
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 49, NO. 3–4, PP. 239–250 (2005)

SECURITY ANALYSIS OF SENSOR NETWORKS

Roland GÉMESI and László ZÖMBIK

Ericsson Hungary,
BME-TMIT,

e-mail:gemesi@alpha.tmit.bme.hu,laszlo.zombik@ericsson.com

Received: Sept. 11, 2004

Abstract

Wireless sensor networks distribute a common sensing and computing task within the large number
of participants that use wireless communication. Such networks require a self-organizing and energy-
aware set of protocols. Several protocols have beed designed for such environments, however to make
certain proof of their secureness, their formal analysis is required.

In our article, we show an analysis framework capable of proving security properties of such
protocols. Our methodology is based on the CSP process algebra. We will demonstrate its power by
giving an attack possibility for an existing protocol, and the extensibility of the model will also be
pointed.

Keywords: sensor networks, security analysis, CSP algebra.

1. Introduction

The development of compact, low-power wireless communication technologies
evolves an entirely new kind of embedded systems. It has given an opportunity
to have a large number of small-sized and heavily resource-constrained devices,
which co-operatively serve a common goal. This distributed system requires a
new set of communication protocols to provide reliable and secure operation. Al-
though, several security protocols have been proposed, their security properties are
truly guaranteed only after formal analysis. Analysis techniques that can deal with
protocols of sensor networks are not well evolved yet.

In the rest of the introduction, wireless sensor networks and their special
properties will be introduced and current analysis techniques will be shown. Section
2 gives an overview of the CSP (Communicating Sequential Processes) process
algebra. Section 3 shows the CSP modelling aspects of security protocols being the
base of our analysis. Section 4 shows some of our analysis performed and results
are concluded in the last section.

1.1. Sensor Networks

Units of wireless sensor networks integrate sensors with CPU, memory, battery and
wireless communication units [1]. This makes it possible to distribute sensing and

240 R. GÉMESI and L. ZÖMBIK

computing tasks. Units of sensor networks are usually heavily resource-constrained,
therefore the amount of computing, storage and communication tasks should be
minimized. The nodes are very small and unreliable components, therefore sensor
networks require a self organizing and fault-tolerant architecture. Wireless networks
that lack pre-built infrastructure are called mobile ad hoc networks.

Mobile ad hoc networks raise serious questions from the security point of view
[2]. Their devices communicate with each other usually by using shared medium
that is freely accessible even for malicious parties. Protection of confidential infor-
mation should be achieved, although algorithms used in large computer networks
are not usable in most cases. The limited resources do not allow the usage of hard
cryptographic mechanisms, however information protected with only weak algo-
rithms can be victims of brute force attacks. A self-organized environment makes
authentication much more difficult, too. In traditional networks, authentication al-
gorithms are mostly based on a trusted third party (Certificate Authority), which is
not available in ad hoc networks. Moreover authentication algorithms are usually
based on PKI (Public Key Infrastructure) that has high computational demands.

A number of security protocols had been proposed for sensor networks. They
appear to be secure, however to make certain proof of it, formal analysis is required.
The following subsection gives an overview of existing techniques creating such
proofs.

1.2. Analysis of Security Protocols

The set of security claims against secure communication services have already been
defined. Although self-organized systems introduce a new set of protocols built on
different approaches, our security needs remain the same. In our work we focus on
security, integrity, authentication and freshness.

A security protocol is a series of carefully designed messages between two
or more participants. Their goal is to provide specified security properties for
the participants even in the presence of an intruder. Security protocols rely on
cryptographic operations to achieve their goals.

It is fundamental to define the capabilities of the attacker. The most wide-
spread attacker model is the Dolev-Yao attacker model. It represents the fully
malicious medium, since it can overhear, remove or even inject messages. It can
build new messages even by performing deductions in its knowledge base. It has the
constrain of perfect cryptography, that means that the used cryptographic primitives
are perfect building blocks [3].

By now, a number of analysis techniques exist for the investigation of security
protocols, such as the NRL protocol analyser, various process algebras or the strand
spaces method [4, 5].

In the recent years, the CSP process algebra has been successfully used to
introduce vulnerabilities of some widespread protocols. The method is fully au-
tomated and is capable of both proving security properties and also to introduce

SECURITY ANALYSIS OF SENSOR NETWORKS 241

counter examples of attacks. Although the method was designed to analyse key
exchange protocols, the model is quite extensible. In the following section the
process algebra used for our analysis will be introduced.

2. CSP Fundamentals

The CSP (Communicating Sequential Processes) process algebra was developed to
describe and analyse concurrent systems. Concurrent systems are constructed from
a number of independent components, which may interact with each other resulting
a communication [6].

Describing a concurrent system in CSP is performed by specifying the be-
haviour of the participating processes. A process is defined in terms of the com-
munication it can perform, known as atomic events. For example the P1 process
that performs event e and then becomes process Q is defined as P1 =̂ e→ Q. The
usage of compound events is a general concept in CSP. Event c.e usually describes
a channel c communicating event e. Event e can also be a complex event, thus the
structure c.e.f.g is also possible. Processes usually have parameters denoted by
P(par1, · · · , parn), that makes it possible to represent several states of the same
process.

The set of events known by a process is called its alphabet. The trace of a
process is the set of its all possible event sequences. ST OP and SKIP are the
most trivial processes, the former produces no traces (visible events), while the
latter expresses that a process has successfully terminated.

Processes can be combined via various operators to create a more complex
process. P2 = Q�R expresses an external choice, which means that process P2
can behave either as Q or as R. If Q and R offer different events to perform, P2
can choose to perform any of them.

P3 =̂ Q ‖{E} R denotes that process P3 is composed of Q and R with
parallelization over the event set E. This means that events e ∈ E of processes Q
and R have to be performed simultaneously. This represents a system containing
communication of its processes.

If there is no event, in which the Q and R processes interact, they are said
to be independent. It can be described by the interleave operator denoted by P4 =̂
Q ||| R.

Operators usually have an indexed version that expresses the usage of the
given operator for each element of a set. For example, the replicated external
choice P5 =̂ e V {E} • e → Q denotes that the external choice operator holds on
each e ∈ E. Thus process P5 can perform any event of the set and then becoming
Q.

In the modelling of complex systems it is fundamental to describe building
blocks that have invisible internal states and operation. The hiding operator P6 =̂
Q\{E} denotes a process P6 that behaves as process Q except that events e ∈ E are
not visible. It is possible to change the names of visible events with the renaming

242 R. GÉMESI and L. ZÖMBIK

operator. P7 =̂ QTTe 1 ← e2UU denotes process P 7 that behaves like process Q,
however event e1 is called e2 any more.

With the help of these operators, it is possible to model systems built from
distinct modules that are connected together through their interfaces and have their
invisible internal operation.

Several models exist for the comparison of processes. In the rest of our paper
the refinement checking of traces will be used. Process I trace-refines a process S,
if and only if every trace of I is also a trace of S:

S ⊑T I ⇐⇒ traces(I) ⊆ traces(S)

In the traces model, checking such a refinement allows us to verify safety
properties. We are able to say that a process (I) that represents an implementation
of a system does not perform any unwanted behaviour that is not specified by a
given specification (S) process. In the case of processes with a finite-state space,
such analysis can be performed with the fully automated FDR2 model checker.

3. Modelling and Analysis of Security Protocols

The CSP framework is especially suitable for the modelling of communication
protocols [7]. Distinct participants pass messages of the protocol using their own
rules.

Thus participants of a protocol are processes that use the send and recv
channels for communicating with each other. Such events should also represent the
source and destination agents and the message itself. Thus, for example the event
send.A.B.msg denotes that agent A sends message msg to agent B. This should
be followed by recv.A.B.msg when the destination agent B receives that message.

Events should be built from atomic elements, thus the message msg is also a
construction of data variables and cryptographic operations. The most basic con-
struction operator is the sequence of messages: Sq.(m1,m2) denotes the sequence
of m1 and m2. Encryption is constructed as Encr.(data, key), that represents data
encrypted with key. Message authentication codes (MAC) will be also used in this
paper. The construction Mac.(key, data) results the authentication tag of data
generated by key.

Sending a message is usually well defined, since it is the role of the agent
to create and send it. On the contrary, receiving a message is usually ambiguous,
since it arrives from the environment and it has elements that can get several values.
So, the reception of a message usually contains choices for each variants possibly
being received. Thus, receiving a message is described using replicated external
choice operator.

Participants are independent agents, that can be represented by applying the
interleave operator for the agents. The system containing the behaviours of inde-
pendent agents is given in the SYS0 process. In this system, sending and receiving

SECURITY ANALYSIS OF SENSOR NETWORKS 243

messages are unordered, it can happen arbitrarily. The medium forces communi-
cation between the agents. In the case of the Dolev-Yao attacker model, it is the
attacker itself that realizes the medium (INT RUDER). Therefore the messages
are controlled by the unhonest medium, which is represented by the SYS process.

SYS0 =̂||| A VAgent • A

SYS =̂ SYS0 ‖{send,recv} INT RUDER

The process INT RUDER is quite a complex process. It has an initial
knowledge set and receives all messages. It has a number of deduction rules based
on perfect cryptography, which makes it possible to analyse received messages and
to synthesize new ones. Despite its internal complexity, its external behaviour is
simply to interfere with the communication in any possible ways.

The composed system contains all possible event sequences of the protocol.
The basis of our analysis is to check whether each of the possible states are safe. The
set of appropriate safety properties should be formalized as a specification process,
thus the SPEC specification process should contain all the safe traces.

In many cases, only a part of the events are used for specification. Required
events are renamed to a special Signal channel and unneeded events are hidden
from the system, while the SPEC process will use only the Signal channel. If the
modelled system provides the specified security properties, the following refinement
should hold:

SPEC ⊑T SYS

The architecture of the model used for analysis can be seen in Fig. 1.

Intruder
leak

Agent�
Agent�

recv

recv

send

send

Signal S
p
e
c
if
ic
a
ti
on

Are traces

appropriate

?

.
.
.

S
Y
S

�

S
Y
S

Fig. 1. The model of our analysis

244 R. GÉMESI and L. ZÖMBIK

3.1. Specification Process

The secret specification can be expressed as follos: if a node A claims that M is
a secret with a node B then M must not be involved in the knowledge set of the
intruder at all. Claiming such a secret is notified by a Signal.ClaimSecret.A.M.B
event. The intruder process indicates if the secret is acquired with the leak.s event.
Thus the specification process of secrecy can be formulated as follows [7] :

Secret_Spec(M) =̂

Signal.ClaimSecret?AWM?B → Secret_Claimed(M))

�

leak.s → Secret_Spec(M)

Secret_Claimed(M) =̂

Signal.ClaimSecret?AWM?B → Secret_Claimed(M)

The Secret_Spec(M) process allows event leak.s arbitrarily, but the
ClaimSecret signal puts it to the Secret_Claimed state, where leakage is not
allowed any more. It should be also decided which event of the original system
should be renamed to the ClaimSecret signal. In our work, we check secrecy as
claimed only at the end of the protocol, thus the receiving of the last message should
be renamed to the signal ClaimSecret .

The definition of the specification of authentication properties is the following.
We say that A is authenticated to B means that if B thinks he has completed a run
of the protocol with A, then A was also running the protocol with B [7]. Moreover,
they should agree on the roles they performed, and in many cases they should also
agree on some further data elements.

The following two signals are required:
Signal.Running.Role1.A.B.M

Signal.Commit.Role2.B.A.M

The first represents the fact that A believes it started running the protocol with
B using data value M in the role named Role1. The second signal is representing
the fact that B believes he has committed a complete run of the protocol with A,
and they agreed upon the value M in role Role2.

Thus, the specification describes that a Commit signal can occur only after a
corresponding Running signal. This can be defined as a simple process performing
the two signals sequentially.

Auth_Spec(B) =̂

Signal.Running.Role1.A?B?ms →

Signal.Commit.Role2.B.A.ms → ST OP

After performing appropriate renaming and hiding in the system, the desired
property can be verified as a refinement assertion.

Although the introduced framework provides an automated facility to check
security protocols, the creation of the model requires strong expertise. Since an
adequate CSP model of a protocol usually takes more than 500 lines, the modelling
is quite time-consuming and error-prone procedure. Fortunately it is possible to
automate the CSP modelling of the protocol as well.

SECURITY ANALYSIS OF SENSOR NETWORKS 245

Casper is a compiler developed by LOWE [8] that helps the CSP modelling of
security protocols, thus makes analysis much easier. Casper takes a more abstract
description of the protocol and generates the corresponding CSP description. Its
output file can be directly loaded into FDR, which makes the checking of refinement
assertions. Casper also helps the interpretation of the results of the analysis, which
is quite useful to understand an actual attack.

4. Analysis

Based on the framework introduced above, security analysis of several existing
protocols will be presented. A possible attack will be introduced, and at the end of
our analysis, it will be shown that the model is extensible to analyse secure ad hoc
routing mechanisms.

4.1. Analysis of the SNEP protocol

In sensor networks, the protection of sensitive information should be provided with
weak resources.

SNEP stands for Sensor Network Encryption Protocol, it is a protocol designed
to provide the encryption needs of sensor networks. It applies only resource sparing
cryptographic primitives such as symmetric key cryptography and one way hash
function. It results very low communication and processing overhead and provides
confidentiality, integrity, replay protection and freshness.

The protocol relies on previously shared keys between the communicating
parties. It uses the key Kenc for encryption and Kmac for authentication purposes.
Both of them are derived from a master key. Freshness is achieved by a counter C,
and in the case of stronger requirements a nonce element is also used.

The protocol of our investigation was the following:

1. B → A V Nb, Rb

2. A → B V {D}{Kenc, C},MACKmac,C(Nb, {D}{Kenc})

First, the base station B sends a Rb request tag together with the freshly
generated Nb nonce. In reply, the sensor A sends the requested information D
protected with the SNEP mechanism. First, the data D is encrypted using the
encryption key Kenc and the counter C. A message authentication code (MAC)
is also created for the encrypted data using the key Kmac and the counter C. The
structure of the protected data can also be seen in Fig. 2.

The model generated by the Casper compiler is appropriate to perform the
analysis. In the actual analysis the counter C was omitted, since the used Nb nonce
provides much stronger freshness property. The specification of the protocol was
the secrecy of the data D and its authenticity.

The CSP descriptions of the agents are the following:

246 R. GÉMESI and L. ZÖMBIK

Encryption (K � � � � , C)
Data(D)

MAC

(K � � � , C)
Fig. 2. SNEP protocol

Base(B,Nb, Rb,Kenc,Kmac, A) =
send.B.A.Msg1.Sq.(Nb, Rb)→

�D VMessage•
recv.A.B.Msg2.Sq.(Encr.(D,Kenc),

MAC.(Kmac, Sq.(Nb, Encr.(D,Kenc))))→
SKIP

Sensor(A,D,Kenc,Kmac, B) =
�Nb V Nonce •�Rb VMessage•

recv.B.A.Msg1.Sq.(Nb, Rb)→
send.A.B.Msg2.Sq.(Encr.(D,Kenc),

MAC.(Kmac, Sq.(Nb, Encr.(D,Kenc))))→
SKIP

The parameters of the agents are their identities followed by required knowl-
edge such as nonces, keys and the other agent. The first event of the agent Base
is the send event of message 1. Here the agent arrives at a choice, since the fol-
lowing receiving event recv may contain any possible D data element protected by
the mechanism. After receiving message 2, the base agent terminates successfully
(SKIP). The Sensor agent receives its first message by replicated choices, since
it receives new elements. The next step is to send message 2 by event send. After
this, the process terminates successfully.

Specifications of the protocol involve the secrecy of data D and the authen-
ticity of both data and the participants. In the analysis of the protocol, no attack
was found. The analysis was performed for several participants and protocol runs
and, based on our analysis, the protocol can be stated to be secure.

With small modifications special cases were also analysed, such as the case
of inappropriate nonces. The specification of a nonce is that it is a freshly generated
unpredictable random number that can be applied only once. The sensor imple-
mentation of weak random number generator raises a threat, since our analysis has
shown that in the case of an inappropriate nonce, a replay attack is possible.

Furthermore, the effects of key compromizes were also analysed, since sen-
sors usually cannot have hard physical protection. If the intruder gets to know kenc,
confidentiality fails. The analysis has shown that in the case when kmac is compro-
mized, but kenc remains valid, the protocol still holds the required properties. This
is because kenc protects the information in the case of perfect cryptography, thus
faking the MAC does not raise any possible attacks. If both of them are known by
the intruder, both specifications fail.

SECURITY ANALYSIS OF SENSOR NETWORKS 247

4.2. Analysis of a Sensor Key Exchange Protocol

Since resource-constrained sensor networks usually utilise only symmetric key
cryptography, key sharing is fundamental for the bootstrapping of nodes. Tra-
ditional solutions usually apply public-key cryptography to share keys, but such a
computationally expensive operation is not permitted in sensor networks.

SPINS proposes a Node-to-Node Key Agreement Scheme that is based on the
SNEP mechanism [9]. The proposed scheme uses a base station as a trusted agent.
Sensor networks usually have at least one such point for centralising measurement
results. Thus, it is realistic to rely on such a level of infrastructure.

1. A → B V NA, A
2. B → S V NA, NB , A,B,MACKBS

(NA, NB , A,B)
3. S → A V {SKAB}KAS

,MACKAS
(NA, B, {SKAB}KAS

)
4. S → B V {SKAB}KBS

,MACKBS
(NB, A, {SKAB}KBS

)

The order of messages can be seen in Fig. 3. In the first message, node A
sends its identifier together with a freshly generated unique NA nonce. Node B
turns to the server S with a request containing the received and a new NB nonce,
the agent identifiers and a MAC. This MAC is generated with the KBS key, which
is shared between B and S. The server receiving such a signed request sends the
SKAB session key to both of the participants authenticated in messages 3 and 4.

A B
1.

2
.

4
.3

.

S

Fig. 3. Sensor key sharing protocol

Our analysis resulted the following counter example as an attack:

α1. I (B) → A V NM, B
α2. A → I (S) V NM, NA, B,A,MACKAS

(NM , NA, B,A)
β1. I (A) → B V NA, A
β2. B → S V NA, NB , A,B,MACKBS

(NA, NB , A,B)
β3. S → I (A) V {SKAB}KAS

,MACKAS
(NA, B, {SKAB}KAS

)
α4. I (S) → A V {SKAB}KAS

,MACKAS
(NA, B, {SKAB}KAS

)

248 R. GÉMESI and L. ZÖMBIK

As this description shows, the α run of the protocol misleads A. After the last
message, A thinks that the SKAB key is shared with B, however B was not involved
in the α run at all. This flaw is realistic, since participants of a sensor network can
both initiate a key sharing and also act as a responder.

The reason of the problem is that the last two messages do not identify both
participants. To correct this flaw, the 3rd and 4th messages of the protocol should
be extended with freshness information (nonces) of both participating agents.

After our extensions had been made, the analysis has shown the protocol to
be secure. This procedure demonstrates the usage of our analysis framework for an
iterative protocol development.

4.3. Analysis of the Ariadne Protocol

The Ariadne protocol was designed to provide secure routing for ad hoc networks.
Routing mechanisms generally do not deal with the presence of unhonest partic-
ipants. Therefore an unsecure routing protocol can be mislead in several ways
[2].

The routing mechanism of Ariadne is based on the Dynamic Source Rout-
ing (DSR) protocol. The initiator broadcasts a route request message (rreq) that
contains the source and destination addresses (S,D). A node (Fi) receiving such
a message appends its own identifier to the request and rebroadcasts the message,
therefore the request floods through the network. When the request arrives at its
destination, a reply packet (rrep) is generated and sent back through the route
specified in the packet.

DSR does not deal with the authentication of the participating nodes. When a
malicious party is present in the network, authentication of protocol participants is
required to exclude them from the communication. The Ariadne protocol provides
authentic route discovery with the help of message authentication codes (MAC).

Communicating endpoints generate such authentication codes based on previ-
ously shared secret keys (kSD). The authentication of unknown intermediate nodes
is based on the delayed disclosure of keys. This means that a MAC is generated
using a secret key. After the MAC is received by a specific agent, the key is dis-
closed. The authenticity of the message is provided by checking if the MAC was
appropriate. In the Ariadne protocol, key disclosure is triggered by the route reply
messages.

The messages of the protocol are the following, where newly generated mes-
sage parts are emphasized.

SECURITY ANALYSIS OF SENSOR NETWORKS 249

S → ∗ V rreq(S,D, 〈〉), h0, 〈〉
Fi → ∗ V rreq(S,D, 〈F1 . . . Fi−1, Fi〉), hi, 〈MF1 . . .MFi−1 , MFi

〉
Fn → D V rreq(S,D, 〈F1 . . . Fn〉), hn, 〈MF1 . . .MFn

〉

D → Fn V rrep(S,D, 〈F1 . . . Fn〉), 〈MF1 . . . MFn
〉), MD, 〈〉

Fi → Fi−1 V rrep(S,D, 〈F1 . . . Fn〉), 〈MF1 . . . MFn
〉),MD, 〈kn . . . ki+1, ki〉

F1 → S V rrep(S,D, 〈F1 . . . Fn〉), 〈MF1 . . . MFn
〉),MD, 〈kn . . . k1〉

The source node (S) initiates the request that contains the source and des-
tination addresses, and an empty list to the identifiers of the intermediate nodes
(rreq(s, d, 〈〉)). The source also generates a message authentication code (h0) with
the key that is shared with the destination (h0 = MACkSD

(rreq(s, d, 〈〉))).
Intermediate nodes (Fi) append their addresses to the route list, which is

received in the request (〈F1 . . . Fi−1〉). Moreover, they create a new hash tag with
the identifier and the received hash tag : hi = hash(Fi , hi−1). An authentication
code is also created with an appropriate secret key from the whole message (MFi

=
MACki

(m)). Authentication tags are collected in a list in the message, so the
destination receives the authentication elements of each forwarding nodes, which
are present in the route list (〈MF1 . . .MFn

〉).
The destination node gets the route request with all the n participating nodes

(〈F1 . . . Fn 〉). It also appends a MAC, but it is based on the shared key with the
source (MD = MACkSD

(m)). It generates the reply message (rrep) and sends it
back through the route with the authentication tags. When a message arrives to an
intermediate node, it discloses the key used for authentication earlier (kFi

).
By the end of this mechanism, the source node gets to know a possible route

to the destination that contains only authenticated participating nodes as forwarding
agents. This can be formalized as the authenticity of the identities of intermediate
agents.

The number of intermediate nodes can vary (F1, · · · , Fn). Agents running
the AODV protocol are similar. Forwarding and destination nodes have the same
programme, but the node initiating the protocol is different. Thus two kinds of
agents should be modelled: a general AODV and an initiator agent.

The construction of received and sent messages usually depends on the num-
ber of intermediate hops. For example a forwarder agent can receive several route
request messages, which are constructed differently. The complexity of the received
message specifies the agent’s role in the protocol. Agents can even be extended
with further choices to behave depending on the received message.

We have extended the model to check the Ariadne protocol this way. However
the large number of choices results in a state space explosion, the case of allowing
only one intermediate hop could be analysed and attack was not found. We have also
set the case of two intermediate nodes, but the analysis requires more computing
resources than we have. In some cases, data independence techniques can be applied
to make the analysis shorter [11].

250 R. GÉMESI and L. ZÖMBIK

The main contribution of this analysis is to point out that the security of ad hoc
routing protocols can also be analysed using the introduced framework. Systems
involving a large number of similar agents can be analysed using CSP, since the
used communication model is quite general and extensible.

5. Summary

We have presented that the protocols of sensor networks usually differ from tradi-
tional solutions. Proposed protocols should be analysed from the security point of
view to proof their correctness or to show their flaws.

We have introduced an analysis framework based on the CSP process algebra
that can be used to analyse security of distributed systems. We have built a model
for the verification of sensor network security protocols.

The analysis framework was demonstrated by several examples. An attack
of a proposed key exchange protocol was introduced and corrected. We have also
presented that the model is extensible for routing protocols too.

References

[1] CULLER, D. – ESTRIN, D. – SRIVASTAVA, M., Overview of Sensor Networks. IEEE Com-
puter, 2004/8, pp. 41–49.

[2] GÉMESI, R. – IVÁDY, B. – ZÖMBIK, L. Security of Mobile ad hoc Networks. Híradástechnika,
2002/12, pp. 2–8.

[3] DANNY, D.– YAO, A. C., On the Security of Public Key Protocols. IEEE Transactions on
Information Theory, 1983, vol. IT-29, 12, pp. 198–208.

[4] MEADOWS, C., The NRL Protocol Analyzer: An Overview. Journal of Logic Programming,
1996/26/2, pp. 113–131.

[5] THAYER FÁBREGA, F. J. – HERZOG, J. C. – GUTTMAN, J. D., Honest ideals on Strand
Spaces. Proceedings of the 11th IEEE Computer Security Foundations, 1998/6.

[6] STEVE SCHNEIDER, Concurrent and Real-time Systems. The CSP Approach. 2000.
[7] RYAN, P. – SCHNEIDER, S. – GOLDSMITH, M. – LOWE, G. – ROSCOE, B., Modelling and

Analysis of Security Protocols, 2001.
[8] LOWE, G. – BROADFOOT, PH. – MEI LIN HUI. A Compiler for the Analysis of Security

Protocols. The 10th Computer Security Foundations Workshop, 2001.
[9] ADRIAN PERRIG, ROBERT SZEWCZYK, VICTOR WEN, DAVID CULLER, J. D. TYGAR.

SPINS: Security Protocols for Sensor Networks. Mobile Computing and Networking, 2001, pp.
189–199.

[10] YIH-CHUN HU, ADRIAN PERRIG, DAVID B. JOHNSON. ARIADNE: A Secure On-Demand
Routing Protocol for Ad Hoc Networks. Mobicom, 2002. The 8th ACM International Confer-
ence on Mobile Computing and Networking

[11] BROADFOOT, P.J., Data Independence in the Model Checking of Security Protocols. University
of Oxford, 2001

