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Abstract

In the field of network planning, local optimization techniques are frequently applied to improve
the topology of the network by determining between which nodes a connection should exist. In
many cases, some links can be merged at extra nodes (Steiner points) in order to save some costs.
Finding these extra points belongs to the weighted Fermat—\Weber-problem. In this paper, a new
representation and construction of the solution to the Fermat-problemisproposed. General conditions
of thetechnological applicability arepresented. Furthermore, upper boundsaregiventotheachievable
cost saving in advance without the construction of the Steiner points.
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1. Introduction

In the field of network planning, local optimization techniques are frequently ap-
plied. The local optimization can be the building-block of each step of a planning
algorithm or an independent final phase of a given method. In the case of topology
planning, local optimization meansthe improvement of the quality of thelink struc-
ture between the nodes, and many times it is restricted to small parts of the entire
network. In these circumstances, not only the determination is possible between
which nodes a connection should exist, but also links can be merged at extra nodes
(Steiner points, see[7]) in order to save cost.

Vi

Fig. 1. Application of Fermat-problem
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In the case of wireline links, cost saving mainly comes from the decrease of
the trace length (less cable canal is needed ‘under’ the roads and pavements). In
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the case of wirelesslinks, the number of repeaters (relay stations) can be decreased.
Of course, the efficiency of this kind of topology optimization rises with reduction
of angles between the links to be merged.

There are both exact and heuristic algorithms to find these extra "merging"
points, however, the general formulation of the solutions (the optimal position of the
extrapoints) israther complex. (The planning task belongsto the weighted Fermat-
problem in the case of merging two links [2, 3] (see Fig. 1) and to the weighted
Weber-problem in the case of merging several links[1, 5].) Moreover, the problem
of deciding in advance whether or not the application of such extra points results
in cost saving and how much the gain will be is an open question. The existing
solutions first determine the optimal position of the extra point (referred to as point
P in the following) and then cal culate the improvement.

In this paper, the following topics connected to the weighted Fermat-problem
will be investigated. First in Section 2, some general properties of point P are
given and a new coordinate system is presented to describe P. Furthermore, the
barycentric co-ordinatesof P areshownfor aspecial symmetrical case. 1nSection3,
for the case when the merging of two links decreases the cost, alower bound isgiven
for the multiplexing gain (capacity gain of merging links, denoted by M) and an
upper bound is given for the angle (denoted by y) between the two links to be
merged. Then the connection of M and y is analysed. After that, the amount of
cost saving is analysed in function of M and y. Finaly, the paper is closed by a
short conclusion.

2. New Properties of the Solution to the Fermat-Problem

DEFINITION 2.1 The weighted Fermat-problem can be formulated as follows.
Let AABC be a given triangle with positive weights wa, wg and wc associated
with the three vertices. For any point X in the plane, let |AX], |BX]| and |CX|
be the Euclidean distances between X and A, B, C. Then the weighted Fermat-
problem is to find a point P such that F(P) = min(F(X) € R?), where F(X) =
wal AX| + wg|BX| + wc|CX].

Animportant question is how the weights of the nodes determine the position
of P. Without the loss of generality, we can assume that A ABC is labelled such
that we > wg > wa. Technological considerations focus the analysis on the case
when the weights of the nodes are positive. The case when any of the weights can
be equal to or less than 0 is out of the scope of the paper. (A possible solution to
this latter case can be found in [2].)

CLAIM 2.1 If we > wg + wa, then P = C isthe solution. (Note that if we =
wp + wa and the nodes of the triangle are collinear asC — B — AorC — A— B,
then any point of the section between node C and the node in the middle can aso
be a solution.)
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CLAIM 2.2 If we < wg + wa and the nodes of the triangle are collinear, then the
node in the middle is the solution.

CLAIM 2.3 If we < wg + wa and A, B, C are not collinear, then P can be
determined by Krarup’s construction [2].

In the literature, there are severa techniques to find/construct P (see e.g.
[4,6,2]). Most of the techniques are based on geometrical construction by applying
the so-called weight triangles (the ratio of the sides of these triangles corresponds
to the weights) and Simpson lines (connecting a node of the weight triangle to the
corresponding node of the original triangle, e.g. AA in Fig. 2). However, the
general description of P is practically out of the scope of literature.

For the case described by Claim 2.3 KRARUP showed that point P was in
the intersection of three circles. These circles are the circumscribing circles of the
weight trianglesconstructed outward theoriginal triangle(see ABG, CBA;, ACB;
in Fig. 2 and Theorem 1 in [2] for details).

DEFINITION 2.2 InFig. 2, theangles with index w denote the angles of the weight
triangles and the angles with hat denote the viewing angle of the sides of AABC.
In the following, these angles with hat are referred to as Fermat-angles.

Since PAC, B, PBA;C and PCB A are cyclic quadrilaterals, the following
equations hold true for the Fermat-angles.

A =7 — oy
B:n_ﬂw
J7=7T—Vw
a+p+yp=2n (1)

In the following, the intersection of the three viewing circles according to the
Fermat-angles(around the sidesof thetriangle) isconsidered asaway tofind P inthe
case of non-collinear triangles, and thistechnique isreferred to as Angle-technique.
In the rest of the section, the conditions are shown in which the Angle-technique is
applicable.

THEOREM 2.1 If the angles of AABC are less or equal to the corresponding
Fermat-angles (i.e o <& and g < B andy < y), then P will be either an interior
point in AABC or avertex of it. Furthermore, only one of the angles can be equal
to its corresponding Fermat-angle, otherwise Claim2.1 and 2.2 determine P.

Proof. There are four cases to be investigated.

a) Ifa <dandB < Bandy < 7, then any two of the viewing circles intersect
each other at aninterior point of thetriangle and at the node, whichiscommon
for the corresponding two sides of thetriangle. Because P isunique [2], thus
P must beaninterior point of thetriangle, sinceit isthe common intersection
of the circles.
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Fig. 2. Fermat-angles

b) Without the loss of generality, weassumethat y = 7 and o« < @ and 8 < B.
Then the viewing circle according to y isequal to the circumscribing circle
of A ABC and thetwo viewing circlesintersect each other at an interior point
of AABC and at node C. Thus node C gives the solution.

c) Without the loss of generality, weassumethat y =y and 8 =B and« < &.
Then & = 7 + « holds. Since& isaviewing angle, @ < 7 aso holds. Thus
a < 0. Sincea > Oisalsotruein AABC, « must be equa to 0, which
meansthat A ABC iscollinear and Claims2.1 and 2.2 determine the solution
and this construction cannot be applied.

d) Thelast case, wheno = & and 8 = B and y = 7 isimpossible according to
Definition 2.2. O

THEOREM 2.2 If one angle of AABC is greater than its corresponding Fermat-
angle, then P will be the corresponding vertex of AABC (e g. ifa > &, then
P = A). If there are several such angles, then Claim 2.1 would determine P.

Proof. There are three cases to be investigated.

a) Without the loss of generality, weassumethat y > 7 ando < @ and 8 <§B.
Accordingto Definition2.2,y > y = 71—y, 0y +yw > 7. MARTELLI [3]
proved that in this case P = C was the solution.

b) Without the loss of generality, weassumethat y > 7 and 8 > B and o < &.
Thend + B+ = 27 canbewrittenasa@ + B8 +y > 2t =t +a+ B+,
followed by & > 7 + «. According to Definition2.2, 7 — «ay, > 7 + «, i.€.
0 > a, + «. Inanon-collinear AABC, « > 0, thus «,, is negative, what
contradicts to Claim 2.3 and Claim 2.1 gives P.
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c) According to Definition 2.2, al angles of A ABC cannot be greater than the
corresponding Fermat-angles. O

The next theorem gives a general description of P in a special coordinate
system.

THEOREM 2.3 Independently from AABC, point P is uniquely determined by
the Fermat-angles, so P can be given in a Fermat-angle coordinate system as P =

P(a, B, y) and these angles can be expressed by the weights as follows.

& = 2arccot \/w% — (wg — we)® (2a)
(wg + we)? — wi

B = 2arccot \/wé — (wa—we)® (2b)
(wa + wc)2 — wji

y = 2arccot we — (wa — we)? (20)
(wa+ wp)?2 — wd

Proof. Theorem 2.1 and 2.2 prove the applicability of the Angle-technique and the
uniqueness of the solution comes from Definition2.2. In order to prove the above
formulae, see weight triangle CB Ay in Fig. 2. The cosine law gives that

BC 2 BC 2_ BC 2 2 2 .2
= arccos(I (we)™+(I1BClwe)"— (IBClwa)” _ arceos LB T WE — Wa
2(|BClwp)(IBClwc) 2wgwc

Using Definition 2.2, one gets that

2 2 2
Wg + W — Wy

2w wWc

By taking the cosine of the above equation and Equation 2a), thefoll owing equation
has to be proved (note that 7 /2 — arctan x = arccot X, X > 0)

2 2 2 2 2
Wi +weg —w wa — (wg — we
We T WE T WA _ cos(2arctan | LA )2 )
2waC

(wg + wc)? — wh

First, the arc tangent expression is changed to arc cosine, then the double angle
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formulais applied and finally some basic simplifications are made.

2 _ _ 2 1

cos 2arctan\/wA (s _ wc)2 = cos | 2arccos

(wg + we) — wyi wi — (wg — we)?

2 +1

(wg + we)? — wh
1

:2 2 2 —1=

Wa — (wp — wC)2 +1

(wg + we)? — wy

_ w3 + wi — w3
o 2waC
Egs. (2b) and (2c¢) can be proven in the same way. O

THEOREM 2.4 Ifa = b and wa = wg = 1 in the triangle, then the optimal P
point divides the area of the A ABC into the following areas.

2 .
area(ABP) = L (3a)

4,/4 — w?
c C\2 C-wc
area(CAP) = area(BCP) = - a2—(z) - —=— (3b)
4 |: (2) > /4_ wé:|

Note that the areas of the small triangles are equal to the barycentric coordi-
nates of point P.

Proof. To calculate the area of AABP, compute first its height based on the tan-

c - .

gent of g: hagp = > /tan g After substituting Equation (2c) for 7 we get:
c-h c?-

area(ABP) = —ABP _ we

2 44— w2

Then we can calculate the areas of triangles CAP and BCP. The areas of
them are equal, so we express them as:

area(ABC) — area(ABP)

area(CAP) = area(BCP) =
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3. Connection between the Fermat-Problem and L ocal Topology
Optimization

In the field of network planning, the Fermat-problem can be applied to merge two
links of a network at an extra point if it results in cost saving. Namely, the cost of
theorigina links (AC and BC) isgreater than the cost of the links to the extra point
(AP and BP) and the cost of the merged link (PC).

In practice, the cost of the links can be calculated according to the following
formula:

Ciink =1 - (1), 4)

where the first term | denotes the length of the link and the second term f (1)
indicates the capacity-related cost of the link. This latter component can be linear,
piece-wise constant, etc.

Let us consider the weight of the links to be equivalent to their traffic-related
cost: wa = f(ta) and wg = f (tg) (where ta and tg represent the traffic of node
A and B, respectively). The cost of the multiplexed traffic uc is supposed to be

1. wc §w_A+wBand
2. we > mMin(wa, wg).

In practice, the multiplexing gain gives how much capacity can be spared by
merging links, and the multiplexing gain indirectly determinesthe required capacity
onlink PC and wc.

DEFINITION 3.1 According to the above demands, the formulafor calculating uc
by the multiplexing gain M is

we = (1 — M) min(wa, wg) + MaX(wa, wg), (5)
where0 < M < 1.

Notethat Angle-technique presented in Section2 isjust away to find the solu-
tion of the Fermat-problem. Soif Angle-technique cannot be used in thelocal topol-
ogy optimization, then the weights trivially determine P (see Claims2.1 and 2.2).
However, in most cases, P isequal to C, so improvement cannot be achieved. In
some other cases P isequal to A or B. The rest of the section focuses on the cases
connected to Claim 2.3.

Inthefollowing, let wmin denotemin(wa, wg) and wmax denotemax(wa, wg).

If we know the multiplexing gain, then it may be important to know how
great the angle between link AC and BC can bein order to efficiently apply Angle-
technique.

THEOREM 3.1 TheAngle-technique isgpplicableif angley between link AC and
BC isat most

M 21Umax + (2 - M)wmin.

Ymax = 2arccot \/ (6)
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Proof. By substituting Eq. (5) into Eq. (2c), one gets that

)9 — 2arccot (Wmin(1 = M) + wmax)2 — (wp — wA)2
(wg + wA)2 — (Wmin(1 — M) + wmax)z.

It can be easily seen that one can substitute (wg + wa)? With (Win + Wmax)?, and
(wg — wa)? With (wmin — wmax)?. Simplifying the above equation, one gets that

. 2—M 2Wmax — Mwpmin
= 2arccot . . 7
v \/ M 2Wmax + (2 — M)wmin ( )

Since Theorem 2.1 says y < y must be satisfied, the above equation is an upper
bound for y . O

Before the further analysis of the connection between y and M, let usdiscuss
two interesting connections between y and M.

LEMMA 3.1 ¢ isinversely proportional to wc and directly proportional to M.

Proof. Consider Eq. (2¢), thearc cotangent expressionismonotonically decreasing
function of wc, thus y is inversely proportional to wc. Consider Definition 3.1,
wc inversely proportional to M, thus y directly proportional to M. O

LEMMA 3.2 IfM =1, thenin <y < ir.

Proof. Substitute M = 1into Eq. (7). Then we get:

2 _ .
7 = 2arccot [ 2Xmex — Wmin _ oarccot /Q (8)
2Wmax + Wmin

By proving % < Q < 1, we prove the statement of the lemma.

Let us change wnin between 0 and wmax, Where wne is any fixed positive
vaue. If wynin = 0, then Q = 1. If wpyin increases, then Q decreases until
Wimin = Wmax- |f Wmin = Wmax, then Q = %

Let us change wmax from wp,in to 0o, where wp,in, is any fixed positive value.
If Wmnax = Winin, then Q = 2. If wpa increases, then Q increases. If wma — 00,
then Q — 1.

Altogether, Q isbetween 1 and 1. Thus 37 < ¢ < 2. O

From a practical point of view, it isimportant to analyse the cases when the
cost of the network always or never can be decreased by merging two links at alegal
multiplexing gain 0 < M < 1. The following two theorems present these cases.

THEOREM 3.2 Ify > %n, then there is no legal multiplexing gain0 < M < 1,
for which Angle-technique is applicable.
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Proof. Theorem 2.1 says that Angle-technique is applicable onlgl if y < y.
Lemma3.2givesthat y < 37 if M = 1. Soif y > 27, then > % hasasoto
be true. According to Lemma3.1, y isdirectly proportional to M, so M > 1 has
also to betrue. But alegal M must be less or equal to 1 (see Definition3.1). Thus
if y > %n, then thereisno legal multiplexinggain0 < M < 1. O

THEOREM 3.3 Ify < %n, then there always exists a legal multiplexing gain
0 < M < 1 for which Angle-technique is gpplicable.

Proof. Theorem 2.1 says that Angle-technique is applicable only if y < yp.
Lemma3.2saysif M = 1, thenp > Ir. Soif y <imrandM =1, theny < 7.
Thusif y < %n,then there always exists alegal multiplexing gain0 < M < 1. O

In the case of network planning, the most important question is how much
cost saving (gain) can be achieved by applying the Angle-technique. The gain can
be defined as 1 — S Eirgt |et us determine how the three nodes of AABC

original cost *
have to be placed in the plane to provide the maximal achievable gain. Then let us

calculate the value of this maximal gain.

LEMMA 3.3 At any given wa, wg and legal M, the maximal gain is achieved
wheny = 0 and|AC| = |BC]|.

Proof. Eq.(5) saysthat we < wa+wgfor0 < M < 1. Letusapply thefollowing
notations. Sdenotesthe node closer to C and itsweight isdenoted by us. L denotes
the node farther from C and itsweight is denoted by wy . Wewant to find the lowest
possible new cost for the network, since that case would result the maximal gain.

Npew = wi |LP| + ws|SP| + wc|PC|
= w_|LP|4+ w_|PC| + ws|SP| 4+ ws| PC|
+ (we — wi — ws)|PC]
> w |LC| 4+ ws|SC| + (we — wL — ws)|PC|

If node P isboth in sections LC and BC, then N,g,, isequal to the last expression
and y = 0. Inthat case, nodes A, B and C are collinear, so the optimal node P is
equal to S (see Property 2.1 and 2.2). Then Npgy iS

Nnew = w |LC| + (we — w)|SC|.
Independently from y, the original cost of the network is

Noig = walAC| + wg|BC| = w [LC| 4 ws|SC].
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Itis easy to seeif y tendsto O, then the gain of Angle-technique converges to the
gain of the collinear case
G=1_ Nhew _ Norig — Nnew
Norig Norig

_ wi|LC| + ws|SC|—wi [LC| — (we — wy)|SC]

B w |LC| + ws| SC]

_ (ws+w —wc)|SC|

~ wi|LC|+ ws|SC|

In order to prove that the gain is maximal if | AC| = |BC|, namely [LC| = |SC]|,
it is enough to show the following inequality.

_ (ws+ wi — we)|SC| - (ws+ wi — we) ©)
w|[LC|+ws|SC| wL + ws

If we = ws+ wy, then both sides are 0. Otherwise we can simplify the inequality
asfollows

E
w|[LC| + ws|SC| — w. + ws
ISCl(wi + ws) < wi|LC| + ws|SC]|
ISC| < ILC].

Of coursg, |SC| < |LC|, so at any given wa, wg and legal M, the gain is maximal
if y =0and |AC| = |BC]|. O

THEOREM 3.4 The maximal gain that can be achieved by Angle-technique is
max = 7 (10)

Proof. Lemma 3.3 says that at any given wa, wg and legal M, the gain tends to
the maximum if y tendsto 0 and | AC| = |BC|. According to Eg. (9) the maximal
gain can be formulated as

(wa + wp — wc)

Gmax = 11
max ot o (11)
According to Eq. (5), the gain can be formulated as
_Wa +wg — [(1 — M)wmin + Wmax]
max —
wa + ws
. WA + WB — Wmin — Wmax + Mwmin
wa + ws
_ WminM ]

wa + wg
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The above maximal gain is a general upper bound of course, however, in
particular cases, atighter upper bound is needed. Before the further analysis of the
gain, a connection between sides of AABC and |PC| is given.

LEMMA 3.4 If M islegal (0 < M < 1), then|PC| < min(|AC|, |[BC)).
Proof. If M islegal, then wc > wma. If wc isthe greatest weight, then y isthe

smallest Fermat-angle. Sinced +f + 7 = 2r and @, B, 7 < 7,504, f > Z. In
Fig. 3, two viewing circles are shown.

Fig. 3. Connection between the sides of AABC and |PC]|.

V1 isthe % viewingcircleof section B, B, where B, isconstructed by reflecting
Bto C. So|B,C| = |B:C| = |BC|. The other viewing circle is \,, which is the
@ viewing circle of section BC. Since @ > 7, thus V; is not outside of ;. P is
on Vs, so |PC| isnot greater than |[BC|. Consequently, |PC| < |BC|. Inasimilar
way, we get that |PC| < |AC|, so |[PC| < min(|AC|, |BC|). O

From a technological point of view, it isimportant to know the value of the
gain by taking the actual AABC into consideration more accurately. An upper
bound for the gain can be given by alinear function of y as follows.

THEOREM 3.5

G(7) < G (1 - L) . (12)

Ymax
Proof. By definition, G(y) = 1 — HZ‘:“Q’ = W where Nyig = wal AC| +
wg|BC| and Nney = wa|AP| + wg|BP| + wc|PC| > ... = Noig + [PCl(wc —

wa — wg) (see Lemma 3.3 for details). According to Eq. (5)

Nhew > Norig — wminM|PC| = NrineN'
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Then the following inequality holds for G(y):

Norig - NnaN < Norig - queN

G(y) = <
Y Norig Norig
inM|PC
G(y) < wm";\l—H
orig

So we have to prove that

wminM|PC| < Grx (1_ 14 )
Norig Ymax

_ WhinM (1_ 14 )
Wmin + Wmax Ymax '

whichistrueif M = 0 or wmin = 0. By transposition we get that

WminZ1 + WmaxZ2 N Vmax,

where Z, = |AC| if wa = wmin €lse Z; = |[BC| and Z, = |BC| if wg = wmax
else Z, = |AC|.

According toLemma3.4, |PC| < min(Zy, Z5), so Inequality (13) istruefor
bothy =0and y = ymax. Sincefor 0 < y < ymax theleft side is a monotonously
decreasing convex function and the right side is a monotonously decreasing linear
function, so Inequality (13) holds on the whole region. O

If wmax IS Much greater than wyin, then the upper bound given by Eq. (12)
delivers a practically satisfying estimation. If the weights are relatively close to
each other, then an estimation formula of the gain can be given.

CLAaiM 3.1 If l%a: < 10, then the gain can be estimated by the following formula:
v\ y
max G(y) ~ Gmax {191 (—) —0p— 4+ 1:| , 14
a.B ¥Ymax Ymax

where

S =1—M <0.0846 + 0.0679’”’“‘“)

Wmin

9, =2— M (0.0503 + 0.0691wm""x> .

Wmin

(Note that the above formula underestimates the gain if y isclose to yax, however,
then G tendsto 0.)
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Table 1. Precision of the evaluation of G.

Wmax \Wmin

M 1 15 2 4 8

0.1 0.002% 0.003% 0.002% 0.002% 0.006%
0.2 0.011% 0.010% 0.012% 0.005% 0.020%
0.3 0.024% 0.023% 0.024% 0.007% 0.044%
04 0.049% 0.035% 0.043% 0.011% 0.072%
05 0.070% 0.056% 0.070% 0.021% 0.102%
0.6 0.100% 0.086% 0.106% 0.040% 0.133%
0.7 0137% 0.129% 0.152% 0.061% 0.164%
0.8 0.185% 0.185% 0.193% 0.110% 0.184%
09 0.244% 0.223% 0.269% 0.167% 0.192%
1.0 0.270% 0.307% 0.339% 0.261% 0.183%

The precision of the formulais shown in Tablel.

In the rows, different values for M, in the columns, different wma, and wmin
ratios are evaluated. The results show how the formula estimates the maximal gain.
The results are the average of the absolute difference between the *exact values
and the estimation for y = 0... . (Note that the 'exact values numerically
can be computed by the combination of the Weiszfeld algorithm and a successive
approximation process.)

For example, the achievable gain a wmax = wmin 1S shown in Fig. 4. The
lowest curve isfor M = 0.1, the uppermost is for M = 1 and between them M
increases with 0.1 steps.

4. Conclusions

The Fermat-angles are proposed as anew representation of P, whichisthe solution
to the weighted Fermat-problem. The Angle-technique is proposed as a new con-
struction method of P. Several geometrical properties of the solution are analysed
including the connection of the Fermat-angles with the angles of the triangle and
with the weights of the vertices.

For the case of local topology optimization applications (when the merging
of links may result in cost savings), some formulae are given, which tell uswhether
it is worth constructing P at all and if it is worth, then the formulae approximate
the achievable cost saving in advance (without constructing P). Based on the
presented results, some applications using the solution of the Fermat-problem for
local topology optimization may be accelerated or may be extended to the weighted
case (e g. [7]).
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Fig. 4. Connection between y and G with different M values.
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