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Abstract

A widely applied approach to model transformation uses graph rewriting as the underlying trans-
formation technique. In case of diagrammatic languages, such as the Unified Modeling Language
(UML), the exclusive topological matching is found to be not enough. To define the transformation
steps precisely beyond the structure of the visual models, additional constraints must be specified
which ensures the correctness of the attributes, or other properties to be enforced. Dealing with OCL
constraints provides a solution for these unsolved issues. The use of OCL as a constraint and query
language in modelling is essential. We have shown that it can be applied to model transformations
as well. Often, the same constraint is repetitiously applied in many different places in a transforma-
tion. It would be beneficial to describe a common constraint in a modular manner, and to mark the
places where it is to be applied. This paper discusses (i) the problem of crosscutting constraints in
visual model transformation steps, and provides an aspect-oriented solution for a consistent constraint
management. It introduces the concepts of aspect-oriented constraints and a new type of aspect, the
constraint aspects. (ii) In general, it is difficult to require a whole transformation to validate, preserve
or guarantee certain properties because transformations are built form isolated transformation steps
ordered by a control structure. This problem is solved by the provided constraint weaver methods,
which weave the constraints into the model transformation steps prior to the execution. (iii) Further-
more, the work presents offline constraint optimization (normalization) algorithms, which are part of
the presented weaving process.

Keywords: aspect-oriented constraints, constraint normalization, constraint weaving, crosscutting
constraints, metamodel-based model transformation, OCL.

1. Introduction

OMG’s Model Driven Architecture [1] offers a standardized framework to sepa-
rate the essential, platform-independent information from the platform-dependent
constructs and assumptions. A complete MDA application consists of a platform-
independent model (PIM), one or more platform-specific models (PSM) and com-
plete implementations, one on each platform that the application developer intends
to support. The platform-independent artefacts are mainly UML and other soft-
ware models containing enough specification to generate the platform-dependent
artefacts automatically by model compilers. Hence, software model transformation
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provides a basis for model compilers, which plays a central role in the MDA archi-
tecture.

The increasing demand for visual languages (VL) in software engineering
(e.g., Unified Modeling Language - UML; Domain-Specific Languages - DSLs) re-
quires more sophisticated transformation mechanisms for diagrammatic languages.
Although these VLs can often be modelled with labelled, directed graphs, the com-
plex attribute dependencies peculiar to the individual software engineering models
cannot be treated with this general model. Consequently, often it is not enough to
transform graphs based on the structural information only, we want to restrict the
desired match by other properties, e.g. we want to match a node with a special
integer type property whose value is between 2 and 12.

Previous work [2] has shown that the steps can be made more relevant to
software engineering models if the metamodel-based specification of the trans-
formations allows assigning OCL [3] constraints to the individual transformation
steps. Because these constraints are bound to the transformation steps, they are
able to express the constraints local to the host model area affected by the steps.
This approach is inherently a local construct, because the elements not appearing
in graph transformations cannot be directly included in the OCL statements. Al-
though the specification has this local nature, this does not mean that validating
them does not involve checking other graph elements in the input graph: constraint
propagation needs to be taken into account by both the algorithms and the user of
the transformation.

Often, the same constraint is repetitiously applied in many different places in
a transformation; therefore it crosscuts the transformation steps. Aspect-Oriented
Software Development (AOSD) [4] [5] provides a technique to address an emerg-
ing separation of concerns (SoC) that is focused on crosscutting. The methods of
AOSD facilitate the modularization of crosscutting concerns within a system. As-
pects may appear in any stage of the software development lifecycle (e.g. require-
ments, specification, design and implementation). Crosscutting concerns can range
from high-level notions of security to low-level notions, like caching. Furthermore,
functional requirements such as business rules and non-functional requirements,
like transactions can also be expressed by aspects. AOSD has started on the pro-
gramming level of the software development life-cycle, and over the last decade
several aspect-oriented programming languages were introduced (e.g. AspectJ [6]).
Aspect-oriented programming eliminates the crosscutting concerns on the program-
ming language level, but the aspect-oriented techniques must also be applicable on
a higher abstraction level. It would be beneficial to describe a common constraint
in a modular manner, and propagate it automatically to the adequate places [7] [8].

The goal of this work is to use aspect-oriented methods in order to solve
the problem of crosscutting constraints in metamodel-based transformation steps.
The paper introduces the aspect-oriented (AO) constraints, provides an algorithm
to create constraint aspects from them. A constraint aspect also contains a structure
besides the textual conditions. Weaver algorithms are provided to propagate AO
constraints and constraint aspects to model transformation steps. In addition, an
algorithm to normalize constraint aspects and to obtain their (pure) canonical form
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is also discussed, which is an optimization part of the weaving method.
The approach, presented here, has made it possible to define constraints sep-

arately from the transformation steps, and facilitates specifying their propagation
assignment to model transformation steps.

2. Backgrounds

Graph rewriting [9] is a powerful technique for graph transformation with a strong
mathematical background. The atoms of the graph transformation are rewriting
rules, each rewriting rule consists of a left-hand side graph (LHS) and a right-hand
side graph (RHS). Applying a graph rewriting rule means finding an isomorphic
occurrence (match) of LHS in the graph to which the rule is applied (host graph),
and replacing this subgraph with RHS. Replacing means removing the elements
that are in LHS but not in RHS, and gluing the elements that are in RHS but not in
LHS.

Algebraic graph rewriting [9] provides a way to manipulate objects in a graph
category, where the objects are labelled directed graphs, and the arrows are graph ho-
momorphisms. There are two main branches of algebraic graph rewriting, namely,
the double pushout (DPO) and the single pushout (SPO) approaches.

The DPO approach achieves the rule firing in two steps: after finding a redex
(the part of the host graph matched by LHS of the rewriting rule), the first step
removes the elements (vertices and edges) from the redex which are in the redex
but not in the right-hand side graph. Then, as a second step, the elements of RHS
graph not in LHS graph but in RHS graph are glued to the host graph. Related to
the DPO approach a rather tutorial like description can be found in [10, 11, 12, 13],
and a more complete summary in [9, 14].

The single pushout approach [9, 15, 16, 17, 18, 19] uses partial graph ho-
momorphisms to form a single pushout as a rule firing condition, and if a conflict
occurs when violating the gluing condition, deletion has priority over preservation.

Models can be considered special graphs, which contain nodes and edges be-
tween them. This mathematical background facilitates to treat models as labelled
graphs and to apply graph transformation algorithms to models using graph rewrit-
ing. Previous work [2] has introduced an approach, where LHS and RHS of the
rules are built from metamodel elements. This means that an instantiation of LHS
must be found in the host graph instead of the isomorphic subgraph of LHS.

The Object Constraint Language (OCL) [3, 20] is a formal language for the
analysis and design of software systems. It is the subset of the UML standard
[21] that allows software developers to write constraints and queries over object
models. A constraint is a restriction on one or more values of an object-oriented
model or system. A precondition to an operation is a restriction that must hold at
the moment that the operation is going to be executed. Similarly, a postcondition
to an operation is a restriction that must hold at the moment that the operation has
just ended its execution.
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Aspect-oriented programming (AOP) [5] is based on the idea that computer
systems are programmed in a better way by separately specifying the various cross-
cutting concerns of a system. Then the program relies on the mechanisms of the
underlyingAOPenvironment, whichweaves or composes the separated pieces into a
coherent program. AOP regards scattered concerns as first-class elements, and eject
them horizontally from the object structure. A concern whose code becomes tan-
gled into other structural elements becomes scattered. To ameliorate this problem,
AOP offers the notion of aspects: mechanisms beyond subroutines and inheritance
for localizing the expression of a crosscutting concern. AOP systems also provide
some mechanism for weaving the aspects and the base code into a coherent system.

An aspect-oriented approach is introduced in [22] for software models con-
taining constraints, where the dominant decomposition is based upon the functional
hierarchy of a physical system. This approach provides a separate module for spec-
ifying constraints and their propagation. A new type of aspect is used to provide
the weaver with the necessary information to perform the propagation: the strategy
aspect. Strategy aspect provides a hook that the weaver may call in order to process
the node-specific constraint propagations.

The Visual Modeling and Transformation System (VMTS) [2] [23] is an im-
plemented n-layer multipurpose modelling and metamodel-based transformation
system. Using this environment, it is simple to edit metamodels, design models
according to their metamodels, transform models using graph rewriting [2, 24].
Furthermore, it facilitates checking the constraints specified in the metamodel dur-
ing the metamodel instantiation, and the transformation step constraints during the
model transformation process.

VMTS has a Visual Control Flow Language (VCFL) which uses stereotyped
activity diagrams to specify control flow structures and OCL constraints to choose
between different control flow branches. In VCFL, if a transformation step fails and
the next element in the control flow is a decision object then it could provide the next
branch based on the OCL statements and the value of the SystemLastRuleSucceed
system variable. If no decisions can be found, the control is transferred to the parent
step, if there is no parent step, the transformation terminates with error.

In VMTS, applying a transformation step twice for an input model produces
the same matches and the same transformation result in both cases. In practice,
executing the same query on a database twice result the same data rows in both
cases. The matching and transformation algorithms do not contain any random
branch. Therefore we assume a deterministic matching and transformation process,
constructing the theoretical background.

The results discussed in this paper have been validated in VMTS as a proof-of
concept implementation.

The constraint validation method of the VMTS benefits from the results of
the mathematical background of formal languages, graph rewriting, aspect-oriented
software development and research related to the metamodel-based software model
transformation. It also incorporates several ideas from other environments.

The GReAT framework [25] is a transformation system for domain specific
languages (DSL) built on metamodeling and graph rewriting concepts. The LHS of
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the GReAT rules can contain OCL constraints to refine the pattern. PROGRES [26]
is a visual programming language in the sense that it has a graph-oriented datamodel
and a graphical syntax for its most important language constructs. In PROGRES
the precondition and the postcondition of a transaction are queries. VIATRA [27] is
a model transformation framework developed mainly for the formal dependability
analysis of UML models. In VIATRA model constraints are graph patterns with
arbitrary levels of negation. The Attributed Graph Grammar (AGG) [28] system is
a Java-based visual programming environment. Constraints can be specified either
visually or textually. The textual constraint expressions are provided in Java.

3. Contributions

This section, using aspect-oriented methods, presents how we can avoid repetitive
constraints in model transformation steps, which are frequently scattered along the
entire transformation. Furthermore, it provides algorithms for an aspect-oriented
constraint management.

A precondition assigned to a transformation step is a Boolean expression that
must hold at the moment when the step is fired, and a postcondition assigned to a
step is a Boolean expression that must hold after the completion of a transformation
step. If a precondition of a step is not true then the step fails without being fired. If a
postcondition of a transformation step is not true after the execution of the step, then
the transformation step fails. A direct corollary of this is that an OCL expression in
LHS is a precondition to the transformation step, and an OCL expression in RHS
is a postcondition to the transformation step.

There are three properties: validation, preservation, and guarantee, which
are checked and required during the transformation process. A transformation step
S validates a property P , when the following condition always holds: if a property
P was true before the stepS, it remains true after the execution of the step S, and
if P is false, the stepS fails. A step S preserves a property P , when the following
condition always holds: if a property P was false (true) before the step S, it remains
false (true) after the execution of the step S. A transformation stepS guarantees a
property P , when the following condition always holds: if a propertyP was true
before the step S, it remains true after the execution of the step S, and if P is false,
the stepS changes property P to true.

In the VMTS approach the pattern is a model structure built from metamodel
elements [2] which allows multiplicities on edges. During the matching process the
type compatibility is required which takes into consideration the inherited types as
well. The nodes contained by LHS and RHS graphs of the transformation steps are
called Pattern Rule Nodes (PRN).
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3.1. Crosscutting Constraints

A transformation consists of several steps, often not only a transformation step
but a whole transformation is required to validate, preserve or guarantee a certain
property. To meet this expectation all the transformation steps have to be taken
into consideration. If one defines a constraint for more transformation steps or
for a whole transformation, then the same constraint appears in the transformation
numerous times.

Fore instance, we have a transformation which modifies the properties of
the Person type objects and we would like the transformation to validate that the
age of a Person is always under 200 (Person.age < 200). It is certain that the
transformation preserves this property if the constraint is defined for all PRN of
type Person. This means that the constraint can appear in each transformation
step several times. Therefore the constraint crosscuts the whole transformation.
Its modification and deletion is not consistent, because such an operation must
be performed on all occurrences of the constraint. Moreover, it is often difficult to
estimate the effects of a complex constraint when it is scattered across the numerous
PRNs of the transformation steps [7].

Fig. 1 introduces a metamodel and a transformation with 2 transformation
steps and crosscutting constraints. The const_age constraint appears at several
places in this transformation. Fig. 1 shows a concrete case where a constraint is
present in many places of the two transformation steps. Another example con-
straint could be that we require from the transformation to preserve that the number
of employees of a Company is always between 50 and qnewline 300 (50 ≤ Com-
pany.NumbeOfEmployees ≤ 300).

3.2. Aspect-Oriented Constraints

Adisadvantage of our earliermetamodel-based model transformation approach [29]
can be seen in many tangling constraints throughout of our transformation steps. We
need a mechanism to separate this concern. Having separated the constraints from
the PRNs, we need a weaver method which facilitates the propagation (linking) of
constraints to PRNs. The Global Constraint Weaver algorithm (presented in Section
3.3) is supplied with a transformation with optional number of transformation steps
and a constraint list, and it links the constraints to the PRNs contained by the
transformation steps.

This method means that our approach manages constraints using AO tech-
niques [8]. Similarly to aspects, the constraints are specified and stored indepen-
dently of any model transformation step or PRN and are linked to the PRNs by the
Global Constraint Weaver (GCW). Fig. 2 introduces the weaving process.

The output of the weaver is not stored as a new transformation step; the result
is handled as a linking between the constraints and a transformation step. This
linking is referred to as Weaving Configuration.
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Fig. 1. (a) Examplemetamodel, (b-c) Two transformation steps built frommetamodel types
with crosscutting constraints

To summarize the main idea of the AO constraints, we can say that one can
create the constraints and the transformation steps separately. Then, with the help of
aweaver, constraints can be propagated to the PRNs contained by the transformation
steps.

3.3. Constraint Aspects

Before we introduce the concepts and algorithms that are used to manage AO
constraints for the unified treatment, we give our definitions.

Definition 1 (Constraint Aspect):
A Constraint Aspect is a pattern (structure) built from metamodel elements to

which OCL constraints are propagated.
AConstraint Aspect contains not only textual conditions described by the OCL

constraints but structure, type and multiplicity conditions as well. The structure
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Fig. 2. The Weaving process / a concrete weaving example

and type conditions are checked at propagation time, while the OCL constraints
are validated during the transformation.

Definition 2 (Propagated Constraint, Propagated Constraint Aspect):
A Propagated Constraint is an OCL constraint linked to a transformation

step. It forms a Weaving Configuration that contains the OCL constraint and the
transformation step.

A Propagated Constraint Aspect is a Constraint Aspect linked to a transfor-
mation step. It forms a Weaving Configuration that contains the Constraint Aspect
and the transformation step.

Definition 3 (NormalizedConstraintAspect - CanonicalConstraintFormandPure
Canonical Constraint Form):

The Canonical Constraint Form of a Constraint Aspect is the form which
contains the fewest possible navigation steps.

The Pure Canonical Constraint Form of a Constraint Aspect is the form which
does not contain navigation steps.

A constraint aspect is graphical, therefore it fits better the visual transforma-
tion system as the OCL constraint. Fig. 3 introduces the concepts of the formulated
definitions.

In Fig. 3a a constraint aspect is depicted: Person1, Person2, Company and the
associations between them represents the structure of the constraint aspect. C_P1
and C_C1 are the OCL constraints propagated to the pattern of the constraint aspect.
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Fig. 3. (a) Constraint Aspect, (b) PropagatedConstraint, (c) PropagatedConstraint Aspect,
(d/1) Constraint Aspect, (d/2) Canonical Constraint Form, (d/3) Pure Canonical
Constraint Form
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Fig. 3b shows a transformation step with a propagated OCL constraint (const_C2),
which appears both in LHS and RHS graphs (C_P3, C_P4). Fig. 3c represents a
transformation step, a constraint aspect and the dashed line shows the propagation
of the constraint aspect to LHS of the transformation step.

In Fig. 3d/1, a constraint aspect is depicted with a propagated OCL constraint
(C_P5). The dashed lines denote that C_P5 refers to the Company and Person2
nodes. Fig. 3d/2 shows the Canonical Constraint Form of the constraint aspect
depicted in Fig. 3d/1. The propagated OCL constraint is relocated to the Company
node and the navigation steps of the constraint are updated. Therefore the C_C5
constraint refers to the Person2 node only. The C_C5 constraint contains the fewest
possible navigation steps. Fig. 3d/3 depicts the Pure Canonical Constraint Form
of the constraint aspect (Fig. 3d/1). The C_P5 OCL constraint is divided into two
simpler constraints (C_C6 and C_P6), which are assigned to the Company and
Person2 nodes. C_C6 and C_P6 constraints do not contain navigation steps.

3.4. The Global Constraint Weaver Algorithm

The Global Constraint Weaver algorithm weaves AO constraints into the model
transformation steps. It has three main steps to select the PRNs to which the con-
straint must be linked. (i) It obtains the PRNs from the transformation steps with
metatype corresponding to the context information of the constraint. (ii) If the
constraint contains navigation steps, the algorithm checks the structure of the trans-
formation step for each previously selected PRN whether it satisfies the pattern
required by the navigation paths. The pattern of the transformation step is suit-
able for a constraint if starting from the PRN to which the constraint is linked, one
can walk through the paths described by the navigation paths of the constraint. In
other words, the pattern of the transformation step contains nodes with appropriate
metatype, and the relation between them which facilitates to traverse the navigation
paths contained by the constraint. (iii) In the third step, examining the transfor-
mation steps, the algorithm decides if it is necessary to assign a constraint to each
transformation step, or it is sufficient to assign it only to the first step as a precon-
dition and to the last step as a postcondition. If an intermediate state modifies one
of the properties contained by the constraint, the algorithm assigns the constraint to
this intermediate state to prevent a violated condition not being revealed until the
end of the transformation. The pseudo code of the GCW algorithm is as follows.

The following proposition states that theGlobal ConstraintWeaver propagates
constraints only to the necessary places and optimizes the constraint validation for
the whole transformation process.

Proposition 1 T1 and T2 are two identical transformations which contain optional
number of transformation steps, andC is an OCL constraint. (i) C is propagated
to the T1 using Global Constraint Weaver algorithm, and (ii) based on the required
transformation type (validation, preservation or guarantee), C is enlisted in all
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GLOBALCONSTRAINTWEAVER(Constraint[]Cs)Transformation T )

1 foreach Constraint C in Cs
2 foreach Transformation step S in T
3 nodesWithProperMetaType = METATYPEBASEDSEARCHING(ContextInfo of C , S)

4 nodesToCheck = CHECKSTRUCTURE (nodesWithProperMetaType, S,C)

5 if(ISREQUIREDTOWEAVE(C , nodesToCheck, out nodesToWeave, true)) then
6 WEAVECONSTRAINT(C , nodesToWeave )
7 endif
8 end foreach
9 end foreach

ISREQUIREDTOWEAVE(Constraint C , VMTSRuleNode[] nodesToCheck,
out VMTSRuleNode[] nodesToWeave): bool
1 requiredToWeave = false
2 foreach VMTSRuleNode ruleNode in nodesToCheck
3 if (the step of the ruleNode is first step in the transformation or

the step of the ruleNode is last step in the transformation or
the step of the ruleNode can modify a condition contained by the C) then
4 ruleNode add to nodesToWeave
5 requiredToWeave = true
6 endif
7 end foreach
8 return requiredToWeave

transformation steps of T2. Then T1 and T2 transformations produce the same
model as a result step by step.

Proof Appendix

Corollary 1 T1 and T2 transformations step by step produce the same result model,
therefore thewholeT1 and T2 transformations have the sameeffect in all cases during
the rewriting process.

Remark 1 VMTS executes the transformations in transactions. This means that if
a transformation is unsuccessful, VMTS rolls back the changes made on the input
model, hence, we have the original state of the model before the transformation.
Consequently, if T1 transformation fails in the step 1 and T2 transformation fails in
the step n, then because of the rollback at the end the T1 and T2 transformations
have the same effect.
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3.4.1. Computational Complexity Considerations

In VMTS, the data is stored in datasets, which are in-memory cache of the data
retrieved from the database. There is a dataset for the currently used metamodel,
one for the currently used model, and one for the currently used transformation.
These datasets contain only two data tables: one for nodes and one for edges.
We denote the number of the actual transformation (metamodel, model) nodes with
vr (vm , v) and the edges with er (em , e). This means that the data tables containing the
actual transformation nodes and edges have vrand er data rows. The complexity
of finding a row in a data table is O(lg n), where n is the number of the rows.
Therefore the complexity of querying a VMTSRuleNode or a VMTSRuleEdge from
the dataset of the current transformation is O(lg vr ) and O(lg er ) steps. Similarly
to get a metamodel (model) node or edge means O(lg vm) and O(lg em) (O(lg v)
and O(lg e)) steps.

The complexity of constraint validation and navigation.

The complexity of the constraint validation is O(1) [29]. During the navigation
the cost of each navigation step is O(lg ev) if the navigation path contains only
multiplicities 0..1 or 1. It is a query on the table which contains the model edges
to obtain the node IDs of the appropriate adjacent nodes (O(lg e)) and we have to
select the adjacent nodes by their IDs (O(lg v) for each node): O(lg e + m*lg v) =
O(lg e+lg vm) = O(lg evm), where m is the number of the selected adjacent nodes.
If m is 1 then it is O(lg ev).

If the navigation path contains multiplicities like 0..*, the result of a query
can be a collection of nodes (maximum v nodes) instead of a simple node, thus, the
next step must work on the result of the previous step. Traversing the navigation
paths, the metatype of the nodes need to be taken into consideration, because it
reduces the complexity of the whole evaluation process.

Fig. 4. (a) A navigation path, (b) Example metamodel with constraints, (c) Example model

An OCL constraint C contains optional number of navigation paths. A nav-
igation path P is depicted in Fig. 4a, P contains r navigation steps and traverses
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r +1 nodes (v0, v1...vr ). Let metatype(vi ) denote the collection of the model nodes
in the input model with metatype vi , where 0 ≤ i ≤ n, and n is the number of the
nodes in the input model. Let Ri be a node collection resulted by the navigation
stepi . Since R0 is the start node collection of the constraint C , this means that the
number of the nodes in collection R0 is 1 (#R0 = 1,R0 = {v0}). Using SelectNodes
method we can obtain the result node collection of the navigation stepi , based on
the result of the navigation stepi −1 and the nodes with metatype of the path nodei :
Ri = Select Nodes(Ri−1,metatype(vi )). The maximum number of the nodes in
the collection #Ri is #Ri = #Ri−1 ∗ #metatype(vi ), and the cost of the navigation
step i is CostRi = #Ri−1 ∗ lg e + #Ri ∗ lg v = lg e#Ri−1v#Ri . In summary, the cost
of the whole navigation is maximum

CostR = lg ev +
r∑

i=1

#Ri−1 ∗ (lg e + #metatype(vi ) ∗ lg v). (1)

The first part of the recursively given formula (lg ev) is the cost of the step
0(to select the start node), and the second part is the cost of the steps from 1 up to
r . There are r navigation steps, in the navigation step i there is #Ri−1 queries on
the table of edges and #Ri = #Ri−1 ∗ #metatype(vi )selects on the table of nodes.

The formula (1) is only an approximation, it is the maximum value of the real
cost of the navigation. This approach utilizes the different metatypes of the nodes,
therefore the worst case is if all the model nodes have the same metatype.

To better approximate the real cost of the navigation we define the metatype
Neighbour(vi j ) operation which retrieves not all of the model nodes with the
metatype vi , but only the adjacent nodes of the collection node j with metatype vi .

Based on it and on #R,
i =

#Ri−1∑
j=1

#metatypeNeighbour(vi j ), themodified formula is

CostR, = lg ev +
r∑

i=1
#R,

i−1 ∗ lg e +
#R,

i−1∑
j=1

#metatypeNeighbour(vi j ) ∗ lg v =

lg ev +
r∑

i=1
#R,

i−1 ∗ lg e+#R,
i ∗ lg v.

(2)

The complexity of the GLOBALCONSTRAINTWEAVER algorithm.

The complexity of the METATYPEBASEDSEARCHING method is O(lg vr ) [30],
where vr is the number of the PRNs contained by the current transformation. The
computational complexity of the CHECKSTRUCTURE method is the number of the
PRNs with the meta type which corresponds to the context information of the ac-
tual constraint multiplied by the complexity of finding the subgraph in the actual
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transformation step: O(#nodesWithProperMetaType * vh
r ), where h is the number

of subgraph nodes the algorithm has to match (this subgraph is specified by the
navigation steps of the actual constraint). The computational complexity of the IS-
REQUIREDTOWEAVE method is the number of the PRNs that the constraint must
be checked on: O(#nodesToCheck). The computational complexity of the WEAVE-
CONSTRAINT method is the number of the PRNs the constraint is propagated to:
O(#nodesToWeave). The cost of the GLOBALCONSTRAINTWEAVER algorithm is

at mostO(
c∑

i=1

s∑
j=1

(lg vr + nij ∗ vh
r + nij )), where c denotes the number of the con-

straints to propagate, s is the number of the transformation steps, nij is the number
of the PRNs in the transformation step j with the same metatype as the context of
the constrainti . In this case the vh

r is the worst case for finding the subgraph [9, 31].
Evaluating a constraint that contains navigations requires more computational

complexity than a constraint without any navigation steps. To resolve the problem
of the navigation we can create a constraint aspect from an OCL constraint and
normalize (optimize) it in order to obtain the Canonical Constraint Form. The
complexity of creating the constraint aspect from an OCL constraint and its nor-
malization equals to the evaluation of the OCL constraint. If we take the original
OCLconstraintwithout normalization, wemust traverse the navigation paths at each
evaluation of the OCL constraint. A normalized constraint aspect incorporates the
constraints on their adequate places; therefore it includes the fewest possible navi-
gation steps. Thus, we need not to execute additional query operations during the
evaluation of the normalized constraint aspects.

3.5. The Constraint Aspect Weaver Algorithm

The constraint aspect weaver method consists of a constraint aspect creation from
OCL constraint, an optimization part and the actual constraint assignment. Section
3.4.1 presents how to build a structure from an OCL constraint and propagate
the constraint to it. This results a constraint aspect. Section 3.4.2 discusses the
constraint aspect optimization to achieve that the cost of the constraint evaluation
during the transformation is as minimal as it is possible. Section 3.4.3 provides
the algorithms that VMTS uses for constraint aspect assignment. Furthermore,
Section 3.5 gives an overview on the presented aspect-oriented constraint notions
and algorithms.

3.5.1. Creating Constraint Aspect from OCL Constraint

Fig. 5 introduces the creation process of the constraint aspects from an OCL con-
straint (AO constraint), and the normalization of the created constraint aspect. The
lines with numbers from 1 to 4 show the steps of the constraint aspect creation:
(i) the algorithm identifies the context type (Person), (ii) and the referred types by
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the association ends (managedCompany – Company, wife – Person), based on this
information it builds the pattern, and finally, (iii) the algorithm assigns the OCL
constraint to the root PRN of the created constraint aspect. In Fig. 5b, the dashed
lines denote that the constraint C_P1 contains path expressions. Lines 5 and 6 show
the constraint decomposition and replacement.

Fig. 5. (a) OCL Constraint, (b) Generated Constraint Aspect, (c) Normalized Constraint
Aspect – Canonical Constraint Form

The pseudo code of the CREATECONSTRAINTASPECT algorithm is as fol-
lows.

CREATECONSTRAINTASPECT (Constraint C): VMTSConstraintAspect
1 CREATE CA by Context of C
2 foreach Navigation Step N in C
3 CREATE PRN Pattern Rule Node with type of the DestinationNode of the N
4 LINK PRN to CA
5 end foreach
6 PROPAGATE C to the root node of the CA
7 return CA

The computational complexity of the CREATECONSTRAINTASPECT method
is O(n), where n is the number of the navigation steps contained by the constraint.

3.5.2. Constraint Aspect Normalization

The normalization process eliminates navigation steps from the constraint aspect
using constraint decomposition and relocation, therefore it decreases the evaluation
time of the constraint during the transformation. The constraint evaluation consists
of two parts. (i) Selecting the object and its properties that VMTS needs to check
against the constraint, and (ii) executing the validation method. The eliminated nav-
igation steps accelerate the first part of the constraint evaluation. Fig. 6 presents two
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constraint aspects and their Pure Canonical Constraint Form (normalized constraint
aspects). The dashed lines denote that the constraints C_P1 and C_C1 contain path
expressions, and numbered line in Fig. 6a shows the update process of the nav-
igation paths and the constraint relocation. In Fig. 6c presents the result of the
normalized constraint C_C1, which is achieved with constraint decomposition.

Fig. 6. Constraint Aspects and Normalized Constraint Aspects: (a) Propagated constraint
with 2 navigation step, (b) Propagated constraint with and operations, (c) Decom-
posed constraint

The pseudo code of the NORMALIZECONSTRAINTASPECT algorithm, which
generates the (pure) canonical form of the constraint aspect, is as follows.

During constraint normalization, the NORMALIZECONSTRAINTASPECT al-
gorithm modifies the navigation paths. It calculates the paths between the original
place of the constraint as well as the referred node (path P1), and between the new
place of the constraint and the referred node (path P2). Finally, the algorithm re-
places the path P1 with the path P2. In Fig. 6a the path self.wife.managedCompany
is replaced with path self.
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NORMALIZECONSTRAINTASPECT (ConstraintAspect CA)
1 foreach PropagatedConstraint C in CA which contains navigation
2 if (C.DestinationNodes.Count == 1) then
3 RELOCATE C to DestinationNode of the C
4 else if (C contains only and operation) then

DECOMPOSEANDRELOCATECONSTRAINT(C)

5 else
6 minNumberOfSteps = CALCULATENAVIGATIONSTEPS

(DestinationNodes of the C , CurrentNode of the C)

7 optimalNode = CurrentNode of the C
8 foreach Pattern Rule Node PRN

in PatternRuleNodes of the CA
9 numberOfSteps = CALCULATENAVIGATIONSTEPS

(DestinationNodes of the C , PRN)
10 if (numberOfSteps < minNumberOfSteps) then
11 minNumberOfSteps = numberOfSteps
12 optimalNode = PRN
13 endif
14 end foreach
15 if (optimalNode ! = CurrentNode of the

C and there is only multiplicity 1 on the path between optimalNode and CurrentNode) then
16 UPDATENAVIGATIONPATS of the C
17 RELOCATE C to optimalNode
18 endif
19 endif
20 end foreach

If the multiplicity 0 is allowed on the path P that is selected to be replaced
in constraint C then the NORMALIZECONSTRAINTASPECT algorithm does not
replace the constraint C . This means that the constraints are not moved along edges
which allow the multiplicity 0.

In Fig. 7a, a sample LHS graph is depicted with multiplicity 0..*. Fig. 7b
shows an example for a matched host model. The constraint C_P1 is assigned to
the node Person1 and refers to the node Person2. If the constraint C_P1 is relocated
to Person2 then it is validated on the node P2_a. But if the constraint C_P1 is on
its original place, then it does not need to be validated on P2_a because there is no
edge between nodes P1_a and C1_a. Consequently, moving a constraint along an
edge which allows multiplicity 0 may cause that the constraint validation becomes
incorrect. It is possible that (i) a constraint C does not need to be validated on its
original place but after the replacement it must be checked or (ii) the constraint C
needs to be validated on its original place but because of the replacement it is not
checked.

The normalization is an offline algorithm: it works without any input model.
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Fig. 7. Example left-hand sides (a) with 1..* multiplicity and a matched host model, (b)
with 0..* multiplicity and a matched host model

In the case of complex multiplicities, like 1..*, it is not possible to predict how
many instances are in the host model and in the matched sub-model of the certain
types. In the presented approach it is not necessary to traverse the navigation paths
for each matched instance element. Each navigation path is parsed once, similarly
to the case with multiplicity 1, and the constraint validation is performed on the
collections of the nodes. In each navigation step, the result can be a node collection
not only a simple node. This collection is the input of the next navigation step, and
the nodes of this collection are validated without any extra navigation. In this case,
if not only the multiplicity 1 is allowed, it is possible that after normalization the
cost of the constraint evaluation increases. The reason for this is that a constraint
navigating along 1..* edges can be more complex, than another OCL constraint that
uses navigations along edges with 1 multiplicities. An example for it is depicted in
Fig. 8. The number of the navigation steps is 3 in the example LHS (Fig. 8a), and
2 in the normalized LHS (Fig. 8b). But the cost of the constraint validation on the
example matched host graph is higher in case of the normalized version, because
of the allowed 1..* multiplicities.

As far as complex multiplicities are concerned, the optimization depends on
the actual input model. As it has been mentioned, the normalization is an offline
algorithm, it is not possible to state further normalization solution for the normalized
models which contain complex multiplicities.

The computational complexity of the NORMALIZECONSTRAINTASPECT al-

gorithm is O(
c∑

i=1
ni + v3), where c denotes the number of the propagated constraints

contained by the constraint aspect, ni is the number of the navigation steps contained
by the constraint i (it denotes the complexity of finding the destination nodes), andv
denotes the number of the PRNs in the constraint aspect. The complexity of finding
the shortest path in the constraint aspect is v2. We have to execute it v times (for
each PRN in constraint aspect).
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Fig. 8. (a) Example left-hand side graph, (b) Normalized left-hand side graph, (c) Example
matched host model

The NORMALIZECONSTRAINTASPECT algorithm is applicable for models
without multiplicities 0 and results that the number of the navigation steps in nor-
malized constraints is as few as possible.

Proposition 2 Applying the NORMALIZECONSTRAINTASPECT algorithm for an
optional input model H without multiplicities 0, the number of the navigation steps
in the constraints contained by the output modelH′ is minimal.

Proof: Appendix.
Informally, if the constraint aspect CA is created from an OCL constraint

C using CREATECONSTRAINTASPECT algorithm, and the normalized constraint
aspect CA’ is created from the CA with NORMALIZECONSTRAINTASPECT algo-
rithm, then C , CA and CA’ are equivalent in the sense of the contained conditions.
Furthermore, after their propagation to the transformations the constrained trans-
formations are also equivalent during the transformation.

Proposition 3 i The constraint aspect CA is created with the CREATECON-
STRAINTASPECT algorithm from the OCL constraintC. S1 and S2 are two
identical transformation steps, CA is propagated to S1, and C is propagated
to S2. Then no input model H exists for which transformation steps S1 and
S2 produce different result models.

ii The normalized constraint aspect CA’ is created with the NORMALIZECON-
STRAINTASPECT algorithm from the CA constraint aspect. S1 and S2 are
two identical transformation steps, CA’ is propagated to S1, and CA is prop-
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agated to S2. Then no input model H exists for which transformation stepsS1
and S2 produce different result models.

iii The normalized constraint aspect CA’ is created from the OCL constraintC
with the CREATECONSTRAINTASPECT and NORMALIZECONSTRAINTAS-
PECT algorithms.S1 and S2 are two identical transformation steps, CA’ is
propagated to S1, and C is propagated to S2. Based on (i) and (ii), no input
model H exists for which the transformation steps S1 and S2 produce different
result models.

Proof: Appendix.

3.5.3. The Constraint Aspect Weaving

The Constraint Aspect Weaver (CAW) algorithm weaves constraint aspects into
model transformations. CAW uses similar methods as GCW which weaves AO
constraints to transformations. The pseudo code of theCAW algorithm is as follows.

CONSTRAINTASPECTWEAVER(ConstraintAspect[] CAs, Transformation T )

1 foreach ConstraintAspect CA in CAs
2 foreach Transformation Step S in T
3 matches = METATYPEBASEDMATCHING(pattern of the CA, S)

4 foreach Constraint C in CA
5 nodesToCheck = GETNODESBYTYPE(ContextType of C , matches)
6 if (ISREQUIREDTOWEAVE(C , nodesToCheck, out nodesToWeave)) then
7 WEAVECONSTRAINTASPECT(CA, nodesToWeave)
8 break
9 endif
10 end foreach
11 end foreach
12 end foreach

The computational complexity of the CONSTRAINTASPECTWEAVER method

is at most O(
ca∑
i=1

s∑
j=1

(nki
j +

ci∑
p=1

m jp)), where ca denotes the number of the constraint

aspects, s is the number of the transformation steps, ci is the number of the con-
straints contained by the constraint aspecti , nki

j is the complexity of the metatype-
based search (worst case) [30], nj is the number of PRNs contained by the trans-
formation step j and ki is the number of PRNs contained by the constraint aspect
i . Variable m jp is the number of the PRNs selected by the GETNODESBYTYPE
method.

In summary, it is more efficient to work with constraint aspects than with
OCL constraints, because during the propagation of the constraint aspects we can
use the metatype-based search for pattern matching to reduce the possible places of
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the constraint assignment. Then we run the ISREQUIREDTOWEAVE algorithm on
the selected places only to decide if it is necessary to assign the constraint aspect. In
case of simple OCL constraints, the GCW algorithm uses the CHECKSTRUCTURE
method to find the structurally appropriate places in the transformation steps. Based
on [30] the complexity of the metatype-based searching in the worst case is equal
to the complexity of the subgraph search.

Informally, assume that an AO constraintC and a constraint aspect CA express
the same conditions, if C is propagated to a transformation with the GCW and CA
with the CAW to the same transformation then the results of the two constraint
propagation (the constrained transformations) are equivalent.

Proposition 4. The normalized constraint aspect CA’ is created from the OCL
constraintC with the CREATECONSTRAINTASPECT and NORMALIZECONSTRAINT-
ASPECT algorithms. T1 and T2 are two identical transformations, which contain
arbitrary number of transformation steps. C is propagated to T1 using the Global
Constraint Weaver algorithm and CA’ is propagated to T2 using the Constraint As-
pect Weaver algorithm. Then the transformations T1 and T2 produce the same result
models step by step.

Proof: Appendix.

3.6. Overview

An overview of different aspect-oriented constraint notions and presented algo-
rithms is depicted in Fig. 9.

The constraint aspect creation and normalization need to be accomplished
once for a constraint and the weaving needs to be performed once for a transforma-
tion. They obviously take time, but they are all offline algorithms, prior to execution.
After they are accomplished once, their results, the constrained transformations, can
be reused optional time during the transformation process.

Fig. 9. An overview of different aspect-oriented constraint notions and presented algo-
rithms
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Normalized constraint aspects contain the constraints on their adequate places,
with as few navigation steps as it is possible. Therefore, for the transformation
steps which allow only the multiplicity 1 we can state the following. As far as
the execution time is concerned, the evaluation of the constraints contained by the
propagated normalized constraint aspect is more efficient, than the evaluation of
the simple propagated OCL constraint, because the normalized constraint aspect
contains as many navigation steps as the OCL constraint at most.

The most important benefits of the aspect-oriented constraint management
in metamodel-based model transformations among others are the following: the
same constraint does not appear repetitiously in many different places, consistent
constraint modification and simple constraint removal.

The aspect-oriented constraint management does not replace the classical con-
straint assignment; it extends the possibilities of constraint handling in metamodel-
based model transformation frameworks.

4. Conclusions

In metamodel-based model transformation methods, the two main advantages of
the AO constraint management are the following. (i) It eliminates the crosscutting
constraints from model transformations. (ii) Using AO methods, constraints be-
come aspects. This means that the transformation steps can be executed with or
without the propagated constraints as well. Moreover, the optimized transforma-
tion steps and constraints can be reused. Hence, the transformation can be executed
with different propagated constraint set based on the required conditions. Further-
more, constraints are defined and stored independently from the transformations.
Therefore they can be propagated to different transformations, thus, the constraint
themselves can also be reused.

The problem of crosscutting constraints in metamodel-based model transfor-
mation steps, and an aspect-oriented solution has been provided for the open issue.
The concept of AO constraints and a new type of aspect, constraint aspect, has been
introduced. In addition, the algorithms creating and normalizing the constraint
aspects have been discussed, and two weaver methods are also presented for AO
constraint and constraint aspect propagation.

We have found that the source of our rewriting problems is often related to
the lack of support for modularizing crosscutting concerns. As we have adopted an
aspect-oriented approach to our metamodel-based transformation process, it was
observed that the maintainability and understandability of our transformation steps
have been increased along with the attached constraints. With the help of this
technique we achieved several benefits. Consistent constraint modification and
simple constraint removal has become possible. The same constraint does not ap-
pear repetitiously in many different places. Moreover, it is not necessary for the
transformation steps to be aware of the constraints, or for the modeler who creates
the transformation steps. The provided weaver algorithms work on whole trans-
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formation, they handle all transformation steps contained by the transformation.
Therefore, the result of the weaving, the constrained transformation as a whole
satisfies the conditions required by the constraints. The discussed methods have
successfully been applied in industrial developments like generating user interface
from resource model and user interface handler code from statechart model for
Symbian [7] and .NET Compact Framework mobile platform [8].

The introduced approach can be generalized to other transformation languages
which facilitate to assign constraints to transformation steps. The presented con-
cepts and algorithms can be reused with minor, approach related modifications.

The main limitation of the aspect-oriented constraint management is that it
requires more preprocessing steps than the general approach. We have to define
the constraints and transformation steps separately, and then the propagation of the
constraints to the transformation steps must be performed automatically.

Future work includes the completion of the normalization algorithm with the
concept of AND/OR Clauses [32] to eliminate all navigation steps (except if a con-
straint requires property values fromdifferent nodes (e.g. self.age+ self.husband.age
> 60)). AND/OR Clauses are linked to the appropriate PRNs without any naviga-
tion steps, therefore they solve the cost problem of navigating across the complex
multiplicities.

5. Appendix

Proof for Proposition 1. Assuming two identical host graphs (H1 and H2), one
applies T1 to H1 andT2 to H2. After each transformation step one compares the
success of the actual transformation steps and in the stepn stepsT1n and T2n produce
different results - one of them is successful but the other fails because of a constraint
failure.

We have to differentiate between two cases: (i) If the step n modifies the
property checked by the constraint C , then the constraint C is propagated to the
transformation T1n by the GCW algorithm. Hence both transformations (T1 and T2)
contain the constraintC in the stepn, therefore the result of the T1n and T2n steps
can not be different. (ii) If the step n does not modify the checked property, (the
T1n does not contain the constraint C) the constraint evaluation in T2n step can not
be unsuccessful. This contradicts the assumption.

Proof for Proposition 2. H is an optional input model (UML class dia-
gram), let C be an OCL constraint which is propagated to the H . Running the
NORMALIZECONSTRAINTASPECT algorithm, it results that the A is the optimal
node to which the OCL constraint Cshould be assigned. But, assuming that there
exists another node (B) for which the following holds: if one links the C constraint
to the node B and updates the navigation paths of C , then the C constraint contains
less navigation steps than if it had been propagated to the A node.

The NORMALIZECONSTRAINTASPECT algorithm visits all the nodes in the
inputmodel H , it calculates for all nodeswhatwould be the number of the navigation
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steps if the constraint were relocated to the actual node and the navigation paths
would be updated. Therefore, if the node B was better in the case of the constraint
C , then it would be found by the NORMALIZECONSTRAINTASPECT algorithm.
This contradicts to the assumption.

Proof for Proposition 3.
Assume two identical transformation steps S1 and S2 and two identical host

graphs H1 and H2 as well as an OCL constraint C . A constraint aspect CA is cre-
ated from the OCL constraint C with the CREATECONSTRAINTASPECT algorithm.
Furthermore we assume that we propagate C to S1 and CA to S2 and apply S1 toH1
and S2 toH2. Then during the execution of S1 and S2 the evaluations of the propa-
gated constraints (C and the constraint contained by CA) are different, namely, one
of them returns true and the other returns false.

During the propagation of the constraintC , the algorithm checks all the pos-
sible places of the transformation step S1 where the constraint can be assigned.
The algorithm selects the PRNs with the metatype which corresponds to the con-
text information of the constraint C , it checks those places if the structure of the
transformation step S1 satisfies the pattern required by the navigation paths of the
constraintC , and assigns the constraint C only to the appropriate places.

The CREATECONSTRAINTASPECT algorithm identifies the root node type
of the constraint aspect pattern by the context of the constraint. It creates the root
node (line 1), walks through the navigation paths of the C and creates the pattern
of the CA constraint aspect (lines 2-5). Furthermore, the algorithm propagates the
OCL constraint to the root node of the constraint aspect (line 6). Therefore the
pattern of CA is equal to the pattern which is required during the propagation of the
C constraint.

As a conclusion: (a) In the case of the constraint C the navigation paths are
checked by the propagation algorithm during the constraint linking. (b) The pattern
of the CA includes the structure information as well, and the propagation of the
CA constraint aspect is achieved by this structure information. This means that the
same pattern is checked during the propagation processes, therefore the constraints
are propagated to the same places.

This contradicts the assumption. Therefore the transformation steps with the
propagated OCLconstraint C and the constraint aspect CA can not produce different
result models.

Assume two identical transformation steps S1 and S2, two identical host graphs
H1 and H2 and a constraint aspect CA. A normalized constraint aspect CA’ created
from the constraint aspect CA with the NORMALIZECONSTRAINTASPECT algo-
rithm. Assume that we propagate CA to S1 and CA’ to S2 and apply S1 toH1 and
S2 toH2. Then during the execution of S1 and S2 the evaluations of the propagated
constraints (the constraint contained by the CA and the constraint contained by the
CA’) are different i.e. one of them returns true and the other returns false.

The NORMALIZECONSTRAINTASPECT algorithm processes the OCL con-
straints propagated to the constraint aspect individually. The main foreach loop
(lines 1-19) examines the navigation paths of the actual constraint. (a) If all the
paths have the same destination node, then the algorithm removes the navigations
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from the constraint and relocates it to the destination node (lines 2-3). (b) Other-
wise the constraint has more than one navigation path, and the destination nodes
of the paths are different. In this case the algorithm checks what would happen if
the constraint were relocated to another PRN (lines 6-13). The check is achieved
with a calculation which takes all the PRNs contained by the constraint aspect into
consideration. This calculation sums the number of the navigation steps which is
necessary in aggregate to reach all destination nodes of the original constraint (C)
from the new place. The algorithm stores the most appropriate node (optimalNode)
(lines 8-14) and, finally, it updates the navigation paths and relocates the constraint
to the optional node (lines 15-17). Updating the navigation paths means that the
navigation paths of a constraint are modified such that the constraint refers to the
same destination nodes from its new place as well. The relocation of a constraint
means that the constraint is removed from its original place and linked to its new
PRN.

The NORMALIZECONSTRAINTASPECT algorithm does not change the struc-
ture of the constraint aspect, the propagation of the constraint aspect CA and the
normalized constraint aspect CA’ is accomplished based on their structure infor-
mation, thus, the constraints are propagated to the same places. Furthermore, the
NORMALIZECONSTRAINTASPECT algorithm updates the navigation paths and re-
locates the constraints, but it does not modify the conditions of the constraints,
which results that the same conditions are required both in the case of the constraint
aspect CA and the normalized constraint aspect CA’.

This contradicts the assumption. Therefore, the transformation steps with the
propagated constraint aspect CA and the normalized constraint aspect CA’ can not
produce different result models.

It follows from (i) and (ii) that the OCL constraint C and the normalized
constraint aspect CA’ created with the CREATECONSTRAINTASPECT and NOR-
MALIZECONSTRAINTASPECT algorithms from C are equivalent: The path infor-
mation from the OCL expression has been built into the pattern of the constraint
aspect. The OCL constraint contains the path information in its text, the constraint
aspect contains the same path information in its pattern. Thus, both of them contain
the same conditions for the same destination nodes. The equivalence relation is
transitive, therefore this statement follows from (i) and (ii).

Proof for Proposition 4. We assume two identical host graphs H1 and H2 and
one applies T1 to H1 andT2 to H2. After each transformation step, the results of the
actual transformation steps are compared. In step n T1n and T2n produce different
results - one of them is successful, but the other fails because of a constraint failure.

Based on the Proposition 3 the OCL constraint C and the normalized con-
straint aspect CA’ are equivalent.

(a) The inputs of the GCW algorithm are OCL constraint(s) and a transfor-
mation (an ordered sequence of the transformation steps), let it be constraint C and
transformationT1 . The GCW checks all the possible places of the passed rewriting
rules (T11…T 1n). These are places to which the constraint can be assigned. The
algorithm selects the PRNs with the metatype that corresponds to the context in-
formation of the constraint C (line 3), it checks those places if the structure of the
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actual transformation step satisfies the pattern required by the navigation paths of
the constraintC (line 4). For the PRNs selected by their structure, the algorithm
checks if their step requires the constraint C to be propagated to any of them. It
decides whether it is the first or the last step in the transformation or whether it
can modify the property contained by the constraint C (ISREQUIREDTOWEAVE
method line 3). Finally, the GCW algorithm propagates the constraint C to the
required places (line 6).

(b) The inputs of the CAW algorithm are constraint aspect(s) and a trans-
formation. They are denoted with the constraint aspect CA and the transforma-
tion T2. The CAW algorithm checks the transformation steps individually. In
each step, it searches for matches by the pattern in CA (line 3), and for each con-
straint (CA_C1…CA_Cn) contained by CA, the algorithm selects the PRNs from
the matches with the metatype which corresponds to the context information of
the actual constraint (line 5). Similarly to the GCW algorithm, CAW also uses
the ISREQUIREDTOWEAVE method to decide if a transformation step requires
CA to be propagated to the actual PRN (line 6). If at least one of the constraints
(CA_C1…CA_Cn) contained by CA requires to be propagated, the whole constraint
aspect is linked (line 7).

As it is presented the difference between the GCW and CAW algorithms is
that the GCW checks the pattern of the transformation step according to the text
of the OCL constraint, while the CAW utilizes that the constraint aspect includes
the pattern in its structure. Since the two approaches differ in their data represen-
tation only, the algorithms cannot give different results. This contradicts the initial
assumption.
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