
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 48, NO. 1, PP. 11–16 (2004)

GRAPH COLOURING PROBLEMS AND THEIR APPLICATIONS
IN SCHEDULING

Dániel MARX

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

H–1521 Budapest, Hungary
e-mail: dmarx@cs.bme.hu

Received: Dec. 12, 2003

Abstract

Graph colouring and its generalizations are useful tools in modelling a wide variety of scheduling
and assignment problems. In this paper we review several variants of graph colouring, such as
precolouring extension, list colouring, multicolouring, minimum sum colouring, and discuss their
applications in scheduling.

Keywords: scheduling, colouring, precolouring extension, list colouring, multicolouring, minimum
sum colouring.

1. Introduction

A k-colouring of graph G is an assignment of integers �1� 2� � � � � k� (the colours)
to the vertices of G in such a way that neighbours receive different integers. The
chromatic number of G is the smallest k such that G has a k-colouring.

There are several interesting practical problems that can be modelled by graph
colouring. Our basic example is the following. Assume that we have to schedule a
set of interfering jobs, it has to be determined when each job is executed. Let G be
the conflict graph of the jobs: the vertices of the graph corresponds to the jobs, two
vertices are connected by an edge if the corresponding two jobs cannot be executed
at the same time (for example, they use a shared resource or interfere in some other
ways). The colours correspond to the available time slots, every job requires one
time slot. There is a one-to-one correspondence between the feasible schedulings of
the jobs and the colourings of the graph: vertex � receives colour i if and only if the
corresponding job is executed in time slot i . Clearly, the graph has a k-colouring
if and only if the jobs can be done in k time slots such that interfering jobs are
not executed simultaneously. Therefore the chromatic number of the graph equals
the minimum makespan of the scheduling problem, the minimum time required to
finish the jobs.

Unfortunately, determining the chromatic number of a graph is an NP-hard
problem, hence we cannot expect to solve it efficiently for large graphs. Therefore
when we model a scheduling or assignment problem with graph colouring, then
there are two things to consider. First, it might happen that the graphs arising in our



12 D. MARX

application have a special structure that makes colouring easier. Moreover, if there
is no hope for an efficient (polynomial time) algorithm to the colouring problem
that always finds an optimum solution, then we have to content ourselves with an
approximation algorithm that is not optimal, but has some performance guarantee
on the quality of the produced solution. For a minimization problem, we say that
an algorithm is a c-approximation algorithm if it always produces a solution whose
cost is at most c times the optimum.

We conclude this section by citing some specific applications of graph colour-
ing where the conflict graph has a special structure, and efficient optimal or approx-
imation algorithm can be given for the problem.

Aircraft scheduling. Assume that we have k aircrafts, and we have to assign them
to n flights, where the i th flight is during the time interval �ai � bi �. Clearly, if two
flights overlap, then we cannot assign the same aircraft to both flights. The vertices
of the conflict graph correspond to the flights, two vertices are connected if the
corresponding time intervals overlap. Therefore the conflict graph is an interval
graph, which can be coloured optimally in polynomial time.

Biprocessor tasks. Assume that we have a set of processors (machines) and a set of
tasks, each task has to be executed on two preassigned processors simultaneously. A
processor cannot work on two jobs at the same time. For example, such biprocessor
tasks arise when we want to schedule file transfers between processors [1] or in the
case of mutual diagnostic testing of processors [2].

Consider the graph whose vertices correspond to the processors, and if there
is a task that has to be executed on processors i and j , then we add an edge between
the two corresponding vertices. Now the scheduling problem can be modelled as
an edge colouring of this graph: we have to assign colours to the edges in such a
way that every colour appears at most once at a vertex.

Edge colouring is NP-hard [3], but there are good approximation algorithms.
The maximum degree � of the graph is an obvious lower bound on the number
of colours needed to colour the edges of the graph. On the other hand, if there
are no multiple edges in the graph (there are no two tasks that require the same
two processors), then Vizing’s Theorem gives an efficient method for obtaining a
�� � 1�-edge colouring. If multiple edges are allowed, then the algorithm of [4]
gives a 1�1-approximate solution.

Frequency assignment. Assume that we have a number of radio stations, identified
by x and y coordinates in the plane. We have to assign a frequency to each station,
but due to interferences, stations that are ‘close’ to each other have to receive
different frequencies. Such problems arise in frequency assignment of base stations
in cellular phone networks.

At first sight, one might think that the conflict graph is planar in this problem,
and theFourColourTheoremcanbeused, but it is not true: if there are lots of stations
in small region, then they are all close to each other, therefore they form a large



GRAPH COLOURING PROBLEMS 13

clique in the conflict graph. Instead, the conflict graph is a unit disk graph, where
each vertex corresponds to a disk in the plane with unit diameter, and two vertices
are connected if and only if the corresponding disks intersect. A 3-approximation
algorithm for colouring unit disk graphs is given in [5], yielding a 3-approximation
for the frequency assignment problem.

2. Multicolouring

A natural generalization of the basic setup introduced in Section 1 is to consider
jobs that require more than one time slots. In the multicolouring problem each
vertex � has a demand x���, and we have to assign a set of x��� colours to each
vertex � such that neighbours receive disjoint sets of colours. Multicolouring can
be used to model the scheduling of jobs with different time requirements: the set
of colours assigned to vertex � corresponds to the x��� time slots when we work
on the job.

There are two main variants of multicolouring. In non-preemptive multi-
colouring the set of colours assigned to a vertex has to be a continuous interval of
colours. This reflects the requirement that the jobs cannot be interrupted, they have
to receive a continuous time window. On the other hand, in preemptive multicolour-
ing we assume that the jobs can be interrupted, hence the set of colours assigned to
a vertex can be arbitrary, it does not have to be continuous.

In [6] the frequency assignment problem discussed in Section 1 is general-
ized, we have to assign a predefined number of frequencies to each base station.
The authors adopt the hexagon model, which means that the conflict graph is a
subgraph of the triangular lattice. A 4

3-approximation algorithm is presented in [6]
for minimizing the number of different frequencies assigned.

3. Precolouring Extension

In certain scheduling problems we do not have full control over the schedule, the
assignments of certain jobs are already decided. In this case some of the vertices of
the conflict graph have a preassigned colour, and we have to solve the precolouring
extension problem: extended the colouring of these vertices to the whole graph,
using the minimum number of colours.

BIRÓ, HUJTER and TUZA [7, 8, 9] started a systematic study of precolouring
extension. In [7], the aircraft scheduling problem discussed in Section 1 is extended.
There is a maintenance period for each aircraft, during which it cannot fly. We can
model these maintenance periods by adding a ‘dummy’ flight for the maintenance
period of each aircraft, and requiring that the maintenance period of the i th aircraft
is assigned to the i th aircraft. Therefore we have to solve the precolouring extension
problem on the conflict graph, which is an interval graph. It is shown in [7] that the
precolouring extension problem is NP-complete for interval graphs, but it can be



14 D. MARX

solved in polynomial time if every colour is used only once in the precolouring, that
is, if every aircraft has only one maintenance interval (the latter result is generalized
to chordal graphs in [10]).

4. List Colouring

In the list colouring problem each vertex � has a list of available colours, and we
have to find a colouring where the colour of each vertex is taken from its list of
available colours. List colouring can be used to model situations where a job can
be processed only in certain time slots, or if it can be processed only by certain
machines.

Using standard dynamic programming techniques, list colouring canbe solved
in polynomial time on trees and partial k-trees [11]. By combining dynamic pro-
gramming with a clever use matching, list colouring can be solved on the edges of
trees as well [12].

The multicolouring concept introduced in Section 2 can be applied for list
colourings as well: each vertex has an integer demand x���, and vertex � has
to receive a set of x��� colours from its list of colours. The algorithm for list
colouring trees and partial k-trees does not generalize for the multicolouring case,
as the problem is NP-complete already for binary trees [13]. On the other hand,
list edge multicolouring can be solved in polynomial time on trees: using standard
techniques, the good characterization theorem of MARCOTTE and SEYMOUR [14]
can be turned into a polynomial time algorithm. This result is generalized in [15]
to a slightly more general class of graphs, that includes odd cycles. Moreover, a
randomized algorithm is given for an even more general class of graphs, including
even cycles.

5. Minimum Sum Colouring

Besides minimizing the makespan, another well-studied goal in scheduling theory
is to minimize the sum of completion times of the jobs, which is the same as
minimizing the average completion time. The corresponding colouring problem is
minimum sum colouring, introduced in [16]: we are looking for a colouring of the
conflict graph such that the sum of the colours assigned to the vertices is minimal.

Apart from trees, partial k-trees, and edges of trees, minimum sum colouring
is NP-hard on most classes of graphs. On the other hand, it turns out that the sum
of the colouring is easier to approximate than the makespan (see e.g. [17, 18] for
approximation results). The reason for this is that the sum of the colouring and the
makespan of the colouring behave very differently when a small part of the graph is
recoloured. Ifwe recolour a small part of the graph, then this change has only a small
effect on the sum of the colouring, but it can change the makespan significantly.



GRAPH COLOURING PROBLEMS 15

The multicolouring version of the problem can be used to model arbitrary
length jobs. Since we want to minimize the sum of the completion times, the ob-
jective function of the colouring problem has to be defined as follows. The finish
time of a vertex is the largest colour assigned to it, and the sum of a colouring is
the sum of the finish times of the vertices. It is clear that the sum of the finish
times in a multicolouring is equal to the sum of completion times in the corre-
sponding schedule. This variant of multicolouring was introduced in [19], where
approximation algorithms are given for various classes of graphs. The preemptive
and non-preemptive versions of the problem can have very different complexity:
while the non-preemptive version can be solved in polynomial time for trees [20],
the preemptive version is NP-hard for binary trees [13], but has a polynomial time
approximation scheme [20]. In [21] polynomial time approximation schemes are
given for partial k-trees and planar graphs as well. Unlike minimum sum colouring,
the multicolouring version of the problem is NP-hard on the edges of trees. How-
ever, in this case the problem admits a polynomial time approximation scheme [22].

6. Acknowledgements

Research was supported by OTKA grants 44733, 42559 and 42706.

References

[1] COFFMAN, E. G. – GAREY, JR. M. R. – JOHNSON, D. S. – LAPAUGH, A. S., Scheduling
File Transfers, SIAM J. Comput., 14 (3) (1985), pp. 744–780.

[2] HOOGEVEEN, J. A. – VAN DE VELDE, S. L. – VELTMAN, B., Complexity of Scheduling
Multiprocessor Tasks with Prespecified Processor Allocations, Discrete Appl. Math., 55 (3)
(1994), 259–272.

[3] HOLYER, I., TheNP-Completeness ofEdge-Coloring, SIAM J. Comput., 10 (4) (1981), pp. 718–
720.

[4] NISHIZEKI, T. – KASHIWAGI, K., On the 1�1 Edge-Coloring of Multigraphs, SIAM J. Discrete
Math., 3 (3) (1990), pp. 391–410.

[5] GRÄF, A. – STUMPF, M. – WEIßENFELS, G., On Coloring Unit Disk Graphs, Algorithmica,
20 (3) (1998), pp. 277–293.

[6] NARAYANAN, L. – SHENDE, S. M., Static Frequency Assignment in Cellular Networks, Al-
gorithmica, 29 (3) (2001) pp. 396–409.

[7] BIRÓ, M. – HUJTER, M. – TUZA, ZS., Precoloring Extension. I. Interval Graphs, Discrete
Math., 100 (1–3) (1992), pp. 267–279.

[8] HUJTER, M. – TUZA, ZS., Precoloring Extension. II. Graph Classes Related to Bipartite
Graphs, Acta Mathematica Universitatis Comenianae, 62 (1) (1993), pp. 1–11.

[9] HUJTER, M. – TUZA, ZS., Precoloring Extension. III. Classes of Perfect Graphs, Combin.
Probab. Comput., 5 (1) (1996), pp. 35–56.

[10] MARX, D., Precoloring Extension on Chordal Graphs, 2003, submitted.
[11] JANSEN, K. – SCHEFFLER, P., Generalized Coloring for Tree-Like Graphs, Discrete Appl.

Math., 75 (2) (1997), pp. 135–155.
[12] GIARO, K. – KUBALE, M., Edge-Chromatic Sum of Trees and Bounded Cyclicity Graphs,

Inform. Process. Lett., 75 (1-2) (200), pp. 65–69.



16 D. MARX

[13] MARX, D., The Complexity of Tree Multicolorings, in Mathematical Foundations of Computer
Science 2002 (Warsaw-Otwock), pp. 532–542. Springer, Berlin, 2002.

[14] MARCOTTE, O. – SEYMOUR, P. D., Extending an Edge-Coloring, J. Graph Theory, 14 (5)
(1990), pp. 565–573.

[15] MARX, D., List Edge Multicoloring in Graphs with Few Cycles, Inform. Process. Lett., 89 (2)
(2004), pp. 85–90.

[16] KUBICKA, E. – SCHWENK, A. J., An Introduction to Chromatic Sums, in Proceedings of the
ACM Computer Science Conf., pp. 15–21. Springer, Berlin, 1989.

[17] BAR-NOY, A. – BELLARE, M. – HALLDÓRSSON, M. M. – SHACHNAI, H. – TAMIR, T., On
Chromatic Sums and Distributed Resource Allocation, Inform. and Comput., 140 (2) (1998),
pp. 183–202.

[18] GIARO, K. – JANCZEWSKI, R. – KUBALE, M – MAł AFIEJSKI, M., A 27�26-Approximation
Algorithm for the Chromatic Sum Coloring of Bipartite Graphs, in Proceedings of APPROX
2002, (2002), pp. 135–145.

[19] BAR-NOY, A. – HALLDÓRSSON, M. M. – KORTSARZ, G. – SALMAN, R. – SHACHNAI, H.,
Sum Multicoloring of Graphs, J. Algorithms, 37 (2) (2000), pp. 422–450.

[20] HALLDÓRSSON, M. M. – KORTSARZ, G. – PROSKUROWSKI, A. – SALMAN, R. –
SHACHNAI, H. – TELLE, J. A., Multicoloring Trees, Inform. and Comput., 180(2):113–129,
2003.

[21] HALLDÓRSSON, M. M. – KORTSARZ, G., Tools for Multicoloring with Applications to Planar
Graphs and Partial k-Trees, J. Algorithms, 42 (2) (2002), pp. 334–366.

[22] MARX, D., Minimum Sum Multicoloring on the Edges of Trees, 1st Workshop on Approxima-
tion and Online Algorithms (WAOA), Budapest, (2003) pp. 214–226, Lecture Notes in Comput
Sci., 2909, Springer, Berlin, 2004.


