PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 49, NO. 1-2, PP. 3-23 (2005)

FILTERING FALSE ALARMS: AN APPROACH BASED ON
EPISODE MINING

Ferenc BODON and Zoltan HORNAK

Budapest University of Technology and Economics
H-1117 Budapest, Magyar tudésok kérttja 2, Hungary
e-mails:bodon @cs.bme.hu, hornak @mit.bme.hu

Received: Oct. 24, 2005

Abstract

The security of computer networks is a prime concern today. Various devices and methods have
been developed to offer different kinds of protection (firewalls, IDS’s, antiviruses, etc.). By centrally
storing and processing the signals of these devices, it is possible to detect more cheats and attacks
than simply by analysing the logs independently. The most difficult and still unsolved problem in
centralized systems is that vast numbers of false alarms. If a harmless pattern, which caused by a safe
operation is identified as an alarm, then it is a nuisance and requires human invention to be handled
properly.

In this paper we show how we can use data mining to discover the patterns that frequently
causes false alarms. Due to the new requirements (events with many attributes, invertible parametric
predicates) none of the previously published algorithms can be applied to our problem directly. We
present the algorithm ABAMSEP, which discovers frequent alert-ended episodes. We prove that the
algorithm is correct in the sense that it finds all episodes that meet the requirements of the specification.

Keywords: data mining, episode mining, computer security, remote supervision system.

1. Introduction

Nowadays it is essential and a basic need to connect the computer network of a
company to the World Wide Web. The original purpose of the Internet was to sup-
port people in the education with a decentralized network, where the effectiveness
(speed, and reliability) was relevant and security was less important. The wide-
spread of WWW opened the gate for new audience and new applications but also
posed new demands and stressed that part of the system that received not much
attention in the beginning. Unfortunately, additional solutions bring up more prob-
lems than those that were taken into consideration in the planning phase. This may
be the main reason for being the security of Internet a hot topic in the scientific
community.

A wide variety of security devices (virus checkers, firewalls, coding and policy
methods, Intrusion Detection Systems, etc.) is available on the market, but each of
them just attempts to fill in a security gap. They provide partial solutions and, as
they communicate with each other in a limited way, their capabilities are limited.
A centralized system that watches every part of the system could collect more data,

4 F. BODON and Z. HORNAK

could be more efficient in the case of intrusions than a standalone system. We call
such system a Centralized Remote Supervision System.

In the Remote Supervision System data coming from different security devices
placed at different points of the network are collected in the center. It is similar to
a traditional security guard who is sitting in front of a monitor wall and can see the
monitors of the cameras and the signals of all the protection systems at the same
time. Theoretically, by growing the number of the protection systems (and hence
the available information) incidents can be handled more effectively. On the other
hand we have to face the problem of handling the huge amount of data.

The sensitivity of the typical network monitoring security devices can be set
within a wide range. If the parameters are set to high levels, then a device reports
an alarm at every event that is a little bit suspicious. In fact, most (but not all!) of
the "little bit suspicious" events are harmless, which is the reason for setting the
sensitivity parameters to lower values in the practice. In general overloaded system
administrators have capacity only to analyse the dangerous and critical events,
however for analysing and tracing them back, they need to know the preceding
events as well. If the sensitivity is low, real attacks could be ignored, because none
of the security devices find them suspicious enough. In the other extreme (high
sensitivity) we have to cope with the huge amount of data and the large number
of false alarms (an alarm is false if no real attack can be associated with it). Data
mining gives us a helping hand in analysing big volumes of data to discover frequent
rules of false alarms.

In our approach we collect as much information as we can. By using episode
mining algorithms frequent patterns that precede an alarm can be analysed. This
makes it possible to automatically discover the reason of frequent false alarms.
Our goal is to develop a method that can infer the hidden patterns from the central
database. If we can match a known pattern of false alarm to the event sequence
preceding an alarm, then we degrade this alarm to false alarm. Of course before
accepting a rule for false alarms, the approval of a professional person is needed.
This is necessary for adequate human control.

In this paper the architecture of the system and the technical details are not
discussed, we are focusing on the mathematical model and the episode mining
algorithm. For further details on the overall system the reader should consult [10].

2. Related Work

We shortly review the known episode mining algorithms. The first published al-
gorithm that could cope with large datasets of event sequences was APRIORIALL
[2]. It introduced the notion of frequent sequential pattern as a generalization of
frequent itemsets known from the association rule mining field. Episodes were
defined as sequences of itemsets, and the algorithm found those episodes that were
contained in many (more than a given support threshold) sequences. The algorithm
GSP [15] and SPADE [16] solve the same problem much faster (in addition, they
can handle time constraints).

FILTERING FALSE ALARMS 5

Another algorithm that finds frequently occurring serial and parallel episodes
in one given sequence was presented in [13]. Similarly to our approach, it uses fixed
size windows to define the containment relation. In its model the events are atomic,
hence its method is not adaptable to the context, where events are determined by
parameters.

From our point of view the most promising episode mining algorithm that
can handle events with attributes was presented in [12, 8]. We mainly adapted the
approach of [12] in our mathematical model. However, we are not looking for
episodes and their minimal occurrences, but rather for episodes, which occurred in
windows that often ended by alarm. Furthermore, we allow the building blocks of
episodes (i.e. the predicates) to be more general by letting them parametric.

The purpose of the Remote Supervision System project was to study the
adaptability of data mining techniques to filter false alarms coming from different
security devices. Our final goal was to implement a prototype system that proves
our hypothesis that data mining is a powerful tool in this field. Our second aim
was to construct an efficient and scalable algorithm. It is needless to say, that
the system ready for public use has to be fast. However, in our first approach, we
avoided the use of sophisticated data structures and other techniques to speed up the
programme. We merely wanted to show, that the approach is working and "tuning"
of the prototype was left as a work for the future.

3. False Alarms

One cannot give an overall description for the reason of false alarms. Warning
messages usually reflect suspicious situations that might be results of attacks or
attempted attacks. But if they are not the consequences of such malicious actions,
the cause can be almost anything: a misspelled password, a wrongly executed
command, configuration problems of network settings, incompatibility of products,
software bugs or even a rarely used — otherwise normal — feature of a programme.

A false alarm may be generated for example if someone has a bad IP address
configuration on his PC. It will produce several warnings from simple "no network
connection" to "possible intruder: alien computer in the system". If the source of
this problem is traced, then there is no reason to send repeatedly warning messages
that reflect the same problem. We expect the data mining approach to provide rules
on events and/or on their attributes, which describe the reason for such frequent
unwanted alarms.

In several cases the reasons for unwanted alarms are consequences of the
behaviour of software or network elements that cannot be modified. For example if
a software component regularly wants to connect to its service portal, looking for
updates and the company policy prohibits this activity, then there will be a large
number of warnings about someone trying to break the regulation. In many cases
there is no option to turn this feature off, the only way to filter out this false alarm
is based on an appropriate rule. The goal is to create rules that filter out only those

6 F. BODON and Z. HORNAK

warnings that are caused by that specific software component. We definitely do not
want to give a chance for an attacker to abuse this rule and hide his activity behind
a similar alarm.

The task of the data mining algorithm is hard because it should be "open"
to discover new and weird causes of alarms, i.e. it has to consider every possibly
important attributes of events. On the other hand, the attributes that differentiate
false alarms from true positives are the most important. Unfortunately this latter
requirement cannot be handled by data mining techniques, since in general we have
enough number of samples only for false alarms and not for actual attacks.

4. A Formal Definition of Episode Mining

Among the various data mining approaches the episode mining framework seems
to be most suitable for our purposes. Episodes are searched in a sequence of events
that are determined by their attributes. Let R = {Ay, ..., A,} be a set of attributes,
where the domain of A; is D;. We denote the set D; x D, X ... x D, x Rby €.

Definition 4 1. An event over attribute set R is an element of € and we denote it
byann+1tuple e = (ay, ..., a,,t), where a; € D; and t is a real number, which
we call the time of the event.

In the rest of the paper the time of event e is referred as e.T and the attribute
A € R of e as e.A. Some examples for attributes used in the common secu-
rity message format are: Type, Analyser.Process.Name,Create.Time,
Targe.Node.Address, Target.Service.Port, Source.User.
User-1ID.Tohandle the very different messages of various security devices we de-
fined acommon, XML based file format (called SMEF, Security Message Exchange
Format) and converted all incoming messages to this form.

The alarm function W : &€ — N plays an important role in our model. If
W (e) = 0, then e is said to be a normal event, otherwise it is an event that generates
alarm of type W (e).

An event sequence is sequence of events over R, where events are ordered by
time. We denote the event sequence of length / by S = (e, ..., ¢); here e; € &
and e|.T <e,.T <...<e¢e.T.

Filtering the Event Sequence

The event sequence that is processed by the episode mining algorithm is not the
whole raw data coming from the devices. First the list of messages is cleaned and
filtered to be more suitable for data mining. This filtering returns an event sequence
(or more precisely, several event sequences) that we expect to be smaller than the
whole data and we concentrate only on those events that are in relation with the
alarms. Consequently, the aim of the filtering is to reduce the complexity. Imagine

FILTERING FALSE ALARMS 7

a user who has a harmless habit that regularly generates alarms. Obviously, we
want to discover the pattern of this habit to ignore its alarms in the future. In
general, traffic of a network can be so heavy that the elements of the pattern get
far from each other, numerous of other irrelevant events can be inserted between
them. Discovering a pattern whose elements are far from each other needs much
more computational capacity than discovering a pattern whose elements are next to
(or very close to) each other. Hence patterns that belong to a user are easier to be
discovered if we filter the original sequence of messages by a function that makes
selection e.g. according to the IP addresses. In the last section we study formally
the complexity-reducing effect of these filter functions.

Episodes

The habits or patterns are defined by episodes. An episode, which describes the
preceding causes of a false alarm can be formalized as a conjunction of several
conditions.

Definition 4 2. Let X := {xy, ..., x;} be variables that can take events as values
(event variables). We say that a triple p(X, <, ®) is an episode of size l, if <
is an order over the time of the event variables, and ® is a conjunction of unary
predicates, that refer to the attributes of the variables, so

[
o= /\¢
i=1

where the ¢; are given predicates applied to an attribute of an event variable.

Without loss of generality, we can presume that for any i > j, the inequality
x;.T < x;.T does not hold. If < is a total order, then p(X, <, ®) is a serial episode.
If the order is trivial, then the episode is parallel. If the episode is neither serial nor
parallel, then it is composite.

For example the warning about a badly configured IP address we discussed
earlier may be filtered by the episode p(X = {xy, x;, x3}, <, @), where

® = (x3.APN ="idslogd") A (x3.CN = 404) A (x3.TNAA = 236.182.6.22) A

(x2.APN = "swlogd") A (x5.CN = 404)A
(x. TNAE ="08:00:07:A9:B2: FC") A (x.TNAA = 236.182.6.22)A
(x1.APN = "eventlog") A (x;.SNAA = 236.182.6.22) A (x;.CN = 206)
and x,.T < x,.T < x3.T. This episode describes the following situation:

* A message that a network service is started with IP address 236.182.6.22
comes from a PC.

8 F. BODON and Z. HORNAK

* A gateway sends a message that the network card 08:00:07:A9:B2:FC has an
invalid IP address 236.182.6.22.

* A message is sent from the network IDS that a possible alien computer is
connected to the network. By the way, this message is an alarm so if x3 is es,
then W (e3) returns positive value.

Note that this episode filters out only this type of alarms related to this specific
computer.

Definition 4 3. The episode p' (X', <, ®') is a subepisode of episode p(X, <, ®)
(denoted by p' C p), if there exists injection f : X' — X such that every predicate
in @ that is applied to an x € X', can be found in ® as well applied to f(x).
Furthermore if (x;, x;) €</, then (f(x;), f(x;)) €< is also true. If the size of p is
less than the size of p, then p' is a proper subepisode of p. We denote this relation
by p' C p.

It is useful to restrict the episodes that we want to discover. We can presume
that an episode p({xy, ..., x}, <, ®) is always continuous in the sense that at
least one predicate applies to each variable. Otherwise there exists an episode
q({x1, ..., xp}, <, ®),suchthat ki’ < k and p, g are isomorphic. Episodes p and ¢
are isomorphic if p is subepisode of g and g is subepisode of p. For every episode
p there exists a continuous episode that is isomorphic to p, hence we can restrict
our attention to continuous episodes. In the following, every episode is considered
to be continuous.

Definition 4 4. The episode p’ is an immediate subepisode of p, if there exists no
episode p" such that p' C p” and p" C p.

For example the episodes p({xi, x2}, <, B(x2) A a(x1)) and p'({x, x2}, <
, B(x1) A y(x1)) are immediate subepisodes of p”({xi, x2}, <, B(x2) A Y (x2) A
a(x1)). In the case of the first episode f may be the identical mapping of the vari-
ables, in the second case f(x;) = x; suffices. Obviously, an immediate subepisode
of p contains all but one predicates of p.

Invertible Parametric Predicates

The known algorithms that can handle events with attributes [12, 8] work with pre-
defined, given predicates. An episode is a conjunction of such predicates. However,
we expect more from our algorithm. It should generate the predicates themselves
and then the episodes from these predicates as well. For this we provide "types" of
the predicates. The predicate types are defined in the form of parametric invertible
predicates. For example, if we think that the predicate that checks the equality of
IP address may be important, then we don’t want to give 2°? different predicates
that check a given IP address, but rather provide only one general predicate.

Definition4 5. A parametric predicatev : DxT — {true, false}, which applies
to the attribute x.A (A € R) of the variable x, is a predicate, whose value depends

FILTERING FALSE ALARMS 9

on the value of the parameter q € T. The parametric predicate is invertible, if for
every event e there exists a unique q such that v(e.A, q) is true.

When we want to discover episodes that contain predicates, which apply to
attributes with large domain (for example IP address), then we have to add the
parametric predicate

) true ifx.A=g¢q
vix.A,q) = { false otherwise
to the given predicates. In the next section we present an algorithm that can handle
these parametric predicates. Of course, the parameters are set in the episodes that
are returned by the algorithm.

Since there are many special events, not all attributes are set or can be in-
terpreted in the actual situation. Regarding the value of a parameter on an event,
where an attribute is not applicable, we consider a predicate that applies to a missing
attribute as false for any value of its parameter. Please note that with a fixed g value
the predicate v(x.A, g) is regarded as a traditional unary predicate. It is important,
that a predicate with different parameter values gives different unary predicates. We
also refer to a parametric predicate with a fixed parameter as a parameter-predicate
pair and a predicate with non-fixed parameter as a predicate type.

4.1. Support and Alarm Support

Definition 4 6. The event sequence S = {(ey, ..., e;) contains the episode
pUx1, ..., X}, <, @), if there exists different events ej, ...e; € S such that in
p{ej,,...e;}, <, ®) @ is true and < holds.

If the sequence S contains episode p, then we say "p occurs in S" or "p is
true in S".

Definition 4 7. An m window of the event sequence S = (ey, ..., ¢;) that ends
with an alarm of type w is an event sequence S' = (e, ..., €jim—1), where 1 <
J<l—-m+1land W(ejin-1) = w.

The set of windows of S defined above is denoted by aw (S, m, w).

Definition 4 8. The support of episode p in aw (S, m, w) is the number of windows
that contain p:

supps.mw(p) = [{S" € aw(S, m, w)|S' contains p}|

An episode is frequent, if its support is higher than a given support threshold
(min_supp), otherwise it is infrequent.

The frequent episodes are not necessarily important in practice. There can be
many that have no connection with alarm situation, but they occur in many windows

10 F. BODON and Z. HORNAK

that end with an alarm. Such universally frequent episodes are out of interest in our
context.

If episode p({x1, ..., xx}, <, ®) is contained in a window such that x; gener-
ates alarm, then this episode may be important because the conditions described by
the episode may have been considered improperly to be an attack by some security
device. We shall focus on such episodes and their occurrences.

Let us define the term alarm support.

Definition 4 9. The alarm support of a serial episode p({x1, ..., x}, <, ®) in
the aw(S, m, w) is defined by alarm_suppy ,, ,(p({x1, ..., x¢}, <, ®)) = |{S/ =
(e1,...,em) € aw(S,m,w)|3ej,, ..., ej € S'\{en} different events such that in
pen,ej,,...e;}, <,)P is true }

An episode is alarm frequent, if its alarm support is greater than a given
threshold (min_supp).

Definition 4 10. The expression plm, w] = {real alarm, false alarm} is an
episode rule, if p is an episode, m is an integer number and w is an alarm type. The
interpretation of the rule plm, w] = false alarm is the following: if p occurs in
an event sequence of S of width m that ends at an alarm of type w, then the alarm
is false, otherwise it is a real alarm.

Our final goal is to determine episode rules that filter out false alarms. The
data mining algorithm discovers alarm frequent episodes and an expert (security
specialist) sets the right-hand-side (false alarm or real alarm) of the rules. Obviously
this step cannot be automated since it requires domain knowledge (knowledge about
the local network, about the security devices, about the users, etc.). We expect that
determining the alarm frequent episodes can help the security specialists to handle
the vast number of alarms effectively.

4.2. The Aim of Data Mining

After clarifying the basic definitions we can set the model and define the aim of
data mining in the Remote Supervision System. Then is given a filtered event
sequence S that has to be processed off-line. The invertible, parametric, unary
predicates a(x.A, qo), B(x.B, qg), . . ., the window width (m) and the alarm type
(w) are provided by an expert (system administrator, security specialist). Based on
this set of parameters we have to determine the alarm-frequent serial episodes in S.

Our first task is to determine the values of the parameters so that from the
predicates obtained, frequent episodes can be built. The output of the data mining
module (the alarm-frequent episodes) is examined exhaustively by the expert, who
finally approves the false alarm filtering episode rules. After the episode rules are
set, the on-line processing of the network traffic can be started. If an alarm of type
w arrives and its preceding m wide window contains episode p (more precisely the
episode rules p[m, w] = false alarm exists), then the alarm is determined to be
false and automatically filtered out.

FILTERING FALSE ALARMS 11

We restrict our search to serial episodes, however the model and the algorithm
can be extended to handle parallel episodes as well, at the expense of performance
degradation. These generalizations are not discussed in this paper. In the following
event variables are always referred as xy, ..., x; and the order on time is x;.7 <

. < x;1.T. If only continuous, serial episodes are concerned, the conjunction
of the predicates unambiguously determines the episode itself. So for the sake of
simplicity, an episode is understood to be the conjunction of the predicates (we

write p = /\f.:1).

5. The Algorithm ABAMSEP

The detailed algorithm ABAMSEP (APRIORI-Based Algorithm for Mining Serial
Episodes with parametric Predicates) is based on algorithm APRIORI [1]. It dis-
covers frequent serial episodes and handles invertible parametric predicates. The
pseudo-code is given in the next page.

The algorithm has two phases. First, the parameters of the interesting predi-
cates are determined, and those windows are found where alarm-frequent episodes
may occur. Next, these windows are scanned and the frequent episodes are discov-
ered.

So in the beginning we determine those predicate-parameter pairs that can
be true on an event that generated alarm of type w. From these predicates we
can immediately generate alarm-frequent episodes consisting of only one condi-
tion. The occurrences of these episodes will be the last events of those windows,
where alarm-frequent episodes can be found. This set of windows is a subset of
aw(S, m, w) so let us denote it by aw’(S, m, w) (aw’(S, m, w) C aw(S, m, w)).

In order to determine frequent episodes in aw’(S, m, w) we need some further
evaluations. The following property holds for every frequent episode.

Property S5 1. If an episode p is frequent in some windows of the event sequence
S, then all subepisodes of p are also frequent in these windows.

This follows from the fact that if an episode occurs in an event sequence,
then the subepisodes occur as well. This property suggests to adapt the scheme of
algorithm APRIORI.

We scanevery eventof aw’ (S, m, w) one-by-one and determine those predica-
te-parameter pairs that are true on the actual event. Notice, that a predicate-
parameter pair can be regarded as an episode of size 1. Every predicate-parameter
pair has a counter, and if the pair is true on an event we increase this counter. The
counter can be increased just once in a window although it may be true on more
than one event of the window. After reading through the event sequence we select
those predicate-parameter pairs that have support higher than min_supp. The fre-
quent episodes of size 1 will consist of them. In the following only these frequent
predicate-parameter pairs are considered. As we mentioned earlier, these predicates
after the parameters are fixed, can be regarded as traditional predicates. Without
loss of generality, we assume that these predicates are ordered.

12 F. BODON and Z. HORNAK

Algorithm 1 algorithm ABAMSEP

Require: S = (ey, ..., ¢) : event sequence ordered by time,
m : width of the window.
min_supp : support threshold
«, B, ...: parametric predicates
w : alarm type
Ensure: PY : set of the alarm-frequent episodes

L. PREPROCESSING:
for allevente; € S : W(e;) = w do
determine those predicate-parameter pairs that are true on ¢;
end for
determine rep_aw’ (S, m, w)
generate C
i <1
II. MAIN CYCLE:
repeat
determine the support of elements of C;
P; < {c|c € C;, c.support > min_supp},
delete C;
C;,1 < candidate_generation(P;)
forall p € P, do
if p.support_w > min_supp then
PY < P"Up
else
delete p
end if
end for
OPTIONAL STEP: delete nonmaximal episodes from P,
i «—i+1
until {|C;| > 0AND P”, > 0}
PY < P

The next step is to generate candidate episodes of size 2 from frequent episodes
of size 1. An episode can be candidate if all of its subepisodes are frequent. Note
that this is just a necessary condition for an episode to be frequent, therefore for each
candidate the support should be determined in an additional step. To do this, after
candidate generation the support counting method is evoked. In general candidate
episodes of size i + 1 are generated from the frequent episodes of size i. The
candidate generation is detailed in section 5.1. After the candidate generation, we
need only the alarm-frequent episodes of size i, the others can be deleted. The next
step is to determine the support of the candidates of size i 4+ 1, and delete those
that have support less than the support threshold (min_supp). By repeating this

FILTERING FALSE ALARMS 13

process (i = 1, 2, ...) we can determine all alarm-frequent episodes. The algorithm
terminates, if no new candidate is generated.

The output of the algorithm is the set of alarm-frequent episodes. The problem
with this solution is that too many useless episodes are generated. For example an
alarm-frequent episode of size 5 and variable number 5 has 2° — 2 subepisodes that
are also alarm frequent. Consequently, it is useful to return to the expert only the
maximal (with respect to C) alarm-frequent episodes.

5.1. Candidate Generation

The candidate generation is similar to the method proposed in algorithm APRIORI.
The differences stem from the fact that APRIORI works with itemsets while here we
are working with episodes. Candidate generation has two phases: join and prune.

5.1.1. Join Phase

A candidate c of size i + 1 is generated from two frequent episodes (p1,p») of sizei.
Without loss of generality we can assume that p; has [variables, p, has k variables
and [> k. We join the two episodes, if by deleting the predicate (i (x;.A)) from p;
that has the largest order among those that apply to the variable x;, we obtain the
same episode as we get if we delete the predicate (v(x;.B)) from p,, which has the
largest order among those that apply to the variable x;. Thus, p; and p, must have
i — 1 common predicates that apply to the variables xi, ..., x;. Three different
cases are possible:

1. p;isequal to p; (sol = kand u = v). We join an episode with itself if only
one predicate applies to x; (= x;). If this condition holds, then we generate
the candidate ¢ := p; A w(xxs1.B).

2. If p; # p, and more than one predicates apply to the variable x; in p,, then
¢ := p1 A v(x;.B) is the candidate. Obviously if predicate v applies to x;
in p; (even with different parameter), then we can immediately delete the
candidate. The reason for this is, that if the parameters are the same, then
the candidate is not of size i + 1, otherwise it will not occur in any window
(invertibility).

3. Otherwise [= k and only one predicate applies to the variable x; in py,
since the episodes are continuous (each variable is contained in at least one
predicate). In this case 3 candidates are generated: ¢’ := p; A v(x;.B),
" := p1 Av(xgy1-B), ¢* := pa A p(xp41.A). Again, if predicate v applies
to x; in py, then ¢’ can be deleted.

The episode pair (p;, p2) generates the same candidate as the pair (ps, p1)
does. We suppose that an order on the episodes can be defined (for example lexico-
graphic order that is defined based on the ordering of the predicates). Two episodes
are joined if and only if p; is larger than p; with respect to the order.

14 F. BODON and Z. HORNAK

Let us consider some examples for the join phase (the attributes of the variable
are omitted for the sake of simplicity).

Table 1. Example for joining

P1) 2) candidate
y(x3) A B(x2) Aa(xy) alxp) A B(xr) Ad(xy) not joinable
y(x3) A B(x2) Aa(x)) y(x3) Ad(x2) Aalxr) not joinable

y(x3) AB2) Aa(x)) Blx) Ad(x) Aa(xy) y(x3) A Bxz) Ad(xz) Aal(xy)
B(x2) Ay (x2) Aa(x)) B(x2) Ad(x2) Aalxr) Bxz) Ay(xa) Ad(xa) Aalxr)
Y(x3) A B(x2) Aa(xy) 8(x3) AB(x) Aaxy) y(x3) Ad(x3) A B(x2) Aalxy)
8(xa) Ay (x3) A B(x2) A alxy)
Y (xa) A S8(x3) A B(x2) A a(xy)

It is instructive to look at the possible candidates generated from the pair
p1 = n(x1.A), pp = v(x1.B). Herel = k = 1 and if i # v, then the candidate
pairs are 1 (x1.A) A v(x1.B); n(x2.A) Av(x1.B); v(x2.B) A p(x1.A). fuw = v,
then the first candidate is deleted. We remark that the two episodes are always
immediate subepisodes of the candidate generated.

5.1.2. Prune Phase

The objective of this phase is to prune the candidates that have an immediate
subepisode of size i that is infrequent, i.e. it is not among the frequent episodes.

Let us consider some examples with two different frequent episode sets of
size 3, which are given in Table 2. Frequent episodes are found in the first column,
the candidates after the join phase in the second. If the candidate is pruned, then
ves can be found in the 3" column, otherwise no. If the candidate is pruned, then
its immediate subepisode that is infrequent is shown in the 4" column.

5.2. Determining the Support

To determine the support of the candidate episodes, we present a simple algorithm
that is easy to implement. Using tries or hashing techniques can further accelerate
it. For details see [1, 5, 6, 3, 4].

The support of the candidates has to be calculated so that the frequent ones
can be selected, and the infrequent ones are pruned. Each window of aw’(S, m, w)
has to be examined and those candidate episodes have to be found that are true in
the window. A candidate episode of size k occurs in a window if there exists k&
different events such that all predicates that apply to the variable x; are true on the

jMevent (1 < j <k).

FILTERING FALSE ALARMS 15

Table 2. Example for pruning

frequent episodes candidates is infrequent
of size 3 after join pruned subepisodes

y(x3) A B(x2) A a(xy)

Bx2) ANS(x2) Aa(xr) y(x3) AB(x2) AS(x2) Aa(xy) yes y(x2) A B(x1) Ad(xr)
y(x3) AS(x2) Aa(xr)

y(x3) A B(x2) Aa(xy)

3(x3) A Bx2) Aalxr) y(x3) Ad(x3) A B(x2) Aalxy) yes y(x2) Ad(x2) Aalxy)
3(x3) Ay (x2) Aalxr) d(xa) Ay(x3) AB(x2) Aa(x)) no

3(x3) Ay (x2) AB(x1) y(xa) AS(x3) A B(x2) Aa(x)) yes y(x3) Ad(x2) A B(x1)

We use a greedy algorithm to find the episodes of size k that occur in the given
event sequence S = (ey, ..., e,). Let us read through the event sequence from the
end to the beginning. A finite automaton can represent each episode. All automata
are in the initial (0’") state before we process the event sequence. When event e
is considered, the automaton of the candidate episode p(xj, ..., x;) jumps to the
next state from state i, whose predicates that apply to the variable x;, are true on
e. Otherwise we don’t jump. The state k is the accepting state.

A boolean variable has to be added to each automaton. It is set when the last
(from the end the first) event is processed. Its value is true for those automata that
jumped to the first state after this event (the one that generated alarm) is processed.
Otherwise the variable is set to false.

When the left end of the window is reached, all instances of the automata
are deleted. We increase the support of those candidates, whose automata is in the
accepting state. If in addition the boolean variable is true, then the alarm support is
also incremented.

In order to implement the automata a reference to the episode and a variable
that stores the state index of the automata need to be handled. This two pieces of
data and the boolean variable can be stored in a list. We add a triple to this list only
when their imaginary automaton jumps to the first state.

Please observe that the (costly) disc operations are carried out in the first two
steps of the preprocessing, and in the first step of the main cycle.

5.3. An Optional Step

A partially ordered set can be built from the alarm episodes, where the alarm-
frequent episodes are under a border. The elements of the border are the maximal
alarm-frequent episodes. It would be useless to present all the frequent episodes
to the user since the border has fewer elements, and any frequent episode can be

16 F. BODON and Z. HORNAK

obtained from the maximal ones.

The alarm-frequent episode p is maximal, if there exists no frequent episode
p’ such that p is a proper subepisode of p’. Maximal episodes can be filtered in two
ways. First, we can filter the output of algorithm ABAMSEP; second we can weave
the filtering process into the algorithm. The advantage of the second solution is
that it decreases the memory need, since less episodes are stored. We applied this
approach in the implementation.

After infrequent candidates of size i are deleted, those frequent episodes of
size i — 1 can also be pruned that are subsets of some frequent episode of size i.
Hence, if the user is interested only in the maximal episodes, then the following

line have to be inserted into the main cycle (by definition p(()w) equals to #!)

Algorithm 2 Removing nonmaximal episodes
for all py € P, do
for all p, € P” do
if (p1 C p») then
Py < P2\
end if
end for
end for

5.4. Completeness and Redundancy

By the following lemma the greedy algorithm (presented in section 5.2) properly
counts the support of an episode.

Lemma S 1. The greedy algorithm finds all episodes that occure in a given event
window.

Proof. Suppose that there exists a candidate episode p(xy, ..., x;) that is true in
event window S’ = (ey,...,e,) € aw'(S, m, w), but the greedy algorithm did
not find it to be true. According to the assumption there exist different events
ei,...,e, € 8 such that p(e;,...,e;) is true. Since the greedy algorithm did
not find the episode after processing §’, the automaton that represents the episode
stopped in a state (k"), with k" < k. Thus there exist different events eif»...ej € S,
such that all predicates that apply to x, are true on event e;/, and all predicates that
apply to x; are true on event ¢;; and so on. The algorithm finds these events starting
from the back, and due to the greedy nature of the method the relations i; > i i,
i, > ié, N | ,/(, must hold. We are searching for occurrences of serial episodes,
it follows from the above that there exists an event (eik,ﬂ) that is in the window, it is
before ¢;,, , and all predicates that apply to variable x; 1 are true on it. The greedy
algorithm will clearly find this event. This is a contradiction. O

FILTERING FALSE ALARMS 17

Theorem 5 2. The algorithm ABAMSEP is complete: it finds all alarm-frequent
episodes.

Proof. The proof is based on induction of the size of episodes. In the first step
we check each event in windows aw’(S, m, w), and all predicates are found from
whom a frequent episode of size 1 can be built. Let us suppose that we found all
frequent episodes of size / > 1, but an episode p of size [+ 1 and variable number
k was not found. According to Lemma 5 1, if a frequent episode is generated as a
candidate episode, then its support is calculated exactly. If p were not found to be
frequent, then it should not be generated at all.

3 different cases can occur: (1) at least two predicates apply to xi, (2) one
predicate applies to x;, and at least two to x;_1, (3) one predicate applies to x; and
one to xp_j.

In the first case p is in the form of o (x) A’ (xx) A p’, where @ # o’. However,
p should have been generated by joining episodes p’ A a(x;) and p’ A o’ (xz)).

In the second case p is a(x;) A o’(xx_1) A p”, where at least one predicate
applies to x;_; in p”. In this case p is obtained if episodes p” A a(x;) and p” A
a’(x;_1) are joined.

In the third case p = a(x;) A o'(x¢—1) A p*, where the largest variable in p*
is x;_,. Here, by joining p* A a(x;_1) and p* A &’ (x;_1) episodes we obtain p. If
a = o/, then p; = p», hence it is a case of self-join, where the condition holds (ie.
only one predicate applies to the largest variable). Each case leads to contradiction,
hence the statement follows. U

Consequence 5 1. Each candidate is generated once in algorithm ABAMSEP.

Proof. 1t is immediate from the proof of the Theorem 5 2. For any candidate
we can uniquely determine the two subepisodes that generated it, hence it cannot
happen that two different episode pairs generate the same candidate. O

Candidate generation algorithms that do not generate the same candidates in
different ways are called nonredundant in the literature. Nonredundant candidate
generation is a requirement of an efficient frequent pattern mining algorithm.

5.5. Theoretical Remarks on the Time and Memory Need of the Method

Let us denote the size of the largest alarm episode by |p,..x|, and as earlier, the
length of the sequence by / and the width of the window by m. We analyse the time
and memory needs with the assumption that the event sequence is on disk.
Operations in the memory are much faster than operations on the disk, there-
fore disk access is of primary concern. It is easy to determine how many times does
the algorithm read through the event sequence. ABAMSEP is alevelwise algorithm,
it reads through the database as many times as the size of the largest episode. If the
number of the given predicates is u, then this is at most m - u, because the number

18 F. BODON and Z. HORNAK

of variables cannot be more than the size of the window and a predicate can apply
only once to any variable (this is a consequence of invertibility). We infer that the
number of disk access is linear in the parameters [, m and u.

The candidates and the actual window are stored in the memory. Insufficient
space in the main memory slows down very sharply the processing of the candidates.
It is impossible to estimate, which episode counter should be increased before
processing a window, hence swapping the candidates to and from the disk would
take a lot of time. Therefore algorithm ABAMSEP does not possess the ‘graceful
degradation’ property, similarly to all other frequent patter mining algorithms [2,
13,1, 14, 9, 16].

Procedure that finds the supported candidates in a window is executed as many
times during a single reading of the sequence as many elements aw’(S, m, w) has.
However, this can be slower than reading in the sequence from the disk. We know
that when an event is processed, we have to check the state of all instances of
the automata, hence support determination is proportional to the number of the
candidates. If |p,,..| < m, then in the worst case just the number of episodes with
| Pmax| variables can be (u - | pmaxl)‘p'"‘““, since u - | pmax| different predicates can
apply to each variable. If |p,,.c| > m, then the number of the candidates can be
even more than u”. Consequently, determining the support can be proportional to
l-u™.

This exponential growth is not as bad as it seems. Every data mining al-
gorithm, where the aim is to find frequent objects, shows similar characteristic
[1,2, 14,9, 16, 13]. Fortunately, the theoretical bounds on time and memory com-
plexity and real performance are often far from each other. When the algorithm is
slow, then the parameters are probably set improperly and too many episodes are
generated. Generating too many episodes should be avoided since these episodes
have to be examined one-by-one by an expert. The test results presented in the
next section supports the following hypothesis of ours: when the mining yields
manageable results, then the algorithm finds the episodes in acceptable time.

6. Experimental Results

Implementation of the proposed algorithm was developed within the framework of
aresearch project supported by the Hungarian Ministry of Education in cooperation
with ICON Ltd, a Hungarian IT specialized company. During this project a com-
mon message format was elaborated. We collected large volume of log files from
different security products and the execution experiments come from this work.

In the figures the influence of parameters on the run-time and the candidate
number can be seen. The parameters examined were the support threshold, the
width of window and the number of invertible predicates. In the previous section
we showed that theoretically there is an exponential growth in the run-time.

In the test system events were generated by 20 different devices. Each event
had 11 attributes. The first attribute returned the type of the event, i.e.: entry of a

FILTERING FALSE ALARMS 19

computer to the network, signal from a virus checker, entry of a user to the network,
or system event. Other attributes were: process name, creation time, classification
name, detection time, source node address, source service port, target node address,
target service port, target file and target file path.

The raw database consisted of 2400 events, the filtered sequence was of length
600. 100 alarms were hidden in the data: 50 randomly and 50 were inserted with
predefined events. These events were generated so that episodes could be retrieved
from them. These episodes had 4, 5 or 6 variables and the size of them varied from
18 to 28. Random events were inserted between the predefined events such that the
episodes could be discovered by using windows of size 10.

We implemented the algorithm on a Linux operating system (Red Hat Linux
version 7.2). The tests ran on a configuration with Athlon XP 1700+ processor and
256 DDR operative memory.

The ABAMSEP algorithm worked properly. If the window size parameter
was set to 10 or more, then each episode was successfully discovered. Obviously if
the window size was less than 10, then some episodes were infrequent, hence left
unnoticed.

Further test results and the description of the test environment can be found
in [11].

Before presenting the results, we would like to draw the reader’s attention
to a very important feature. In most data mining applications, we are used to low
correlation of a large number of items. Even if the size of dataset is very large,
the number of frequent items is still manageable. Unfortunately this is not the case
with security events. There are a few types of events, only the values of parameters
change.

Let us first examine the number of candidates of different sizes (Fig. 1). We
can see that by increasing the number of predicates the number of the candidates
rapidly grow. After it reaches the peak the number of candidates decreases. Similar
characteristics were observed and analysed in the case of frequent itemset mining
[7]. This roots from the similarity with respect to the inclusion anti-monoton, i.e. if
a set/episode is a candidate, then all its subsets/subepisodes are candidates as well.

The Figs. 2, 3, 4 show how the window width, the predicate number and the
support threshold affect the run-time. Please note, that the exponential increase in
the run-time roots from the problem itself and not from the solution. The search
space is exponential in the number of predicates, thus if we set min_supp to zero,
then all possible episodes become frequent and simply outputting the results requires
exponential operation. The exponential run-time characteristic is present in all
frequent pattern mining algorithms.

We can see that the retrieval speed is getting lower if we increase the width of
the window or the number of the predicate types, or decrease the support threshold.
One may find the run-times too slow, however we have to emphasize that this
primary implementation did not include any accelerating techniques. Simple data
structures (like lists) were used where not even ordering and binary search was
implemented. Evidence can be found in the literature that by using sophisticated
data structures (like trie) the run-time drops to its fraction [6, 3, 4].

20 F. BODON and Z. HORNAK

number of candidates 1 predicate - -+ -

100000 £ 2 predicates --x: --
r 3 predicates -F—
- 4 predicates —6—
10000 ¢ 5 predicates —A—
" >
1000
100
10 b
1 i |

0 2 46 s 10 12 14 16
size of a candidate

Fig. 1. Number of candidates of different size

7. Consequences and Future Research

The aim of this research was to make an in depth investigation on the improve-
ment possibilities of a Remote Supervision System. Such systems seem to be the
most effective systems in computer security, therefore this kind of research is of
importance. We intended to battle and defeat the most dangerous enemy, the large
number of possibly false or unimportant alarms. We have won the battle, however,
the end of the war is still far away. In our work we proved that data mining is a
powerful weapon. An efficient and scalable algorithm was proposed that makes it
possible to automatically filter many false alarms.

Several simplifications have been made in our model in order to keep the com-
plexity of the algorithm acceptable even when large event sequences are processed.
Our solution can be improved in many ways. Episodes can be generalized so that
more complex patterns can be found. The efficiency of our existing algorithm can
also be improved. Here we shortly discuss some avenues of further research.

* Algorithm ABAMSEP is searching for serial episodes only. However, par-
allel and more complex episodes are also of interest. Candidate generation
and support count can be easily extended to handle parallel episodes. The
time complexity immediately increases as soon as more general episodes are
searched for. We suggest that a middle way solution i.e. serial episode that
is made of small parallel episodes could be still manageable.

* Episodes were defined as sets of conditions where the conditions were given
by unary predicates. As soon as higher level predicates (for example binary)
are allowed in the conditions neither the candidate generation nor the support

FILTERING FALSE ALARMS

run-time (sec.)

100000
: ot
L N
10000 ¢
i L+
1000
I + computer entry ——
100 user entry - -+ -
= virus H=—
system event - -x: -

6 7 8 9 10 11 12 13 14

size of the window

Fig. 2. Run-time as the function of the window size

run-time (sec.)
le+08
le+07
le+-06
100000
10000
1000
100

10
1 L I I I I

1 2 3 4 5
number of predicates

Fig. 3. Run-time as the function of the predicates’ number

21

22 F. BODON and Z. HORNAK
run-time (sec.)

1600 -
1400
1200
1000
800
600
400
200

0 | | | | | | | | |
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

support threshold

Fig. 4. Run-time as the function of the support threshold

count could be solved so easily.

* We have proposed that a filtered sequence and not the raw data should be
processed by the data mining algorithm. Filters could be efficiently imple-
mented in the system, and produce the filtered sequence very fast. We know
that some binary predicates can be substituted if a proper filter is used. For
example the binary predicate x;./ P = x,.I P is implicitely included in the
episodes if we filter the raw data according to the same IP addresses. How-
ever there are binary predicates that cannot be substituted by any reasonable
filter. A theoretical and practical research on the limitations and realization
of the filters is still ahead.

The prototype implementation of our algorithm ABAMSEP does not include
any techniques for fast operation. Obviously, support count could be speeded
up greatly by using tries or hash-trees to store the candidates.

We see that many interesting and important open problems can be posed. We
believe that we have proved here that data mining algorithms can be applied in the
security supervision of IT systems by discovering the sources of false alarms. If
the number of false alarms can be decreased thanks to the rules determined, then
the sensitivity parameters of security devices can be set to high and the number of
recognized attacks will increase as well.

References

[1] AGRAWAL, R. — SRIKANT, R., Fast Algorithms for Mining Association Rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, ed., Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487-499.
Morgan Kaufmann, 12-15 1994.

(2]
(3]

(4]

(5]
(6]

(7]
(8]

(9]
(10]

(11]

(12]
(13]

(14]

[15]

[16]

FILTERING FALSE ALARMS 23

AGRAWAL, R. — SRIKANT, R., Mining Sequential Patterns. In P. S. Yu and A. L. P. Chen, ed.,
Proc. 11th Int. Conf. Data Engineering, ICDE, pp. 3—14. IEEE Press, 6-10 1995.

BODON, F., A Fast Apriori Implementation. In Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI’03), volume 90 of CEUR Workshop Proceed-
ings, Melbourne, Florida, USA, 19. November 2003.

BODON, F., Surprising Results of Trie-based Fim Algorithms. In Proceedings of the IEEE
1CDM Workshop on Frequent Itemset Mining Implementations (FIMI'04), volume 126 of CEUR
Workshop Proceedings, Brighton, UK, 1. November 2004.

BODON, F. - RONYAL L., Trie: An Alternative Data Structure for Data Mining Algorithms.
Computers and Mathematics with Applications, 2002.

BORGELT, C., Efficient Implementations of Apriori and Eclat. In Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations (FIMI’03), volume 90 of CEUR
Workshop Proceedings, Melbourne, Florida, USA, 19. November 2003.

GEERTS, F. — GOETHALS, B.— BUSSCHE, J. V. D., Tight Upper Bounds on the Number of
Candidate Patterns. ACM Trans. Database Syst., 30(2):333-363, 2005.

HATONEN, K. — KLEMETTINEN, M. — MANILLA, H. — RONKAINEN, P. — TOIVONEN, H.,
Knowledge Discovery from Telecommunication Network Alarm Databases. In S. Y. W. Su, ed.,
Proceedings of the twelfth International Conference on Data Engineering, February 26—March
1, 1996, New Orleans, Louisiana, pp. 115-122, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1996. IEEE Computer Society Press.

HUHTALA, Y. — KINEN, J. - PORKKA, P. - TOIVONEN, H., Efficient Discovery of Functional
and Approximate Dependencies Using Partitions. In ICDE, pp. 392401, 1998.

KERENYI, K., Applying Data Mining Methods in Computer Remote Inspection. Master’s the-
sis, Department of Measurement and Information Systems, Budapest University of Technology
and Economics, 2002.

Kuczy, Cs., Filtering False Alarms with Data Mining Methods in the Case of Computer
Networks. Master’s thesis, Department of Measurement and Information Systems, Budapest
University of Technology and Economics, 2003.

MANNILA, H. — TOIVONEN, H., Discovering generalized episodes using minimal occurrences.
In Knowledge Discovery and Data Mining, pp. 146—151, 1996.

MANNILA, H. — TOIVONEN, H. — VERKAMO, A., Discovery of Frequent Episodes in Event
Sequences. Data Mining and Knowledge Discovery, 1(3):259-289, 1997.

SILVERSTEIN, C. — BRIN, S. — MOTWANI, R., Beyond Market Baskets: Generalizing As-
sociation Rules to Dependence Rules. Data Mining and Knowledge Discovery, 2(1):39-68,
1998.

SRIKANT, S. — AGRAWAL, R., Mining Sequential Patterns: Generalizations and Performance
Improvements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, ed., Proc. 5th Int. Conf.
Extending Database Technology, EDBT, volume 1057, pp. 3—17. Springer-Verlag, 25-29 1996.
ZAKI, M., Sequence Mining in Categorical Domains: Incorporating Constraints. In CIKM,
pp. 422-429, 2000.

