
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 48, NO. 1–2, PP. 61–70 (2004)

ON THE INTEGRATION OF LARGE DATABANKS BY A
POWERFUL CATALOGUING METHOD

Zsolt T. KARDKOVÁCS� , Gábor M. SURÁNYI and Sándor GAJDOS

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

H–1117 Budapest, Magyar tudósok krt. 2.
� Office Phone: (+36) 1 4632031
� Office Fax: (+36) 1 4633107

e-mail: {lodoktor, surprof, gajdos}@db.bme.hu
WWW: https://db.bme.hu/DataIntegration

Received: December 14, 2003

Abstract

The integration of huge, disparate information sources has been an outstanding issue for more than
a decade. Having realized that the dissimilarity of sources even with the same or related subject
is manifold and difficult to tackle, constructing mediators and wrappers has become the common
practice. Although under certain circumstances this approach delivers satisfactory results, it lacks
the most important property: scalability. Furthermore, it gives no support for discovering similarity,
which is often needed whenever no exact match can be returned for a particular search condition.

For these reasons we address the problem of true unification of data sources in the present
paper. We assume that the sources share a common schema, i.e. the main objective is the identifica-
tion of compatible or identical entities. Our novel method accomplishes this task by automatically
establishing a catalogue of data elements. Each category of the catalogue holds a set of compat-
ible or identical items. This organization structure has two advantages: there is an intrinsic, fast
lookup method, and similarity among data elements can be defined. We prove that the catalogue is
theoretically computable even if the schema contains derived attributes.

Keywords: automated data integration, data identity, data similarity, relational database, 0NF schema,
catalogue.

1. Introduction

The integration of huge, disparate information sources has been an outstanding
issue for more than a decade. However, the exact need for integration and its goal
have varied.

At the beginning, the computer infrastructure was developing bottom-up,
every department of an enterprise dealt with different aspects of production or
service on their own. Under the increasing pressure of competitors the separate
databanks were integrated and the integrated system was used as a tool of better
management. This kind of integration required only common schemata instead of
consistent views of all data elements. Numerous methodologies aiming at view
integration were proposed and applied, for a survey see e.g. [1].



62 ZS. KARDKOVÁCS et al.

Later the Internet gained never forecasted popularity, the world we live in
consequently became smaller, and data available to everyone has reached immea-
surable amounts. Therefore, in order to cope with this enormous quantity of data,
just storing them is no longer satisfactory, relationships among data items need to
be discovered and interpreted. Besides contributing a solution for the problem, a
great account of efforts towards data integration is YERNENI’s thesis [9]. A com-
mon property of these approaches is the use of mediators and wrappers, i.e. only a
virtual integration is achieved.

In the present paper we address the problem of true integration of data sources,
i.e. the problem of automatically establishing common structure for data originating
from heterogeneous sources and migrating the data elements into the structure with
respect to their identity and similarity. The main advantage of this solution is obvi-
ous: the original sources do not have to be retained as legacy systems if unnecessary.
We also identify novel methods of data retrieval from the new structure.

For simplicity, however, our proposal presumes that the databanks to be inte-
grated share a common schema as a result of, for example, any method described
in [1]. Moreover, to represent this, we exclusively use 0th normal form (0NF) re-
lational schema in which attributes can have multiple (i.e. set) values.1 The reason
for such a representation is that it can easily be produced from either relational, or
logical, or object-oriented databases and even from stand-alone data records.

In the next section novel pre-orders for data residing in 0NF schemata are
introduced. Section 3 is about how these orders can be interpreted in object-oriented
models. It also generalizes them to make then applicable not only to attributes but
observing methods as well. A new data structure is built and several retrieval
methods are presented in Sections 4 and 5. Section 6 concludes the contribution.
Notions are illustrated by means of examples throughout the paper.

2. Substitutions and Covers

Further on in this paper let us assume that there are several finite data stores but they
all share a common, extended, 0NF relational schema, denoted by �. Defining a
satisfactory common schema is usually a difficult task but in theory the union of all
attributes of individual schemata is sufficient. Then each element of the data stores
contains a NULL value (hence the schema is extended relational) for each attribute
which is not defined in the original schema of the element, the rest of attribute
values are left intact. The unified relation over � is denoted by U . NULL values are
consistently considered as empty sets.

Capital letters from the beginning of the alphabet are used for elements of
the relation (i.e. the tuples). Capital letters from the end of the alphabet stand for
variables. The fields (i.e. attributes) of relations are denoted by lower case letters.

1According to several interpretations, 0NF relational schemata may also contain compound at-
tributes. From our point of view compound attributes make no difference, results described herein
do not apply to simple attributes only.



ON THE INTEGRATION OF LARGE DATABANKS 63

The dot (�) is used to project the element on its left side to an attribute indicated on
the right side. For example, the notation C�m is used to refer to the attribute m of the
element C . In graph-related formulae, the symbol � with or without index stands
for a vertex of a graph, not for an attribute. U�m� stands for the set of possible
values of the attribute m and as a definition

U�U� �
�

m

U�m��

In the following paragraphs not only set relations but also logical implications are
used. Hence, for clarity we note that � stands for the ‘subset or identical’ relation
and � always designates a logical implication.

Definition 1 (�m-substitutability) Let C and D be elements of U over � and m an
attribute in�. Moreover, let �m be a pre-order on U�m�, i.e. a transitive and reflexive
function that maps pairs of subsets of U�m� to truth values. C is substitutable by
D concerning m, denoted by C ��m D if

�m�C�m� D�m� � true�

Example 1 Let � � �relationship� and U contain different relationship types. For
simplicity, we assume � is in 1NF. Let �relationship be interpreted as the order of
strength. Then, for example

acquaintance ��relationship friend ��relationship sibling�

The concept of substitutability can be generalized to a set of attributes as
follows.

Definition 2 (�M-covering) Let M � �m1�m2� � � �mi � be a finite set of attribute
names in � and for each m � M �m a pre-order on U�m� as previously. C covers
D concerning the set of relations �M � ��m1 � � � � �mi � and M, denoted C ��M D,
if

�m m �M � C ��m D�

It is simple to show that the generalized relation is a pre-order, too, as the
following proposition says:

Proposition 1 �M-covering is a pre-order on any relation over �.

Example 2 �M-covering has a greater expressive power than �m-substitutability.
For instance let U store acquaintances of a specified person, more precisely their
name, their language abilities and the type of relationship to the given person.
Furthermore, M � �relationship, languages�, �relationship is defined as in the pre-
vious example and �languages � �. If C � 	friend� �English, German�
 and D �
	acquaintance� �English�
, then D ��M C expresses that C is more valuable than
D for the given person.

As it may have been noticed, the subset relation is of great importance in the
case of 0NF schemata.



64 ZS. KARDKOVÁCS et al.

3. Object-Oriented Covers

The commonly used object-oriented data model has a characteristic feature com-
pared to other data models: methods are definable. There are basically two types of
methods. Some of them only observe the current status of object instances, some of
them also modify it. Here we consider only observing methods; extension to other
methods is part of our future research plans.

Before including operations in covering relations, let us examine a covering
relation in the case of two entities, C and D. Assuming that � � �, M � � and
C ��M D, all attributes of C occur in D. That means, by definition, a subset relation
between the attribute values of the entities holds. In a functional point of view (see
e.g. [3]) attributes are also functions but with no parameters, thus covariance on the
codomains (a subset relation of return values) is the only condition of subtyping.
The subtyping relation is referred to as type conformance in the widely used Unified
Modeling Language [6].

Observing methods have exactly the same functionality as derived attributes.
Therefore, the body (implementation) of these operations actually realizes deriva-
tion functions. In the case of deductive object-oriented databases (see e.g. [5]),
these functions are also called (derivation) rules since they are encoded in univer-
sally quantified implication formulae. In these formulae the heads contain only
a predicate symbol corresponding to the function represented. The arity of the
predicate symbol is by one greater than the arity of the function.

Example 3 Age of persons is calculated from the year of birth and the current year.
This can be formalized as:

�current_year �age year_of_birth+age=current_year � ��current_year, age��

where � is a predicate symbol, year_of_birth is an attribute (constant), current_year
is the parameter and age is being defined.

Clearly, results of observing operations must be able to be reflected in covering
relations. As these methods are based on attribute values, extending covering to
methods may seem superfluous and trivial. But derived properties can change even
if the internal state of an entity is not modified.

Example 4 (previous continued) current_year increases constantly, while year
_of_birth is constant, resulting in an also increasing age.

The only possible way to ensure or to check covering in such cases is to
consider the derivation rules themselves. In other words, from the derivation rules
it must be decidable which entity covers which other ones.

Definition 3 (�m-substitutability, logical form) Let C and D be elements of U
over � and �m a pre-order on U�m�. Moreover, let � denote the predicate cor-
responding to the function that takes external quantities and delivers the value for



ON THE INTEGRATION OF LARGE DATABANKS 65

m of any entity. � is actually defined by the formula � . Since � is based on
actual internal attributes, it can vary with the entity in question. Thus, �C (or �D)
stands for the predicates corresponding to the derivation functions in C (or D), and
�C (or. �D) is the actual realization. Attributes become nullary function symbols
in the formulae, but the same attribute should be denoted differently (by separate
symbols) in �C and �D.

C is �m-substitutable by D, denoted C ��m D, if

�C � �D � �X�YC�YD �C�X�YC� � �D�X�YD� � �m�YC�YD��

where X represents all the external quantities affecting m.

Theorem 2 �M-covering is always decidable.

Proof. According to [2], the formula in Definition 3 belongs to the Bernays-
Schönfinkel-Ramsey class and the class is proven to be decidable, i.e. �m-subs-
titutability is decidable. Since M contains only a finite number of attributes, �M-
covering is always decidable, too. �

4. Building Catalogues

�M-covering serves as a basis for the catalogue, which is defined formally as fol-
lows.

Definition 4 (Full �M-catalogue) Let G�M � 	V� E
 be a graph, where V � U ,
	�i � � j 
 � E if �i � V , � j � V , �i ��M � j and �i �� � j . G�M is also called full
�M-catalogue.

In any full catalogue there may be elements that cover each other. Moreover
the following proposition holds:

Proposition 3 The strongly connected components of G�M are cliques.

From the user’s point of view the elements of cliques are indistinguishable
concerning the attributes in M of �M-covering. Therefore, it is reasonable to con-
sider them as single entities. To this end we adopt a usual technique by introducing
an equivalence relation based on �M.

Definition 5 (
M partial order) Let an equivalence relation �M over U be de-
fined as follows:

C �M D � C ��M D � D ��M C�

Then �M induces a partial order 
M on U	�M, i.e. on the equivalence classes ofU .



66 ZS. KARDKOVÁCS et al.

Da�id

��

V al �eria

��
Sam

����������� M �aria

�����������

Joe

Fig. 1. �M-catalogue for Example 5

Definition 6 (�M-catalogue) The transitive reduction, i.e. the Hasse diagram of

M is the �M-catalogue.

The name catalogue comes from business-to-business (B2B) commerce where
content standards establish hierarchies of product categories, specify the attributes
of each category and products are classified according to these specifications [7].
Catalogues used in our method act similarly: there is a hierarchy of categories
and the categories contain the data elements. But unlike B2B catalogues, here
an entity may have unrelated supercategories, which in turn enables more flexible
(ambiguous) classification to be modelled. That also means that multiple entry
points are conceivable.

Definition 7 (Entry Points of a �M-catalogue) A node, � of �M-catalogue is an
entry point if there is no node �i such that �i ��M �.

Example 5 Let us assume that � represents names of persons along with the lan-
guages they speak and the names of programming languages they know. The
contents of U is:

name languages experience

David {German} {Java}
Joe {English, German, Hungarian} {C#, Java, Prolog}
Mária {English, Hungarian} {C#, Java, Prolog}
Sam {English, German} {C#, Java}
Valéria {Hungarian} {Prolog}

The �M-catalogue defined by M � �languages, experience� and �languages
� �experience � �, is depicted in Fig. 1. The entry points of the catalogue are
David and Valéria.



ON THE INTEGRATION OF LARGE DATABANKS 67

5. Searching the Catalogue

The catalogues introduced in the previous section can be considered indexes, be-
cause they support efficient, lookup-optimized management methods for the entities
involved.

Definition 8 (Search Pattern) 
 , a function mapping each attribute m of � to
U�m� is called the search pattern.

Algorithm 1 (Simple Search in the Catalogue)
simpleSearch�M� 
 �:

• For all entry points as node, call simpleSearchNode�node�M� 
 �.

simpleSearchNode�node�M� 
 �:

1. If 
 �M node, emit the elements of node as result.
2. Let nextNode be any of the direct successors of node, for which

nextNode ��M 


holds. If there is no such nextNode, return.
3. Call simpleSearchNode�nextNode�M� 
 �.

The correctness of the simple search method is obvious except the selection
method in step 2 of simpleSearchNode. It says that any of the successor nodes is
proper if the criterion holds.

Proof. [indirect] Let us assume that although nextNode is a successor of the
current node and nextNode ��M 
 , 
 cannot be reached with further steps from
nextNode. It means there is no path from nextNode to 
 . That contradicts the
definition of the catalogue as the transitive closure of a Hasse diagram is the same
as the original partial order. �

Because every path to the requested element is equally proper, an advanced
search implementation may examine them in parallel. It can be quicker since the
search stops as soon as the next element should be after the search pattern in the
catalogue. (This does not apply to entry points. All entry points must be processed.)

Elements of a database which satisfy a minimum requirement are easily re-
trievable from the catalogue, too. Analogously, a maximum requirement can also
be specified. These methods are called lower and upper bound queries, respectively.

Algorithm 2 (Lower Bound Search in the Catalogue)
lowerSearch�M� 
 �:

• For all entry points as node, call lowerSearchNode�node�M� 
 �.

lowerSearchNode�node�M� 
 �:



68 ZS. KARDKOVÁCS et al.

1. If 
 ��M node, call lowerSearchAll(node) and return.
2. Call lowerSearchNode�nextNode�M� 
 � with all successors of node as

nextNode for which
nextNode ��M 
�

lowerSearchAll�node�:

1. Emit the elements of node as result.
2. Call lowerSearchNode�nextNode� with all successors of node as nextNode.

Algorithm 3 (Upper Bound Search in the Catalogue)
upperSearch�M� 
 �:

• For all entry points as node, call upperSearchNode�node�M� 
 �.

upperSearchNode�node�M� 
 �:

1. If node ��M 
 does not hold, return.
2. Emit the elements of node as result.
3. Call upperSearchNode�nextNode�M� 
 � with all successors of node as

nextNode.

As you may have noticed, there is no option at the selection of next element
in the lower and upper bound search algorithms. (All successors are mentioned
always.) This does not imply that common subcatalogue parts must necessarily be
processed multiple times from all supercategories. Already visited parts may be
omitted. The implementation of that variant is not especially difficult with system
support. Consider, for instance, the tabled evaluation of XSB Prolog [8].

Definition 9 (Data Similarity) Concerning the particular �m-substitutability rela-
tions, the direct neighbours, i.e. the direct predecessors and successors in an �M-
catalogue contain the different but most similar elements to a node. They are the
items which cover or are covered by the node without any intermediate entity.

Definition of data similarity enables the design of a similarity search algo-
rithm. However, an algorithm can also return results when there is no exact match
for the condition in the catalogue.

Algorithm 4 (Similarity Search in the Catalogue)
similarSearch�M� 
 �:

• For all entry points as node, call similarSearchNode�node� NULL�M� 
 �.

similarSearchNode�node� prevNode�M� 
 �:

1. If node ��M 
 does not hold, jump to step 10.
2. Select all nextNode successors of node into nextLess for which

nextNode ��M 
�

3. If nextLess � �, jump to step 6.



ON THE INTEGRATION OF LARGE DATABANKS 69

4. For each nextNode � nextLess call similarSearchNode�nextNode� node�
M� 
 �.

5. Return.

6. If


 ��M node � prevNode �� NULL

holds, emit the elements of prevNode as result.

7. If


 ��M node

is not true, emit the elements of node as result.

8. Emit all elements of nextNode successors of node as result for which


 ��M nextNode�

9. Return.

10. If 
 ��M node, emit the elements of node as result.

Example 6 To demonstrate the usefulness and usability of our similarity definition,
consider the following example.

A regular customer of a travel agency is looking for a nice place to spend the
summer at. His preferences are:

• a peaceful resort,

• with nearby museums to visit and a beach,

• reachable by plane or ship,

• it costs about 1000d.

In order to fulfil the customer’s demands the data about all available holiday re-
sorts can be reorganized with M � �properties, accessibility� price�, �properties �
�accessibility � �, �price � � (the order on real numbers) and the customer’s prefer-
ences can be represented as


 �properties� � �restful, beach, museums��

 �accessibility� � �plane, ship��


 �price� � 1000�

Then the best matching candidates are returned by a similarity search. The search
also treats the accessibility condition properly, since adequate places reachable by
plane and ship are listed if there is any, ensuring maximal customer satisfaction.



70 ZS. KARDKOVÁCS et al.

6. Conclusions

In this paper an automated data reorganization method suitable for true database
integration (i.e. without wrappers and mediators) has been proposed. The resulting
data structure is in the form of a catalogue, whose nodes comprise elements con-
sidered to be identical according to a subset of their attributes. The reorganization
method also copes with derived attributes (called observing methods in the object-
oriented terminology). We have proved that catalogue construction is a decidable
problem even in the presence of derivation rules.

The catalogue presented is non-strict in the sense that ambigous classification
is allowed, and that is, in fact, the key to speeding up data retrieval. Search methods
have also been described extensively including not only exact but also lower and
upper bound queries.

Another significant result of the paper is the ability of responding with sim-
ilar data elements if requested. This feature is especially beneficial at customer
interfaces because exact match to a customer query is a rarity.

Only databanks with common schemata have been discussed in the paper.
However, [4] extends this method and concerns data sources with different schemata.

References

[1] BATINI, C. – LENZERINI, M. – NAVATHE, S. B., A Comparative Analysis of Methodologies
for Database Schema Integration, ACM Computing Surveys, 18(4) (1986), pp. 323–364.

[2] BÖRGER, E. – GRÄDEL, E. – GUREVICH, Y., The Classical Decision Problem, Springer Verlag,
1997.

[3] CASTAGNA, G., Object-Oriented Programming: A Unified Foundation, Birkhäuser, 1997.
[4] KARDKOVÁCS, ZS. T. – SURÁNYI, G. M. – GAJDOS, S., Application of Catalogues to Integrate

Heterogeneous Data Banks, in: Robert Meersman and Zahir Tari, eds. OTM Workshops 2003,
Vol. 2889 of LNCS, pp. 1045–1056, Springer-Verlag, 2003.

[5] KIFER, M. – LAUSEN, G. – WU, J., Logical Foundations of Object-Oriented and Frame-Based
Languages, Journal of ACM, 42(4) (1995), pp. 741–843.

[6] Object Management Group, Unified Modeling Language Specification (Version 1.5), March,
2003.

[7] OMELAYENKO, B. – FENSEL, D., An Analysis of B2B Catalogue Integration Problems, Proc.
of International Conference on Enterprise Information Systems (2), (2001), pp. 945–952.

[8] The XSB System (Version 2.5), 27 June, 2003.
[9] YERNENI, R., Mediated Query Processing Over Autonomous Data Sources, Stanford University,

August, 2001.


