
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 48, NO. 1–2, PP. 17–22 (2004)

A SPARSE LEAST SQUARES SUPPORT VECTOR MACHINE
CLASSIFIER

József VALYON

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H–1521 Budapest, Hungary
Phone: +36 1 463-2057, Fax: +36 1 463-4112

e-mail: valyon@mit.bme.hu

Received: January 6, 2004

Abstract

In the last decade Support Vector Machines (SVM) – introduced by Vapnik – have been successfully
applied to a large number of problems. Lately a new technique, the Least Squares SVM (LS–SVM)
has been introduced, which addresses classification and regression problems by formulating a linear
equation set. In comparison to the original SVM, which involves a quadratic programming task, LS–
SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost.
The linear equation set of LS–SVM embodies all available information about the learning process. By
applying modifications to this equation set, we present a Least Squares version of the Least Squares
Support Vector Machine (LS2–SVM). The modifications simplify the formulations, speed up the
calculations and provide better results, but most importantly it concludes a sparse solution.

Keywords: Support Vector Machines, Least Squares Support Vector Machines, regression, classifi-
cation, system modelling.

1. Introduction

Among Neural Networks, the main advantage of SVM methods is that they au-
tomatically derive a network structure which guarantees an upper bound on the
generalization error. This is very important in a large number of real life classifi-
cation problems.

The Least Squares Support Vector Machine (LS–SVM) is attracting increas-
ing attention, mostly because it has some very promising properties regarding the
implementation and the computational issues of teaching. In this case, training
means solving a set of linear equations, instead of the quadratic programming prob-
lem involved by the standard SVM [1].

While the least squares version incorporates all training data in the network
to produce the result, the traditional SVM selects some of them (called support
vectors) that have a more significant effect on the classification. Because LS–SVM
does not incorporate a support vector selection method, the network size is usually
much larger than it would be with a traditional SVM. Sparseness can also be reached
with LS–SVM by applying a pruning method [2], but this iterative process requires



18 J. VALYON

an equation set – slowly decreasing in size – to be solved in every step, which
multiplies the complexity.

The optimal solution should combine the desirable features of these methods.
It: (1) should be fast, (2) should lead to a sparse solution, (3) should produce good
results. In order to achieve these goals, two new methods are introduced in the
sequel. The combination of these methods leads to a sparse LS–SVM solution,
which means that a smaller network – based on a subset of the training samples –
is accomplished with the speed and simplicity of the least squares solution.

The LS–SVM method is capable of solving both classification and regression
problems. The present study concerns classification therefore only this is introduced
in the sequel, along with the standard pruning method. Only a brief outline of these
methods is presented, a detailed description can be found in refs. [2, 3, 4] and [5].

2. A Brief Overview of the LS–SVM Method

Given the �xi � di �
N
i�1 training data set, where xi � �p represents a p-dimensional

input vector with di � ��1��1� labels, our goal is to construct a classifier of form

y�x� � sign

�
� h�

j�1

� j� j �x�� b

�
� � sign

�
wT��x�� b

�
�

w � ��1� �2� � � � � �h�
T � � � ��1� �2� � � � � �h�

T � (1)

The ��	� 
 �p � �h is a mostly non-linear function, which maps the data into a
higher (possibly infinite �h) dimensional feature space. The optimization problem
can be given by the following equations (k � 1� � � � � N�:

min
w�b�e

Jp�w� e� �
1

2
wT w�C

1

2

N�
k�1

e2
k � with constraints: dk

�
wT� �xk�� b

�
� 1�ek �

(2)
The first term is responsible to find a smooth solution, while the second one min-
imizes the training errors (C is the trade–off parameter between the terms). From
this, the following Lagrangian can be formed:

L�w� b� e��� � Jp�w� e��
N�

k�1

�k

�
dk

�
wT� �xk�� b

�
� 1 � ek

�
� (3)

where the �k parameters are the Lagrange multipliers. The solution concludes in a
constrained optimization and the following overall solution:	

0 dT

d �� C�1I


	
b
�



�

	
0

1



� d � �d1� d2� � � � � dN �

T �

� � ��1� �2� � � � � �N �
T � 
1 � �1� � � � � 1�T � �i� j � did j K �xi � x j �� (4)



A SPARSE LEAST SQUARES 19

where C � � is a positive constant, b is the bias and the result is: y�x� ��N
k�1 �kdk K �x� xk�� b. This result can be interpreted as a neural network, which

contains N non-linear neurons in its single hidden layer. The number of these
nonlinear neurons equals the number of selected support vectors (network size).
The result (y) is the weighted sum of the outputs of the middle layer neurons. The
weights are the calculated �k Lagrange multipliers. Although in practice SVMs are
rarely formulated as actual networks, this neural interpretation is important, because
it provides an easier discussion framework than the purely mathematical approach.
This paper uses the neural interpretation throughout the discussions, because the
points and statements of this work can be more easily understood this way.

It is important to mention that the �i weights are proportional to the ei errors
in the training points: �i � Cei . The following iterative methods are based on this
property of the LS–SVM.

LS–SVM pruning [2], [3]: In most real life situations the LS–SVM networks
are unnecessarily large. This drawback can be eliminated by applying a pruning
method which eliminates some training samples based on the sorted support vector
spectrum [2]. The weighting of the Least Squares SVM reflects the importance
of the training samples, therefore by eliminating some vectors, represented by the
smallest values from this ��i � spectrum, the number of neurons can be reduced.

3. The Proposed Method

3.1. Modifying the Equation Set

If the training set consists of N samples, then our original linear equation set will
have (N � 1) unknowns, the �i -s, (N � 1) equations and �N � 1�2 multiplication
coefficients. These factors are mainly the K �xi � xk� kernel matrix elements rep-
resenting every training input pairs. The cardinality of the training set therefore
determines the size of this coefficient matrix. Let’s take a closer look at the lin-
ear equation set describing the problem (4). To reduce the kernel matrix, columns
and/or rows may be omitted. If the kth column is left out, then the corresponding �k
weight is also removed, therefore the resulting network will be smaller. If the kth
row is omitted, then the input–output defined by the�xk� dk� training sample is lost,
because the kth equation is removed. This leads to a less constrained, and therefore
worst solution. Each column (k) stands for a neuron, with a kernel centered on
the corresponding input (xk). The formulation of this matrix can be generalised as
follows:

1. The number of kernels �M� may be less than N , so columns may be rep-
resented by M chosen cj vectors. �c1� c2� � � � � cM � ci � �x1� x2� � � � � xN �,
M � N�

2. The kernel functions may be different from column to column.



20 J. VALYON

The formulation of � changes as follows:

� j�k � d jdk Kk

�
x j � ck



� (5)

and the result will be calculated from y�x� �
�M

k�1 �kdk Kk �x� ck� � b, where M
is the number of kernels (nonlinear neurons) used. The ckcenters may be selected
from the training sample set (from the xk-s), which is assumed in this paper. A
possible selection method is proposed in the next section.

Reducing only one dimension of the kernel matrix is referred to as partial
reduction [6]. Using fewer columns than training samples, means less weights (�k)
and, consequently, a sparse solution. It also leads to an overdetermined equation
set, which can be solved as a linear least squares problem, consisting of only �M �
1�� �N � 1� coefficients.�
��������

0 dT

K1�x1� c1�� C�1 	 	 	 KM �x1� cM �
���

� � �
���

d KM �xM � c1� 	 	 	 KM�xM � cM �� C�1

���
� � �

���
K1�xN � c1� 	 	 	 KM �xN � cM �

�
��������

�
���

b
�1
���
�M

�
��� �

�
��������

0
1
���
1
���
1

�
��������

(6)

This equation set is written shortly as Ax � b, where A, x and b are the matrixes
in Eq. (6) respectively.

There is a slight problem with the regularisation parameter C since it can only
be inserted in the first M rows, but it is enough to ensure us M linearly independent
rows, so the equation set can be solved. The solution is calculated as

AT Ax � AT b (7)

The modified matrix A has (N � 1) rows and (M � 1) columns. After the matrix
multiplications the results are obtained from a reduced equation set, incorporating
AT A, which is only of size �M � 1� � �M � 1�. Reducing only the number of
columns and not the rows means that the number of neurons is reduced, but all the
known constraints are taken into consideration. This is the key concept of keeping
the quality, while sparseness is achieved. When traditional iterative pruning is
applied to the LS–SVM solution some training points are fully omitted. They do
not participate in the next kernel matrix, therefore information embodied in the
subset of dropped points are entirely lost!

Since the modified LS–SVM equation set is solved in a least squares sense,
we name this method LS2–SVM.

3.2. B. A Support Vector Selection Method

As the kernel matrix is formed from columns we can select a linearly independent
subset of column vectors and omit all others. This can be done by finding a ‘basis’ of



A SPARSE LEAST SQUARES 21

the coefficient matrix. A slight modification of a common mathematical method –
used for bringing the matrix to the reduced row echelon form – can be utilized to find
this ‘basis’. When searching for basis vectors, the linear dependence of vectors does
not mean exact linear dependence, because the method uses an adjustable tolerance
value when determining the ‘resemblance’ of the column vectors. The use of this
tolerance value is essential, because none of the columns of�will likely be exactly
dependent, especially if the selection is applied to the regularized ��C�1I matrix.
The larger the tolerance, the fewer vectors the algorithm will select.

4. Experiments

First, the two spiral benchmark problem is presented. The results for this CMU
(Carnegie Melon University) benchmark is plotted in Fig. 1. It shows that both
methods are perfectly capable of distinguishing between the two input sets.

The next table summarises the results for some UCI benchmarks. In the
experiments we split the datasets to a training and a test set as seen in ref. [5].

For simple problems consisting of many samples, the gain is high, because a
lot of samples may be pruned (e.g. Bupa liver disorders), while for hard problems,
with a small sample set (e.g. Statlog heart disease) the network size cannot be
reduced.

- 8 - 6 - 4 - 2 0 2 4 6 8

- 6

- 4

- 2

0

2

4

6

8

(a)

- 8 - 6 - 4 - 2 0 2 4 6 8

- 6

- 4

- 2

0

2

4

6

8

(b)

Fig. 1. The classification boundaries obtained for the standard LS–SVM (a) and the LS 2–
SVM (b)



22 J. VALYON

Table 1. Results achieved for benchmark problems. Where N T R is the number of training
inputs and NT S is the number of test samples. The NLS2

�SVM column contains
the network size of our sparse solution. The last two columns show the good/miss
classification rates for the test sets.

Bench-mark NTR NTS NLS�SVM NLS2
�SVM LS–SVM LS2–SVM

Bupa liver disorders 230 115 230 37 67.82/32.18 70.44/29.56

Pima Indians diabetes 512 256 512 379 67.97/32.03 68.36/31.64

Tic–tac–toe endgame 638 320 638 136 97.19/ 2.81 94.37/ 5.63

Statlog heart disease 180 90 180 168 72.23/27.77 70.00/30.00

5. Conclusion

In this paper a sparse LS-SVM was presented. The basic idea is that the number of
input vectors chosen to be centers can be reduced, hence the main equation set may
be overdetermined. By eliminating variables a pruned solution can be achieved.

References

[1] VAPNIK, V., The Nature of Statistical Learning Theory, Springer, New York, 1955.
[2] SUYKENS, J. A. K. – LUKAS, L. – VANDEWALLE, J., Sparse Least Squares Support Vector

Machine Classifiers, In: ESANN’2000 European Symposium on Artificial Neural Networks,
(2000), pp. 37–42.

[3] SUYKENS, J. A. K. – LUKAS, L. – VANDEWALLE, J., Sparse Approximation Using Least
Squares Support Vector Machines, In: IEEE International Symposium on Circuits and Systems
ISCAS’2000.

[4] SUYKENSM, J. A. K., Nonlinear Modeling and Support Vector Machines, IEEE Instrumentation
and Measurement Technology Conference, Budapest, Hungary, 2001.

[5] SUYKENS, J. A. K. – GESTEL, V. T. – DE BRABANTER, J. – DE MOOR, B. – VANDE-
WALLE, J., Least Squares Support Vector Machines, World Scientific, 2002.

[6] VALYON, J. – HORVATH, G., A Weighted Generalized LS–SVM, Accepted in: Periodica Poly-
technica.


