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Abstract

Various problems are studied in the field of detailed VLSI routing. According to the position of the
terminals on the outer boundaries of a rectangular grid, one can distinguish between different subcases
of Switchbox Routing: C-shaped, Gamma, Channel and Single Row Routing.

This paper focuses on the minimum number of layers needed for solving these problems either
in the Manhattan, or in the unconstrained wiring model. Besides summarizing earlier known bounds,
our new results show examples for C-shaped routing problem instances of arbitrary size that cannot
be solved using 3 layers in the Manhattan, or 2 layers in the unconstrained model.
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1. Introduction

Several different models are known for the detailed routing phase of VLSI-design
[5], namely, for the case when the position of pins to be interconnected is given
already, and the connections must be established using a minimal size cubic grid.

Regarding either the position of the pins, or the routing model of the layers, we
can distinguish between different problems and models. Although these problems
are under intensive research, the exact number of layers needed is still not known
for most cases.

In this paper we focus on routing problems having square-shaped layers.
We summarize the earlier results, upper and lower bounds given for the different
subcases of the Switchbox Routing problem. Some results are improved to decrease
the gap between the bounds.

1This work was supported by the Grant No. OTKA T042559 of Hungarian National Science
Foundation
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2. Basic Definitions

A switchbox is a rectangular grid G consisting of horizontal tracks (numbered from
0 to � � 1) and vertical columns (numbered from 0 to h � 1), where � is the
width and h is the height of the switchbox. In this paper, we assume square-shaped
layers, namely � � h. The boundary points of G are called terminals. Depending
on which boundary of the switchbox they are situated on, the terminals are called
Northern, Southern, Eastern or Western. The "corners" of the switchbox are not
regarded as terminals, routings must not use them either.

A net is a collection of terminals. A switchbox routing problem is a set
N � �N1� � � � � Nn� of pairwise disjoint nets.

The solution of a routing problem is a set H � �H1� � � � � Hn� of pairwise
vertex disjoint subgraphs (also called wires, these are usually Steiner trees) of the
k–layer rectangular grid such that Hi connects the terminals of Ni for i � 1� � � � � n.
Thewires can access the terminals on any layer. Edges of thewires that join adjacent
vertices of two consecutive layers are called vias.

A specific routing problem can be solved either in the unconstrained k-layer
model, or in the Manhattan model.

In the unconstrained k-layer model no further restrictions are applied to layers
or to subgraphs Hi . In contrast, in the multilayer Manhattan model consecutive
layers must contain wire segments of different directions. Thus, in this model,
layers with horizontal (East–West) and with vertical (North–South) wire segments
alternate.

According to the position of terminals, several subcases of the switchbox
routing problem are considered, as follows:

• Single Row Routing problem, if all terminals are Northern;
• Channel Routing problem, if all terminals are either Southern or Northern;
• �–Routing problem, if all terminals are either Northern or Western;
• C–Routing problem, if all terminals are either Southern or Western or North-

ern;
• General Switchbox problem, if terminals are situated on all four boundaries

of the grid.

3. Square-Shaped Switchbox Routing

In this paper, a survey is given on the results concerning the number of layers needed
in both models. Table 1 shows the different routing problems and gives the most
important references. Our new results on C-shape routing are printed in bold face
letters.

Note that the figures in the table show the minimum number of layers that
enables to solve any routing problem. Hence, some specific problems can be solved
using fewer layers than the corresponding universal bound. On the other hand,
obviously, any upper bound in the Manhattan model is an upper bound in the
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unconstrained model, and any lower bound in the unconstrained model is a lower
bound in Manhattan model.

Table 1. Known bounds for the minimum number of layers in different square-shaped
routing problems

Manhattan model Unconstrained model

� 2 [2] � 2 [2, 7, 12]

� 3 [2, 4] � 2
� 3 [6, 7, 10]

� 3 [1, 12]
� 4

� 2
� 3 [12]

� 4
� 5 [11]

� 3
� 5 [11]

� 6 [3, 11] � 4 [1]
� 6 [11]

A simple algorithm for Single Row Routing in the 2-layer Manhattan model
is based on the fundamental studies of Gallai [2]. Further results on the effect of
using more layers are given in [8], while finding the minimum wire-length solution
turned out to be NP-hard [12].

Channel Routing problems cannot always be wired on two layers in the Man-
hattanmodel, as Fig. 1(a) shows an example. Note that this example can be extended
to an arbitrary sized one. However, three layers are always enough in the Manhattan
model [2, 4], and even two layers suffice in the unconstrained model [6, 7, 10].

Wiring a Gamma Routing problem in the Manhattan model can require at
least three layers [12], and can be trivially solved on four layers in the Manhattan
model.

Gamma Routing problems are always solvable on three layers in the uncon-
strained model. Furthermore, the following theorem can be stated as a straightfor-
ward consequence of the method in [12].

THEOREM 1 Every Gamma Routing problem can be solved in the unconstrained
model using three layers such that one of the layers is used by a single net only.
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Fig. 1. Examples where lower bounds are sharp in the Manhattan model

Szeszlér [11] gave an efficient linear time algorithm to solve the general
Switchbox problem in the Manhattan model using at most 2�m� � 4 layers, where
m � max���h� h���.

This yields a 6-layer solution for every square-shaped switchbox routing prob-
lem. Moreover, the construction includes a 5-layer solution for all C-shaped routing
problems where � � h.

As the problem of Fig. 1(b) cannot be solved on five layers [3], the above
bound 6 is sharp. Note that for this case, only a small size example is known, unlike
the case of Gamma Routing, where we have examples of arbitrary size. In the
unconstrained model, no such example is known, but a lower bound of four layers
is already proved.

As mentioned above, Szeszlér’s algorithm gives a trivial way to solve C-
shaped Routing problems on five layers. Our new results give a lower bound
of four layers in the Manhattan model and a lower bound of three layers in the
unconstrained model as stated in the following theorems:

THEOREM 2 For all � � 3 there exists a C-shaped Routing problem on the ���
grid which cannot be solved on three layers in the Manhattan model.

Proof is based on the routing problem in Fig. 2(a), and given in detail in [9].

THEOREM 3 For all � � 2 there exists a C-shaped Routing problem on the ���
grid which cannot be solved on two layers in the unconstrained model.

Proof is based on the routing problem in Fig. 2(b), and given in detail in [9].
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Fig. 2. Examples where lower bounds are sharp in the Manhattan model

4. Summary

Our new results improve lower bounds for the number of layers needed to solve any
C-shaped Routing problem. Namely, we gave two problem instances that cannot
be solved using less than 4 or 3 layers in the Manhattan or in the unconstrained
model, respectively. Both can be extended to an arbitrarily large size.

However, for 6 problems out of 10 mentioned here (see Table 1) the exact
number of layers needed is not known yet; this can be a subject of further research.
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