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Abstract

In this paper we demonstrate applying time series models on medical research. The Hungarian
mortality rates were analysed by autoregressive integrated moving average models and seasonal time
series models were used to examine the data of acute childhood lymphoid leukaemia.

The mortality data may be analysed by time series methods such as autoregressive integrated
moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of
the mortality rates of isemic heart diseases and analysis of the mortality rates of cancer of digestive
system. Mathematical expressions are given for the results of analysis. The relationships between time
series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for
autoregressive parameters by tree methods: standard normal distribution as estimation and estimation
of the White’s theory and the continuous time case estimation. Analysing the confidence intervals of
the first order autoregressive parameters we may conclude that the confidence intervals were much
smaller than other estimations by applying the continuous time estimation model.

We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia.
We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia
in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the
dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in
the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.

Keywords: time series analysis, autoregressive integrated moving average models, mortality rates,
seasonal decomposition time series method, acute childhood lymphoid leukaemia.

1. Introduction

Time series analysis is a well-known method for many years. Box and Jenkins
provided a method for constructing time series models in practice [1, 2]. Their
method often referred to as the Box-Jenkins approach and the autoregressive in-
tegrated moving average models (ARIMA). This method has been applied at the
beginning in such fields as industry and economics and later in medical research as
well as [3, 4, 5, 6].

The method of seasonal time series analysis can be used in various fields of the
medicine. With such time series one can detect the periodic trend of the occurrence
of a certain disease [7, 8, 9]. Among other diseases, the seasonal periodicity of the
childhood lymphoid leukaemia was also analysed using statistical methods [10, 11].
The pathogenesis of the childhood lymphoid leukaemia is still uncertain, but certain
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environmental effects may provoke the manifestation of latent genes during viral
infections, epidemics or pregnancy.

The date of the diagnosis of patients were statistically analysed to determine
the role, which the accumulating viral infections and other environmental effects
may play during the conception and fatal period on the manifestation of the disease.
Because the available data were rather limited and controversial, it seemed logical to
make an in-depth analysis of the date of diagnosis of the acute lymphoid leukaemia
in Hungarian children.

2. Methods

2.1. Autoregressive Moving Average Models

The mortality data often change in the form of ’time series’. Data of frequencies
of mortality rates are usually collected in fixed intervals for several age groups and
sexes of the population. Let the value of the mortality rates be zt , zt−1, zt−2, . . . in
the years t, t − 1, t − 2, . . .. For simplicity we assume that the mean value of z t is
zero, otherwise the zt may be considered as deviations from their mean. Denote at ,
at−1, at−2, . . . a sequence of identically distributed uncorrelated random variables
with mean 0 and variance σ 2

a . The at is called white noise.

The autoregressive moving average model of order p, q (ARMA(p, q)) can
be represented with the following expression [1, 12]: zt = φ1zt−1 + . . .+φpzt−p +

at + θ1at−1 + . . .+ θqat−q . Where φ1, φ2, . . ., φp and θ1, θ2, . . ., θq are parameters,
p means the p order of autoregressive process and q denotes the q order of moving
average process.

There are special cases of the ARMA(p,q) models: the autoregressive model
of order p (AR(p) model) and the moving average model of order q (MA(q) model).
The AR(p) [1, 12]: zt = φ1zt−1 + . . . + φpzt−p + at . The MA(q) [1, 12]: zt =

at+θ1at−1+. . .+θqat−q . The special case of AR(p); when p = 1; zt = φ1zt−1+at .zt

is linearly dependent on the previous observation zt−1 and the random shock at .
The special case of MA(q); when q = 1; zt = at + θ1at−1. In this case zt is linear
expression of the present and previous random shock.

The time series that has a constant mean, variance, and covariance structure,
which depends only on the difference between two time points, is called stationary.
Many time series are not stationary. It has been found that the series of first dif-
ferences is often stationary. Let wt be the series of first differences, zt the original
time series, than wt = zt − zt−1 = ∇zt . The Box-Jenkins modelling may be used
for stationary time series [1, 12].

The dependence structure of a stationary time series zt is described by the
autocorrelation function: ρk=correlation(zt;zt+k); k is called the time lag. This
function determines the correlation between zt and zt+k.

To identify an ARIMA model Box and Jenkins suggested an iterative proce-
dure [1]:
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• the initial model may be chosen by looking at the autocorrelation function
and partial autocorrelation function

• parameters of the model are estimated
• the fitted model is checked
• if the model does not fit the data adequately one goes back to the start and

chooses an improved model.

Among different models, which represent the data equally well, one chooses the
simplest one, the model with fewest parameters [1, 12].

The relation between two time series zt and yt can be given by the cross
correlation function (ρzy(k)); ρzy(k)=correlation(zt ; yt+k); where k=0, ±1, ±2, . . ..
The cross correlation function determines the correlation between the time series
as a function of the time lag k [1].

2.2. Estimations for Confidence Intervals

For the estimation of the parameter of the first order autoregressive model two
methods are well known: applying the standard normal distribution as estimation
and the White method [13]. These methods cannot be applied in non-stationary
case. Lesser-known estimation for the parameter of the first order autoregressive
model the application of estimation for continuous time case processes [13, 14].
This method can be applied in each case properly.

2.3. Seasonal Time Series

The time series usually consist of three components: the trend, the periodicity and
the random effects. The trend is a long-term movement representing the main di-
rection of changes. The periodicity marks cyclic fluctuations within the time series.
The irregularity of the peaks and drops form a more-or-less constant pattern around
the trend line. Due to this stability the length and the amplitude of the seasonal
changes is constant or changes very slowly. If the periodic fluctuation pattern is sta-
ble, it is called a constant periodic fluctuation. When the pattern changes slowly and
regularly over the time, we speak of a changing periodicity. The third component of
the time series is the random error causing irregular, unpredictable, non-systematic
fluctuations in the data independent from the trend line.

An important part of the time series analysis is the identification and isolation
of the time series components. One might ask how these components come together
and how can we define the connection between the time series and its components
with a mathematical formula. The relationship between the components of a time
series can be described either with an additive or a multiplicative model.

Let yi,j (i = 1, . . ., n; j = 1, . . .., m) mark the observed value of the time
series. The index i stands for the time interval (i.e. a year), the j stands for a
particular period in the time interval (i.e. a month of the year). By breaking down
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the time series based on the time intervals and the periods we get a matrix-like table.
In the rows of the matrix there are the values from the various periods of the same
time interval; while in the columns there are the values from the same periods over
various time intervals.

y1,1; y1,2; . . .; y1,m;

y2,1; y2,2; . . .; y2,m;

y3;1; y3,2; . . .; y3,m;

. . .

yn,1; yn,2; . . .; yn,m.

Let di,j (i = 1, 2, . . ., n; j = 1, 2, . . ., m) mark the trend of the time se-
ries, si,j (i = 1, 2, . . ., n; j = 1, 2, . . ., m), the periodic fluctuation and εi,j (i =

1, 2, . . ., n; j = 1, 2, . . ., m), the random error. Using these denotations the addi-
tive seasonal model can be defined as yi,j = di,j + si,j + εi,j , (i = 1, 2, . . ., n; j =

1, 2, . . ., m), the multiplicative model as yi,j = di,j ∗si,j ∗εi,j ; (i = 1, 2, . . ., n; j =

1, 2, . . ., m).

The trend of a time series can easily be computed with moving averages or
analytic trend calculation. Moving averaging generates the trend as the dynamic
average of the time series. Analytic trend calculation approximates the long-term
movement in the time series with a simple curve (linear, parabolic or exponential
curve) and estimates its parameters.

The indices of the periodic fluctuation are called seasonal differences (in the
additive model) or seasonal ratios (in the multiplicative model). These indices
represent the absolute difference from the average of the time interval using the
additive model or the percentile difference using the multiplicative model. Seasonal
adjustment is done by subtracting the j seasonal difference from the j data value
of each i season (additive model) or by dividing the j data value of each i season
by the j seasonal ratio (multiplicative model). The seasonally adjusted data reflect
only the effect of the trend and the random error.

3. Results

3.1. Analysing the Mortality Rates

The SPSS program-package was used for analysing. ARIMA models were iden-
tified for some mortality rates. The results are demonstrated two cases from Hun-
garian mortality rates.
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The mortality rates of cancer of digestive system above the age of 65 for
male and female were examined. The autocorrelation functions decay for both data
series.

The partial autocorrelation functions have a significant value at k=1 lag. The
first order autoregressive model can be acceptable on the basis of autocorrelation
and partial autocorrelation functions. So the stochastic equation over the age of
65 years of male is zt=0,742zt−1 + εt.The model over the age of 65 of female
is the following: zt=0,756zt−1 + εt . When the fitted model is adequate then the
autocorrelation of residuals have χ 2 distribution with (K-p-q) degree of freedom
[4]. On the basis of the test the selected models were adequate because χ 2

male=8,475;

χ2
f emale=5,794; χ 2

0,05;5=11,07.

The cross correlation function before fitting the model and after fitting the
model were examined.

The function has more significant values before fitting the model. The cross
correlation function for the residuals has not significance values after fitting the
model. From the behaviour of the residuals we may there is no conclude that
between examined time series difference of ‘synchronisation’ [4].

The change in the mortality rates of isemic heart diseases for age class 0-64
years between male and female were examined as well. The stochastic equation for
the mortality rates of male: zt = 0.884zt−1+εt ; data of female: zt = 0, 72zt−1+εt .
On the basis of theχ 2 test the selected models were adequate; becauseχ 2

male=10.795;

χ2
f emale=6.56; χ 2

0.05=11.07 [4].

The cross correlation function for residuals has significant value at k=0 lag on
95% significance level. It may be concluded that there is ‘synchronisation’ between
time series. In that years when the mortality rates for male increased the mortality
rates for female increased as well.

The confidence intervals were carried out by three mentioned methods. For
the calculations of the confidence limits we used the tables of the known exact
distribution of the maximum-likelihood estimator of the damping parameter of an
autoregressive process [13, 14]. The confidence intervals for different significance
levels for the first order autoregressive parameter of stochastic equation for male of
isemic heart diseases can be seen in the following table.

φ ≈ 0.884 (MALE) p=0.1 p=0.05 p=0.01

Normal distribution (0.7338;1.0342) (0.7005;1.0675) (0.6402;1.1278)
White method (0.7364;1.0316) (0.706;1.0619) (0.6444;1.1236)
Continuous time process (0.8095;0.9864) (0.7828;0.9579) (0.7332;0.9725)
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3.2. Analysing the Periodicity of Acute Childhood Lymphoid Leukaemia

The databank of the Hungarian Paediatric Oncology Workgroup contains the data
of all the patients with lymphoid leukaemia diagnosed between 1988 and 2000. In
this time interval a total of 814 children were registered (of which 467 were boys).
The patients were 0-18 years old, with a mean age of 6.4 years and a median of 5.4
years.

The components of the time series can be identified and isolated using sta-
tistical programme packages. The analysis of the seasonal periodicity of the acute
childhood lymphoid leukaemia was done with the SPSS 9.0 statistical programme
package.

The analysis of the periodicity of acute childhood lymphoid leukaemia was
performed on the basis of the date of the diagnosis (year + month) of the disease.
We analysed three data series. The first data series contained the number of all
the patients diagnosed monthly, the second contained the number of those patients
younger than the value of the median, the third series contained the number those
older than the value of the median.

The seasonal components of all patients revealed 9 peaks (peak=values of
seasonal components greater than 6). 6 of these peaks fell within the winter months
(November-February), 1 in the autumn period (September-October), 1 in the sum-
mer months (June-August) and 1 in the spring months (March-May).

The seasonal components of the younger age group showed 7 peaks (peak=values
of seasonal components greater than 3) in the winter, 1 in the spring and 1 in the
summer months.

The seasonal components of the older age group showed 7 peaks (peak=values
of seasonal components greater than 3) in the winter, 1 in the spring, 1 in the autumn
and 4 in the summer months.

4. Discussions

The Box-Jenkins models may be useful for analysing epidemiological time series.
The method described the relationships between time series of mortality rates. It
reveals strong synchronised behaviour of isemic heart diseases between the sexes.
For time series of mortality data for cancer of digestive system over the age of 65
years no such synchronisation is found between subgroups.

From the analysis of the first order autoregressive parameters it may be seen
that by applying the normal distribution as estimation and White method the con-
fidence intervals are near equal. For the upper estimations of confidence limits we
can get larger intervals than one, applying these methods. Applying the continuous
time process for the estimation of the confidence intervals they are much smaller
and it can be used in each case [13].

Analysis of the seasonality of childhood lymphoid leukaemia in Hungary was
performed both on the total number of patients and on the data series divided at the
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median. This way the characteristics can be observed more easily.
A certain periodicity was found in the data of the diagnosis in patients with

leukaemia. Although there was some difference in the patterns of the seasonal
components peaks of the three time series, the majority of the peaks fell within the
winter months in all three time series. This was more significant in the group of all
the patients and in the younger age group. The results of the analyses proved the
seasonal occurrence of the childhood lymphoid leukaemia. Some studies reported
similar seasonality [15], while other studies denied any kind of such periodicity [16].
Our results prove the seasonal occurrence of the childhood lymphoid leukaemia in
Hungary. Due to the controversial nature of the available international data, further
studies should be carried out.

References

[1] BOX, G.E.R. – JENKINS, G.M., Time Series Analysis, Forecasting and Control, Holden-Day,
San Francisco 1976.

[2] JENKINS, D.M. – WATTS, D.G., Spectral Analysis and its Applications, Holden-Day, San
Francisco 1968.

[3] ALLARD, R., Use of Time Series Analysis in Infectious Disease Surveillance. Bull. World
Health Organ, 76, (1998), pp. 327–333.

[4] HELFENSTEIN, U., Detecting Hidden Relationships between Time Series of Mortality Rates.
Methods Inf. Med., 29, (1990), pp. 57–60.

[5] HELFENSTEIN, U. – ACKERMANN-LIEBRICH, U. – BRAUN-FAHRLANDER, C. – UHRS

WANNER, H., The Environmental Accident at ’Schweizerhalle’ and Respiratory Diseases in
Children: A Time Series Analysis. Statistics in Medicine, 10, (1991), pp. 1481–1492.

[6] RIOS , M., GARCIA, J. M., CUBEDO, M., PEREZ, D., Time Series in the Epidemiology of
Typhoid Fever in Spain. Med. Clin., 106, Num. 18 (1996), pp. 686–9.

[7] FLEMING, D. M. – CROSS, K .W. – SUNDERLAND, R. – ROSS, A.M., Comparison of the
Seasonal Pattern of Asthma Identified in General Practitioner Episodes, Hospital Admissions
and Deaths. Thorax, 8, (2000), pp. 662–665.

[8] SAYNAJAKANGAS, P. – KEISTINEN, T. – TUUPONEN, T., Seasonal Fluctuations in Hospital-
isation for Pneumonia in Finland. Int J Circumpolar Health, 60, Num. 1 (2001), pp. 34–40.

[9] LANI, L. – RIOS, M. – SANCHEZ, J., Meningococcal Disease in Spain: Seasonal Nature and
Resent Changes. Gac Sanit, 15, Num. 4 (2001), pp. 336–340.

[10] COHEN, P., The Influence on Survival of Onset of Childhood Acute Leukaemia (ALL). Chrono-
biol Int, 4, Num. 2 (1987), 291–297.

[11] HARRIS, R.E. – HARREL, F. E. – PATIL, K. D. – AL-RASHID, R., The Seasonal Risk of
Paediatric/Childhood Acute Lymphocyte Leukaemia in the United States. J Chronic Dis, 40,
Num. 10 (1987), pp. 915–923.

[12] CSAKI, P., ARMA Processes. In: Tusnady, G., Ziermann, M. (eds): Time Series Analysis.
Technical Publishing House, Budapest, 1986. pp. 49–84.

[13] ARATO, M. – BENCZUR, A., Exact Distribution of the Maximum Likelihood Estimation for
Gaussian-Markovian Processes. In: Tusnady, G., Ziermann, M. (eds): Time Series Analysis.
Technical Publishing House, Budapest, 1986. pp. 85–117.

[14] ARATO, M., Linear Stochastic Systems with Constant Coefficients: A Statistical Approach.
Springer, Berlin, 1982.

[15] VIENNA, N. J. – POLAN, A.K., Childhood Lymphatic Leukaemia Prenatal Seasonality and
Possible Association with Congenital Varicella. Am J Epidemiol, 103, (1976), pp. 321–332.

[16] SORENSON, H. T. – PEDERSEN, L. – OLSE, J.H. et al., Seasonal Variation in Month of
Birth and Diagnosis of Early Childhood Acute Lymphoblastic Leukaemia. J. A. M. A., 285,
pp. 168–169.


