GL are displayed
visually, so it is suitable for supporting user-friendly interfaces [9]. There are
some approaches which try to strongly integrate traditional relational database sys-
tems with XML querying. In this way, a lot of elements of the database stand
ready and can be used without further development. Such elements are query lan-
guage, transaction or multi-user support. Unfortunately, the biggest problem with
these approaches is that traditional database cannot be applied straightforwardly
for XML documents. Such approach database system based approaches are XREL
[10], XML-QL [11]. There are also some query languages which rather provide
an XSLT style old-fashioned template matching language than an Xquery style ap-
proach. For example, both TQL and XQL can be regarded as such approaches.
Although, they did not reach the real industrial level, but there are ideas in which
they exceed XSLT.

XML query languages provide practical approaches of XML querying. How-
ever, the field is also studied from theoretical point of view. Of course practical
and theoretical considerations and approaches often meet. For example Xquery
is an industrial approach, but it has a nice formal semantics which is based on an
XML query algebra. There are two major theoretical categories of XML querying.
On the one hand, different algebras are used for querying XML documents [12].
These approaches try to make benefits of the ideas of relational database. They
try to develop a simple but powerful algebra and solve query problems with such
algebras. Most elements of most query algebras are similar to operators of the
relational algebras, like projection, selection or joins. Perhaps the most important
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algebra is XML Query algebra which provides the basis for the W3C standards
query language XQuery. Certainly there are further important approaches for XML
algebras, but they can be divided into two major categories. Some approaches
develop quite similar algebras for XML Query Algebra, but modify a few of its ele-
ments to improve expressive power or efficiency. Such approaches are for example,
XAL[13] or TAX [14] which is a dedicated solution for query optimization. On the
other hand, there are some solutions which do provide a general query language;
instead they focus on some special areas like data mining [15].

Other approaches for XML querying try to extend techniques from handling
semi structured data to Web documents [16]. Semi structured data contain data
fragments and a relation between data fragments, which relation is usually a partial
order [17]. There are some mathematical approaches which deal with the possibili-
ties of realizing constraint or query systems for semi structured data. Unfortunately,
this research field is quite theoretical. NP or decidable properties of an approach
are usually given, but approaches of the field are in lack of efficient polynomial
algorithms. On the other hand, a Web document is not really a simple semi struc-
tured data. Of course, embedding of tags of an XML document can be regarded
as a partial relation over tags. However, even an XML document contains a lot of
other elements, like next relation between tags, attributes, values, names, types or
even links. Hence, HTML document is even farer from a simple semi structured
data.

Both query algebras and approaches for semi-structured data provide a simple
but powerful theoretical environment. Unfortunately, neither filed have produced
such solution that covers most or at least some areas of structural Web document
processing. Query algebras are good for defining query or transformation languages
for Web documents, but the definition of constraints, schemas or search languages
have not been really studied yet. Similarly, approaches for semistructured data
provide beautiful theoretical approaches but they are not really scaled up to Web
document.

The basic motivation behind this work is to develop a common logical ap-
proach, called SDL (Structured Document Logic) for several different Web doc-
ument processing fields [18]. These fields are among the others, XML schemas,
XML constraints, XML querying and special search functions. Since SDL is based
on modal logic, it has all benefits of the short formal semantics. An XML data-
base seemed to be quite a good test case for SDL, because most of the document
processing tasks appear (e.g. search, query, categorization, constraint, database
schemas…). A core database means that it contains most basic elements of a data-
base, but it is not an absolute industrial one. The major motivation behind this
database is to demonstrate that most XML database elements can be realized by
practical and theoretical foundations of SDL. I did not want to develop a full in-
dustrial database which can be on the market within a few weeks. Consequently,
the major focus was on developing a document representation, database schemas,
a query language, a constraint language, DDL (Data Definition Language), DML
(Data Modification Language). Little attention was paid on developing multi-user
support or programming language independency.
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3. Architecture

Fig. 1 demonstrates the basic architecture of the XML database. At the lowest
level, called physical level, XML documents are stored in a simple file system. The
database does not really effect the lowest level, so documents can be reached and
transformed by traditional ways as well without making benefits of the database
management system. Conceptual level is the first real layer of the modal database
system. Firstly, it consists of the document representations, which are the mathe-
matical formalizations of XML documents stored at the physical level. Secondly,
it contains conceptual dependencies between the individual documents, which are
manifested as an abstract directory service (from a database theorist point of view
one could also call a hierarchical view system). Thirdly, both documents and di-
rectories can be validated or invalidated by the constraint system of the database.
Actually, constraint system could have been placed both at conceptual and language
level (it is expressed by drawing constraints as a standalone component). On the
one, it distinguishes between valid and non-valid documents, so it should be re-
garded as part of the conceptual level. However, its working mechanism is based
on a constraint language processed by the database engine, so it is very similar to
components of the language level.
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Fig. 1. Basic architecture of the XML database

Perhaps, one of the most important layers is the algorithmic one. It contains
all the core algorithms of the database system, in other words the database engine.
Since the theory is based on modal logic, the layer contains, among the others,
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several different model checking algorithms.
The highest layer of the architecture is the language one. It consists of simple

query and constraint languages which are based on modal logic. Most database sys-
tems consist of an imperative language beside the query and constraint language.
For example, at Oracle databases the standard SQL language is extended by imper-
ative elements called PL/SQL. In our case, there is no such extension. However, the
whole language level is embedded into a host language so that imperative programs
could be written in conjunction with query or constraint statements. Language level
also contains the transformation frameworks of the previous chapter. Consequently,
Xpath, DTD and Xschema expressions can be translated to query or constraint level
statements.

In the followings, each layer of the architecture will be introduced in details.

4. Physical Level

The physical level supervises the lowest level storage of XML files. Each file has
a corresponding formal document model at the conceptual level to realize the doc-
ument representation. At physical level, there are three principal simple functions
to supervise the life cycle of the documents.

• ‘load’: It loads a new document from the outer file system and creates its
formal document model. It can also manage where a document is placed in
the database management system.

• ‘delete’: It eliminates an XML file and all of its document representation.
• ‘write-out’: Some files are stored only as document representations. The

function makes an XML file from the formal document models of these files.

There are two kinds of files at the physical level, the stored and the non-stored files.
Stored files have double storage, they are both stored on a file system as XML files
and in the database as formal document model. Non-stored files are stored only in
the database, so one needs to use ‘write-out’ to get a real XML file. Outer programs
and mechanisms can access stored files. Consequently, each time the database
accesses a stored file, the file must be read out and the document representation
must be refreshed. In this way, a preliminary version of transaction handling and
multi-user support can be achieved with the help of running many entities from the
database (technically, transaction and multi-user support of the file system is used
instead of developing an absolute new one).

SDL does not really appear at physical level; instead, the level contains lots
of lower-level administration tasks.

5. Conceptual Level

This section discusses two major elements of the conceptual level, document model
and directory representation, whilst constraints are discussed in the following sec-
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tion. Both definitions can be regarded from both practical and theoretical points of
view. From practical point of view, document model is the mathematical formal-
ization of an XML document, which is represented as a relational structure (basic
set, maps and relations on the basic sets). From theoretical point of view, document
model is a model of a logic (similarly to models of the first order logic). The same
is true for the directory representation.

The formal document model is relational structure defined by the following
sets maps and relations.

<N, AN, AV, r, c, a, n, nt, nn, at, an, av, R>.

• N is a finite set of nodes or set of normal nodes of the structure.
• AN is a finite set of attribute nodes.
• AV is a possible infinite set of atomic values.
• r∈N is the root of the structure.
• c⊆N×N is a binary relation associating each node with its children nodes.
• a:N→2AN is a partial map associating each node with a set of attribute nodes.
• n:N→N is a partial map associating each node with its following (next) node.
• nt:N→2AV is a partial map associating each node with a set of type labels.
• nn:N→AV is a partial map associating each node with a name label.
• at:AN→2AV is a partial map associating each attribute node with a set of type

labels.
• an:AN→AV is a partial map associating each attribute node with a name

label.
• av:AN→AV is a partial map associating each attribute node with a value label.
• R = {r1, r2...} is an enumerable set of relations, where each

ri⊆ (N∪AN)×AV 1×…×AV k(i).

Naming conventions:

• k(i) number of ri relation is called argument number of ri .
• General edges of the graph are represented as <x,y> elements of c, n or a

(<x,y>∈c, n(x)=y, y∈a(x)). One can also distinguish child, next or attribute
edges; general edges are the union of the three ones.

• Children paths of the graph are represented by <n1, n2, n3,…nN−1, nN > se-
quences, where ni∈N, <ni , ni+1>∈c.

Axioms of the structure are the followings:

1. Children paths of the graph must form a tree, each maximal long children
path has to start from the ‘r’ root node, and each node of the graph must be
reached from the top node through one of the children paths.

2. Following nodes must have the same parent: n(vi) = v j implies that there
exists a vk∈N, for which <vk, vi>∈c and <vk, vi>∈c.

3. Two children nodes of a common parent must be linked by next maps:
<vk, vi>∈c and <vk, v j>∈c implies that there exists a sequence of nodes
<v1, v2, v3,…vN−1, vN > such that n(vp) = vp+1 and v1 = vi , vN = v j or
v1 = v j , vN = vi .
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4. Each attribute node is associated with one and only one node: a(v1)∪a(v2)
∪…∪a(v#N ) = AN, and for each i,j∈#N a(vi )∪a(v j ) = ∅.

This definition seems natural for an XML document. For example tags can be trans-
lated to nodes and embedding of tags represents the children relation. It is less trivial
for an HTML document, because HTML standards are much less strict. Hence there
are a lot of pages which do not follow even the HTML standards. Consequently pre-
transformations and pre-filters need to be applied. These transformations attempt
to capture the necessary parts of an HTML document for a given task. Document
model will be set up with these pre-filtered parts. The transformations are strongly
task dependent and consist of plenty ad-hoc mechanisms.

Special attribute nodes describe attributes of tags of XML or HTML pages.
Each attribute node is connected to a simple node by the ‘a’ binary relation. Each
attribute node is associated with three further elements: an attribute name, an at-
tribute type and an attribute value. For representing types, both attribute and normal
nodes are linked by type symbols.

As a simple example, the following figure demonstrates an HTML fragment,
and the corresponding document model.

...

<body>

   …

   <table>

      …

         <img scr=”...” width=”...”>

      ...

   </table>

   <em>

      Privacy Note

   </em>

</body>

...

Name = BODY

Name = EMPHASIS

Name = TABLE

Type = Text

Name = Privacy Note

Name = scr
Name = width

Value = “...”
Value = “...”

Type = integer

c

cc

c

n

n

a
a

Name = IMAGE

1

2
3

4

51 2

Fig. 2. Example

Black circles of Fig. 2 represent the standard nodes of the document model
(N set), whilst grey nodes are the attribute nodes. For the sake of simplicity, name
value and type elements of a node are represented as simple list of values, so ‘nt’,
’nn’, ‘an’, ‘at’ and ’av’ maps do not appear explicitly. ‘c’ and ‘n’ relation and map
appear as links between the standard nodes and ‘a’ map is represented by the links
between simple and attribute nodes.

The exact formal document model is the following:
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N = {n1, n2, n3, n4, n5}.
AN = {a1, a2}.
AV = {“…”, BODY, TABLE, EMPHASIS, IMAGE, Text, Privacy

Note, width, scr, integer}.
r = {n1}.
c = {<n1, n2>,<n1, n3>,<n2, n4>,<n3, n5>}.
n = {n(n2) = n3, n(n4) = n5}.
a = {a(n4) = {a1, a2}}.
nt = {nt(n5) = {Text}}.
nn = {nn(n1) = BODY, nn(n)2) = TABLE, nn(n3) = EMPHASIS, nn(n4)

= IMAGE, nn(n5) = Privacy Note}.
at = {at(a2) = {integer}}.
an = {an(a1) = scr, an(a2) = width}.
av = {av(a1) = “…”, av(a2) = “…”}.
R = ∅.

For each document, which is used in the database system, a formal document
model is created. Abstract directories deal with sets of documents. They provide a
mechanism to create directories, hierarchies or even ontology for XML documents.
I call them directories because fundamentally they are similar to directories of a file
system. However, they provide a logical way for organizing documents, so there
is no connection between abstract directories and directories of the file system.
Abstract directories are based on the formal directory model, which can be defined
as follows.

The formal directory model can be defined by the following relational struc-
ture.

<DM,D,AV,dt,dn>.

• DM is a finite set of formal document models of a database.
• D⊆2DM is a finite set of abstract directories of the database.
• AV is finite set of atomic values.
• dt:D→AV is a partial map associating each directory with a type label.
• dn:D→AV is a partial map associating each directory with a name label.

Naming conventions:

• If d1, d2∈D and d1 ⊆ d2, than d1 is a subdirectory of d2 .
• If there is no d3 for which d1 ⊆ d3⊆ d2, than d1 is a direct subdirectory of d2.
• If d1, d2∈D are directories than formal document models of the two directories

are d1∪d2.

Axioms of the structure are the followings:

1. If d1 and d2 are direct subdirectories of d3, than the name label of d1 and d2
cannot be equal.

2. For each dm∈DM document models {dm}∈D. In other words, all document
models can be regarded as a directory consisting of only itself.
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The conceptual level is a special kind of directory service. If directories and depen-
dencies between directories are explicitly given, than the definition describes the
traditional directory service of a file system. Maybe a little bit extended one, be-
cause directories can be typed and type constrained. However, if directories (set of
XML files) are given implicitly, for example by logical statements or queries, than
the definition is quite similar to a hierarchical view system of a relational database
management system.

Constraints are special statements which force the structure of both the doc-
uments and the directories of a database. In this sense, abstract directories provide
more well structured directories than directories of a simple file system. Since
constraints are based on the constraint language, they will be discussed in details
at the language level.

Based on these elements, an XML database and the XML database manage-
ment system can be easily defined:

• The XML Database is a <CM,C> pair where CM is a directory model and
C is a set of constraints.

• The XML Database Management System is a <<CM1, C1>,<CM2, C2>…
<CMN , CN » set of databases.

6. Language Level

Language level is based on two fundamental languages: document level language,
directory level language. Both languages are lower-level logics, with Kripke or
description logical semantics (or even with relational algebraic semantics). Doc-
ument level language is SDL (Structured Document Logic), which is discussed in
details in [18, 19]. Syntax and semantics of both languages are based on roles and
concepts. Concepts, denoted by ‘C’, represent subsets of nodes of the document
model or subset of document models of the directory model, whilst roles, denoted
by ‘R’, are binary relations between nodes or document models. Syntax of both
the document and the directory languages can easily be described by the follow-
ing rules. For better readability basic elements of the syntax are written by bold
characters.

Document Language (SDL):
RS DL ::=child | next | attribute-of | self RS DL | inverseRS DL | infiniteRS DL
CS DL ::=root | name ‘name-symbol’| value ‘value-symbol’| type‘type-symbol’|
all-nodes |all-attributes |CS DL andCS DL |notCS DL |allRS DL .CS DL |=N RS DL.CS DL
| < N RS DL.CS DL

There are four kinds of simple roles, ‘child’ and ‘next’, describing children
relation and next partial map of the document model. There are also two role
constructors, ‘inverse’ and ‘infinite’ which represent inverse and transitive closure
relations. There are three basic concept constructors. {a} does not represent a
syntactic form, but the abbreviation of one piece of atomic concept which must be
equal with an atomic predicate of the document model. Similarly, the term ‘type’ or
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‘attribute-name’ must be followed by a concrete type or attribute name, which must
be found in the document model. The third simple role,’attribute-of ’, associates
the structure of the document with the attributes, whilst ‘value-of ’ represents the
connection between attributes and values. ‘every’ and ‘none’ are the universal and
bottom concepts of the logic, ‘and’ ‘or’ ‘not’ are the basic logical operators whilst
‘all’ and ‘some’ denote universal and existential quantification over a role. ‘= N’ is
a special quantification meaning that there are exactly ‘N’ pieces of elements which
are in ‘C’. Comparison between document language and Xpath can be found among
the others in [19].

Directory level language argues on formal directory models. Similarly, to the
document language, it is based on concepts, denoted by ‘CDI R’, and roles, denoted
by ‘RDI R’. Syntax of the directory language is based on the following rules.

Directory language:
RDI R ::=subdir | inverseRDI R .
CDI R ::= CS DL | subdir-name {value}| subdir-type {type}| all | none |
CDI R andCDI R | CDI R orCDI R | notCDI R | allRDI R .CDI R | someRDI R .CDI R.

Directory level language is quite similar to the document level one, but it
argues over set of documents instead of set of tags. ’all’, ’and’, ’or’, ’not’, ’some’,
’none’, ’inverse’ are basically the same as in the document language. ‘subdir’ rep-
resents the direct subdirectory relationship, ‘subdir-name’ and ‘subdir-type’ choose
directories with the specified type or name label.

Document and directory languages represent the basic building blocks for
both the query and the constraint languages of the XML database management
system. They can be described by the following rules.

Query language:
QL ::= select tagsCS DL fromCDI R | select documentsCDI R from {database-

name}
Constraint language:
CL ::= CDI R impliesCDI R | CDI R if and only if CDI R
Query language contains two kinds of expressions. Traditional queries can

be realized by the ‘select tags…’ statements. It can first find a set of documents
from the database, but it is more common to find one specific document. Secondly,
the query selects some tags of the selected documents. Query language can also
be used to realize a classical search (‘select documents…’ statement). In this case,
the statement finds some specific documents from the database and the result of
the search is the set of documents not a set of tags. Similarly to query language,
constraint language also has two kinds of expressions. ‘implies’ statement realizes
a subsumption style constraint expression, whilst ‘if and only if’ represents an
equivalence.

In order to define a formal semantics of the document language, an I inter-
pretation function is considered, which assigns to every concept expression a set
of nodes of a given ‘d’ document model, and to every role a binary relation over
{N∪AN }×{N∪AN}. Similarly, formal semantics of the directory language is given
with the help of a J interpretation function, which assigns to every concept expres-
sion a set of directories of a directory model, and to every role a binary relation over



XML DATABASES 233

D×D. In the followings CI
S DL[d] denotes the interpretation of a CS DL expression

at ‘d’ document modes and ‘#’ denotes cardinality of a set.
Semantics of the document language (SDL):
child I = c
next I = {<x,y>, x,y∈N | y = n(x)}
attribute-of I = {<x,y>, x∈N, y∈AN | y∈a(x)}
(self R)I = {<x,y>∈(N∪AN)×(N∪AN)| <x,y>∈RI or x=y}
(inverseR)I = {<x,y>∈(N∪AN)×(N∪AN) | <y,x>∈RI }
(infiniteR)I = ∪ j>=1(RI ) j , transitive closure of RI

rootI ={r}.
name ‘name-symbol’I ={n∈N∪AN | ‘name-symbol’=an(n) or ‘name-
symbol’=nn(n)}.
type ‘type-symbol’I ={n∈N∪AN | ‘type-symbol’∈at(n) or ‘type-
symbol’∈nt(n)}.
value ‘value-symbol’I ={n∈AN | ‘value_name’=av(n)}.
all-nodesI = N .

all-attributesI =AN.
(C1 andC2)

I = C I
1 ∩ CI

2.

(notC)I =(N∪AN) \ CI .

(all R.C)I ={v∈{V∪AN} | ∀w. <v,w>∈RI implies w∈CI }.
(= N R.C)I = {v∈{V∪AN} | #{∃w. <v,w>∈RI and w∈CI }=N}.
(<N R.C)I = {v∈{V∪AN} | #{∃w. <v,w>∈RI and w∈CI }<N}.

Semantics of the directory language:
C J

S DL = {{d} | d∈DM and CI
S DL[d] 	= ∅}, where CS DL is a concept expres-

sion of SDL.
subdir-name nameJ = {d∈D | name=dn(d)}
subdir-type type_nameJ = {d∈D | type_name=dt(d)}
subdirJ = {d1, d2∈D | d1 is a direct subdirectory of d2}
(inverseR)J = {<w,v>∈D×D | <v,w>∈ RJ }
all J = D
noneJ = ∅
(notC)J = D \ C J

(C1 andC2)
J = C J

1 ∩ C J
2

(C1 orC2)
J = C J

1 ∪ C J
2

(all R.C)J = {d∈D | ∀w. <d,w>∈RJ implies w∈CJ }
(some R.C)J = {d∈D | ∃w. <d,w>∈RJ and w∈CJ }

Semantics of the query language:
(select tagsCS DL fromCDI R)J = ∪i(C I

S DL[dmi]), for each dmi∈C J
DI R for-

mal document model.
(select documentsCDI R from {database-name})J =∪i di for each di ∈C J

DI R
directory at the database-name database context.
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Semantics of the constraint language:
(C1

DI R impliesC2
DI R)J = true if and only if, (C1

DI R)J ⊆ (C2
DI R)J .

(C1
DI R if and only if C2

DI R)J = true if and only if, (C1
DI R)J = (C2

DI R)J .

As a simple example, imagine that confidential XML documents of a company
are marked by a special confidentiality notes (Fig. 2). Assume that there are
three kinds of documents: document with no confidentiality note, highly and lowly
confidential documents. Confidentiality of a document is expressed by an XML
tag, high and low is simply an attribute of the tag. One can also assume that the
documents are stored in abstract directories. ‘high_conf_dir’ stores documents
which are highly confidential, whilst lowly confidential documents are stored in
the ‘low_conf_dir’ directory (see Fig. 3). The non-confidential documents can be
stored anywhere in the database.

) y

<?xml version="1.0"
encoding="Windows-1252"?>

...

<CONFIDENTIAL conf_strength = ‘high’>

...

</CONFIDENTIAL>

...

<?xml version="1.0"
encoding="Windows-1252"?>

...

<CONFIDENTIAL conf_strength = ‘low’>

...

</CONFIDENTIAL>

...

high_conf_dir
low_conf_dir

XML DATABASE

Fig. 3. Example for abstract directories

The following query and constraint statements demonstrate application ex-
amples for the query and constraint languages.

• ‘select documents name confidential from actual_database’ statement queries
those documents which contain a tag called confidential.

• ‘select documents root and all(infinite child).(not (name confidential))
from actual_database’ statement queries those documents which do not con-
tain a tag called confidential.

• ‘select documents name confidential and some (attribute-of ).(name
conf_strength and value high) from actual_database’ statement queries
those documents which contain a tag called confidential and this tag has a
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conf_strength attribute with high value. As it was mentioned previously,
these are the highly confidential documents.

• ‘select documents name confidential and some (attribute-of ).(name
conf_strength and value low) from actual_database’ statement queries those
documents which are lowly confidential.

• ‘select documents subdir-name high_conf_dir from actual_database’ state-
ment queries all documents of the high_conf_dir directory.

• ‘select documents subdir-name high_conf_dir and all subdir.(name confi-
dential and some attribute-of.(name conf_strength and value high)) from
actual_database’ statement queries all documents from the high_conf_dir
directory which are really highly confidential.

• ‘select documents subdir-name high_conf_dir and some subdir.(name con-
fidential and some attribute-of.(name conf_strength and value low)) from
actual_database’ statement queries all documents from the high_conf_dir
directory which are lowly confidential.

• ‘select documents subdir-name high_conf_dir and some subdir.(root and
all(infinite child).(not (name confidential)) from actual_database’ state-
ment queries all documents from the high_conf_dir directory which are not
confidential at all.

• ‘subdir-name high_conf_dir implies all subdir.(name confidential and some
attribute-of.(name conf_strength and value high))’ statement is a constraint
which forces that all documents in the high_conf_dir directory must be highly
confidential.

– ‘subdir-name low_conf_dir implies all subdir.(name confidential and
some attribute-of.(name conf_strength and(value high or value low)))’
statement is a constraint which forces that all documents in the
low_conf_dir directory must be lowly or highly confidential.

Certainly, this dozen of examples demonstrated only a very limited part of the
expressive power of the constraint and query languages. A lot of other structures,
like types, type hierarchies or inheritance could also be easily applied for abstract
directories.

The language level also contains some elements of the other industrial appli-
cation, like Xpath, DTD or Xschema. However, these elements can be little used
in this database, because neither industrial application is able to use the abstract
directory system. Therefore, they are only supported by a heuristic mechanism
which translates statements of the industrial applications to expression fragments
of the query or constraint languages. These fragments usually need to be extended
to form complete and correct query or constraint statements.

Unfortunately a query and a constraint language of a database system are
not really enough to write real industrial applications. For example, Oracle data-
bases have full scale DDL (Data Definition Language) and DML (Data Modification
Language), which contain imperative elements (like ‘for’, ’while-do’ ‘if-then’ state-
ments) even in the most basic programming environment (PL/SQL). Developing
all possible services for real industrial applications would require a lot of efforts.
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Hence, some of these services, especially the imperative elements, cannot be re-
ally handled by modal logic. For these reasons, language level of the architecture
has been strongly integrated into an industrial imperative programming language
(C#). Consequently, the necessary imperative elements are provided directly by
C#, whilst additional services, like creating or deleting a subdirectory or loading
an XML file, are supported by method calls of a simple API. Table 1 demonstrates
the most important method calls.

Table 1. Method calls of the API.
Method calls of the language level

‘execute-query’ ‘add-constraint’
‘load’ ‘delete-constraint’
‘delete’ ‘create-attribute’
‘write-out’ ‘delete-attribute’
‘create-document’ ‘create-directory’
‘create-tag’ ‘delete-directory’
‘delete-tag’ ‘create-database’

‘delete-database’

7. Database Engine

Database engine provides the basic algorithmic elements for evaluating a query ex-
pression or forcing a constraint statement. Since document and directory languages
are modal logics over document and directory models, the working mechanism of
the engine is based on the different variations of model checking.

• Basic model checking: We have a ‘d’ document or directory model and a
C concept expression. The question is whether CI [d]=∅ or CI [d] 	= ∅. In
other words, C is true or false for ‘d’. This service can be used when the
document level statements are embedded into directory expressions.

• Querying in model checking: We have a ‘d’ document or directory model
and a C concept expression. The result of querying is nodes of the docu-
ment model for which C is true. Querying is also interpreted for directory
statements. If so, the result is those directories for which the expression
is true. Querying provides the basic reasoning service for evaluating select
statements.

• Subsumption or implication in model checking: An ‘exp1’ expression im-
plying ‘exp2’ for a ‘d’ model means that, if ‘exp1’ is true for ‘d’, ‘exp2’ is
also true for ‘d’. Consequently, implication is not examined for all possi-
ble models, only for several predefined ones. Implication can be interpreted



XML DATABASES 237

for both document and directory expressions and models. Implication is the
basic reasoning service for writing ‘implies’ constraints.

• Equivalence in model checking: An ‘exp1’ equivalent with ‘exp2’ for a ‘d’
model means that, ‘exp1’ is true for ‘d’ if and only if ‘exp2’ is also true for ‘d’.
Equivalence can be interpreted for both document and directory expressions
and models. Equivalence is the basic reasoning service for writing ‘if and
only if’ constraints.

Of course the most important question is efficiency, which highly influences the
industrial applicability of every theory. Fortunately, model checking can be solved
in polynomial time for some of the modal logics. The situation is even better in our
case, model checking and variations of model checking can be solved by strongly
polynomial time algorithms [20]. This complexity is sufficient for model checking
a document model; however model checking a whole directory model containing
plenty of documents could be slow for industrial applications. Therefore different
heuristics for evaluating expressions over directory models are being developed.

With the help of algorithms for both SDL and the directory level language,
evaluating a query or constraint expression can be easily defined.

• ‘select tagsCS DL fromCDI R‘: Firstly, ‘CDI R‘ must be evaluated in an XML
database, which results a set of documents. Then ‘CS DL’ must be evaluated
over the set of documents, which results a set of tags. Both evaluations are
realized by the querying in model checking.

• ′select documentsCDI R from {database-name}’: CDI R‘ must be evaluated
in the ‘database-name’ database, which results a set of documents. The
evaluation is realized by the querying in model checking.

• ‘C1
DI R impliesC2

DI R‘: It can be realized in two ways. On the one hand,
‘C1

DI R’ and ‘C2
DI R‘ can be evaluated independently and the containment of

the two set can be checked with the help of subsumption in model checking
basic reasoning service. On the other hand, the whole expression can be
evaluated at once, with the help of a simple model checking mechanism.

• ′C1
DI R if and only if C2′

DI R : It can also be realized in two ways. On the one
hand, ‘C1

DI R’ and ‘C2
DI R‘ can be evaluated independently and the equivalence

of the two sets can be checked with the help of equivalence in model checking
basic reasoning service. On the other hand, the whole expression can be
evaluated at once, with the help of a simple model checking mechanism.

8. Implementation Issues

This section briefly introduces some of the implementation issues of the XML
database. Fig. 4 demonstrates UML class diagram of the database. For the sake of
simplicity, several not very important classes are not represented explicitly; instead
they are represented as a set of support classes.
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Fig. 4. UML diagram for the XML database.

At physical level, the most important class is the ‘Storage-Manager’. It con-
trols the low level file activities with the help of some additional support classes (like
classes for parsing XML documents…). Conceptual level contains classes for each
important element. ‘Document’ class stores the formal document model with the
help of some additional support classes, like ‘Binary-relation’ or ‘set’. Documents
are stored directly in the tables which were introduced at the algorithmic aspects
of SDL. Directories are represented by ‘Directory’ classes. The hierarchy between
directories is stored as an object graph, which is extended with some elements so
that it could be directly used in the database engine. ‘Database’ class represents
databases of the architecture. Each database contains a set of directories and a
set of constraints as well, which are implemented by the ‘Constraint’ class. The
main class of the algorithmic level is the ‘DB-Engine’ which implements the basic
reasoning services for both SDL and the directory language. It also implements the
evaluation mechanism for both the query and the constraint languages. Represen-
tation of query and constraint expressions is realized by the ‘SDL-Node’ class at
the language level. Parsing of the expressions is supported by the ‘SDL-Parsing’
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class. The main interface of the whole architecture is the ‘XDBMS’ (XML Data-
base Management System) class. It controls directly or indirectly the life-cycle and
persistence of each element. C# programmers are able to get the first reference to
the architecture with the help of ‘XDBMS’ class.

9. Conclusion

This paper has analysed the possibilities of realizing an XML database system
by a pure modal logical formalism. The formalism is able to fully capture both
the document and directory representations, both the directory and document level
languages, both the query and constraint languages. Unfortunately, the logical ap-
proach is not able to describe totally a DDL or DML language. However, both
languages can be strongly supported by the logical approach if they are strongly in-
tegrated with a host language environment which implements imperative elements.
Comparing to other industrial XML databases, the logical approach has several
benefits. It provides well-defined syntax, semantics and efficient computational
elements for both the query and for the constraint language. Other approaches like
Xquery provide only well-defined syntax. Hence, the logical approach makes the
database and the database engine very simple from both technical and theoretical
points of view, because only variations of the model checking algorithm should be
developed. The previous section has demonstrated that the implementation of the
database is very simple (a few dozens of classes) which is much simpler than the
usual few hundreds of classes of an industrial database. Certainly, there are some
elements of an industrial database, like transaction handling or multi-user support,
which cannot be supported by the logical approach. However, the same situation
is true for relational or deductive databases as well. Cores of these databases are
developed by powerful theoretical approaches which are either relational algebra or
Prolog, whilst additional mechanisms like transaction handling or multi-user sup-
port are developed by different ideas. In this sense, it does not seem to be a huge
drawback if my logical approach cannot support for example transaction handling.
In conclusion, I would dare to make the statement that our logical approach provides
a simple and powerful environment for developing the core architecture of an XML
database.
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[18] SZEGŐ, D.: Structured Document Logic, Periodica Polytechnica Vol. 47. No. 3-4, pp. 311-324
(2003).
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